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1 Introduction 

Nowadays, producing roughly 1018 DNA strands, that too in 
a test tube, through advances in molecular biology is 
possible (Sinden, 1994). Basic biological operations  
can be applied to simultaneously operate 1018 bits of 
information. This is to say that there are 1018 data  
processors to be parallelly executed. Hence, it is very clear 
that biological computing can provide a very similar 
parallelism for dealing with the problem in the real  
world. 

Adleman (1994) wrote the first paper that DNA strands 
could be used to deal with solutions for an instance  
of the NP-complete Hamiltonian path problem (HPP). 
Lipton (1995) wrote the second paper that demonstrated that 
the Adleman techniques could be used to solve the  
NP-complete satisfiability (SAT) problem (the first  
NP-complete problem). Adleman and his coauthors  
(Roweis et al., 1999) proposed sticker for enhancing the 
Adleman-Lipton model. 

In this paper, we use a sticker in the sticker based model 
for constructing a solution space of DNA for the setbasis 
problem. Simultaneously, we also apply DNA operations in 
the Adleman-Lipton model to develop a DNA algorithm.  
It is shown from the main result of the proposed DNA 
algorithm that the setbasis problem is resolved with 
biological operations in the Adleman-Lipton model from the 
solution space of the sticker. Furthermore, this work  
shows the ability of DNAbased computing for resolving the 
NP-complete problems. 

The rest of this paper is organised as follows. In  
Section 2, the Adleman-Lipton model is introduced in detail 
and the comparison of the model with other models is given. 
Section 3 introduces a DNA algorithm for solving the 
setbasis problem from the solution space of the sticker in the 
Adleman-Lipton model. In Section 4, the experimental 
result of simulated DNA computing is discussed. 
Conclusions are drawn in Section 5. 

2 DNA model of computation 

In Subsection 2.1, a summary of DNA structure is given  
and the Adleman-Lipton model is described in detail.  
In Subsection 2.2, a comparison of the Adleman-Lipton 
model with other models is given. 

2.1 The Adleman-Lipton model 

A DNA (DeoxyriboNucleic Acid) is the molecule  
that plays the main role in DNA based computing  
(Paun et al., 1998). In the biochemical world of large and 
small molecules, polymers, and monomers, DNA is a 
polymer, which is strung together from monomers called 
deoxyribonucleotides. The monomers used for the 
construction of DNA are deoxyribonucleotides. Each 
deoxyribonucleotide contains three components: a sugar, a 
phosphate group, and a nitrogenous base. The sugar has five 
carbon atoms – for the sake of reference, there is a fixed 
numbering for them. Because the base also has carbons, to 
avoid confusion, the carbons of the sugar are numbered 
from 1' to 5' (rather than from 1 to 5). The phosphate group 
is attached to the 5' carbon, and the base is attached to the  
1' carbon. Within the sugar structure there is a hydroxyl 
group attached to the 3' carbon. 

Distinct nucleotides are detected only with their bases, 
which come in two sorts: purines and pyrimidines  
(Sinden, 1994; Paun et al., 1998). Purines include adenine 
and guanine, abbreviated A and G. Pyrimidines contain 
cytosine and thymine, abbreviated C and T. Because 
nucleotides are only distinguished from their bases, they are 
simply represented as A, G, C, or T nucleotides, depending 
upon the sort of base that they have. The structure of a 
nucleotide, cited from (Paun et al., 1998), is illustrated  
(in a very simplified way) in Figure 1. In Figure 1, B is one 
of the four possible bases (A, G, C, or T), P is the phosphate 
group, and the rest (the ‘stick’) is the sugar base (with its 
carbons enumerated 1' through 5'). 
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Figure 1  A schematic representation of a nucleotide 

 

Nucleotides can link together in two different ways  
(Sinden, 1994; Boneh et al., 1996; Paun et al., 1998). In the 
first method, the 5'-phosphate group of one nucleotide is 
joined with a 3'-hydroxyl group of the other, forming a 
phosphodiester bond. The resulting molecule has the  
5'-phosphate group of one nucleotide, denoted as the 5' end, 
and the 3'-OH group of the other nucleotide available, 
denoted as the 3' end, for bonding. This gives the molecule 
directionality, and we can talk about the direction of 5' end 
to 3' end or 3' end to 5' end. The second method is that the 
base of one nucleotide interacts with the base of the other to 
form a hydrogen bond. This bonding is the subject of the 
following restriction on the base pairing: A and T can pair 
together, and C and G can pair together – no other pairings 
are possible. This pairing principle is called the  
Watson-Crick complementarity (named after James D. 
Watson and Francis H.C. Crick who deduced the famous 
double helix structure of DNA in 1953, and won the Nobel 
Prize for the discovery). 

A DNA strand is essentially a sequence (polymer) of 
four types of nucleotides detected by one of the four bases 
that they contain (Sinden, 1994; Boneh et al., 1996;  
Paun et al., 1998). Two strands of DNA can form (under 
appropriate conditions) a double strand, if the respective 
bases are the Watson-Crick complements of each other – A 
matches T and C matches G; also 3' end matches 5' end. The 
length of a single stranded DNA is the number of 
nucleotides comprising the single strand. Thus, if a single 
stranded DNA includes 20 nucleotides, then we say that it is 
a 20 monomer (i.e., it is a polymer containing 20 
monomers). The length of a double stranded DNA (where 
each nucleotide is base paired) is counted in the number of 
base pairs. Thus if we make a double stranded DNA from a 
single stranded 20 monomer, then the length of the double 
stranded DNA is 20 base pairs, also written 20 bp.  
(For more discussion of the relevant biological  
background refer to Sinden (1994), Boneh et al. (1996) and 
Paun et al. (1998)). 

In the Adleman-Lipton model (Adleman, 1994;  
Lipton, 1995), splints are used to construct and correspond 
to the edges of a particular graph, the paths of which 
represent all possible binary numbers. As it stands, their 
construction indiscriminately builds all splints that lead to a 
complete graph. This is to say that hybridisation has higher 
probabilities of errors. Hence, Adleman and his coauthors 
(Roweis et al., 1999) proposed the sticker based model, 
which is an abstract model of molecular computing based 
on DNA with a random access memory and a new form of 
encoding the information, to enhance the Adleman-Lipton 
model. 

The DNA operations in the Adleman-Lipton model, 
cited from Adleman (1994, 1996) Lipton (1995)  
and Boneh et al. (1996) are described below. These 

operations will be used for figuring out solutions of the 
setbasis problem. 

The Adleman-Lipton model: 

A (test) tube is a set of molecules of DNA (i.e., a multiset of 
finite strings over the alphabet {A, C, G, T}). Given a tube, 
one can perform the following operations: 

• Extract. Given a tube P and a short single strand of 
DNA, S, produce two tubes +(P, S) and –(P, S), where 
+(P, S) is all of the molecules of DNA in P which 
contain the strand S as a substrand and –(P, S) is all of 
the molecules of DNA in P which do not contain the 
short strand S. 

• Merge. Given tubes P1 and P2, yield ((P1, P2), where 
((P1, P2) = P1 ( P2 . This operation is to pour two tubes 
into one, with no change of the individual strands. 

• Detect. Given a tube P, say ‘yes’ if P includes at least 
one DNA molecule, and say ‘no’ if it contains none. 

• Discard. Given a tube P, the operation will discard the 
tube P. 

• Read. Given a tube P, the operation is used to describe 
a single molecule which is contained in the tube P. 
Even if P contains many different molecules, each 
encoding a different set of bases, the operation can give 
an explicit description of exactly one of them. 

2.2 The comparison of the Adleman-Lipton model 
with other models 

Techniques in the Adleman-Lipton model could be applied 
for solving the NPcomplete Hamiltonian path  
problem and satisfiability (SAT) problem in linearly 
increasing time and exponentially increasing volumes of 
DNA (Adleman, 1994; Lipton, 1995). Quyang et al. (1997) 
proved that restriction enzymes could be used to solve the 
NPcomplete clique problem (MCP). The maximum  
number of vertices that they can process is limited to 27 
because the size of the pool with the size of the problem 
increases exponentially. Arito et al. (1997) described new 
molecular experimental techniques for searching a 
Hamiltonian path. Morimoto et al. (1999) offered  
a solid phase method for finding a Hamiltonian path. 
Narayanan et al. (1998) demonstrated that the  
Adleman-Lipton model was extended towards  
solving the travelling salesman problem. Shin et al. (1999) 
presented an encoding scheme that applies fixed length 
codes for representing integers and real values. Their 
method could also be employed towards solving the 
travelling salesman problem. Amos (1997) proposed  
the parallel filtering model for resolving the  
Hamiltonian path problem, the subgraph isomorphism 
problem, the 3-vertex-colourability problem, the clique 
problem and the independent set problem. Roweis  
et al. (1999) proposed the stickerbased model to enhance the 
Adleman-Lipton model. Their model could be used for 
determining solutions to an instance of the set cover 
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problem. Perez-Jimenez and Sancho-Caparrini (2001) 
employed  the stickerbased model (Roweis et al., 1999) to 
resolve knapsack problems. Fu (1997) proposed new 
algorithms to resolve 3-SAT, 3-Coloring and the 
independent set. In our previous work, Chang et al. (2002a, 
2002b, 2002c, 2002d) proved how the DNA operations from 
the solution space of splint in the Adleman-Lipton model 
could be employed for developing DNA algorithms. Those 
DNA algorithms could be applied for resolving the 
dominating set problem, the vertex cover problem,  
the clique problem, the independent set problem, the  
3-dimensional matching problem and the setpacking 
problem. In our previous work, Guo et al. (2004) also 
employed the stickerbased model and the Adleman-Lipton 
model to deal with the dominating set problem for 
decreasing the error rate of hybridisation. 

3 Using sticker for solving the set-basis problem 
in the Adleman-Lipton model 

In Subsection 3.1, the set-basis problem is defined. 
Applying sticker for constructing solution space  
of DNA sequences for the set-basis problem is introduced in 
Subsection 3.2. In subsection 3.3, a DNA algorithm is 
proposed for resolving the set-basis problem. In  
subsection 3.4, the complexity of the proposed algorithm is 
discussed. 

3.1 Definition of the set-basis problem 

Assume that a finite set S is {s1, …, sd}, where se is the eth 
element for 1 ≤ e ≤ d in S. |S| is denoted as the number of 
elements in S and |S| is equal to d. Suppose that a collection 
C is a set of subsets of the finite set S and is {C1, …, Cf}, 
where Cg is the gth element for 1 ≤ g ≤ f in C. |C| is denoted 
as the number of subsets in C and |C| is equal to f. Assume 
that a positive integer k ≤ |C|. Mathematically, the set-basis 
problem is to find a collection B of subsets of S with |B| = k 
such that for each Cg ∈ C, there is a subcollection  
of B whose union is exactly Cg. That problem has  
been proved to be an NPcomplete problem (Garey and 
Johnson, 1979). 

A finite set S and a collection C of subsets for S are 
shown in Figure 2. The finite set S is {1,2} and the 
collection C is {{1}, {2}}. The two sets define a set-basis 
problem. The set-basis for S and C in Figure 2 is {{1}, 
{2}}. Hence, the size of the set-basis problem for S  
and C in Figure 2 is two. It is indicated from  
(Garey and Johnson, 1979) that finding a set-basis is a 
NPcomplete problem, so it can be formulated as a ‘search’ 
problem. 

Figure 2  A finite set S and a collection C of subsets for S 

 
 
 
 

3.2 Using sticker for constructing solution space  
of DNA sequence for the set-basis problem 

In the Adleman-Lipton model, the main idea is to first 
generate solution space of DNA sequences for those 
problems. Then, basic biological operations are used to 
select a legal solution and to remove the illegal solution 
from the solution space. Therefore, for a finite set S, with d 
elements and a collection C with f elements for subsets of 
the finite set, the first step for resolving the set-basis 
problem is to produce a test tube, which includes all of the 
possible subsets for the finite set. A d-digit binary number 
can be used to represent each possible subset for S. Suppose 
that S1 is a subset of S and a d-digit binary number is used to 
represent S1. If the ith bit in the d-digit binary number is set 
to 1, then it represents that the ith element in S is in S1. If the 
ith bit in a d-digit binary number is set to 0, then it 
represents that the corresponding element is not in S1. In this 
way, all of the possible subsets in S are transformed into an 
ensemble of all d-digit binary numbers. 

Hence, with the above method, Table 1 denotes the 
solution space of the subsets for the finite S in Figure 2. The 
binary number 00 in Table 1 represents the empty subset. 
The binary numbers 01 and 10 in Table 1 represent the 
subsets {1} and {2}, respectively. The binary number 11 in 
Table 1 represents the subset {2,1}. Though there are four 
2-digit binary numbers for representing four possible 
subsets in Table 1, not every 2-digit binary number 
corresponds to a legal solution. Hence, in next subsection, 
basic biological operations are used to develop an algorithm 
for removing illegal subsets and determining legal solutions. 

Since a collection C with f elements is a set of subsets of 
S, every element in each subset in C comes from S. 
Therefore, every subset in C is represented by the same 
method above. Table 2 denotes representation of each 
subset in the collection C in Figure 2. The first subset {1} in 
Table 2 is represented as the 2 digit binary number 01. The 
second subset {2} in Table 2 is represented as the 2 digit 
binary number 10. 

Table 1 The solution space of the subsets for the finite S in 
Figure 2 

2-digit binary number The corresponding subset 

00 <t> 
01 {1} 
10 {2} 
11 {2,1} 

Table 2 Denotation of each subset in the collection C in 
Figure 2 

The subset The corresponding 2-digit binary representation 

{1} 01 
{2} 10 
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To implement this method, assume that an unsigned integer 
X is represented by a binary number xd, xd–i, …, x1, where 
the value of xi is 1 or 0 for 1 ≤ i ≤ d. The integer X  
can take 2d possible values. Each such value represents a 
subset for a finite set S of size d. Therefore, it is very clear 
that an unsigned integer X forms 2d possible subsets. A bit xi 
in X represents the ith element in S. Given a subset of S, if 
the ith element is in the subset, then the value of xi is  
set to 1; if the ith element is not in the subset, then the value 
of xi is set to 0. 

To represent all possible subsets for a finite set S  
with d elements for the set-basis problem, a sticker  
(Roweis et al., 1999; Braich et al., 2000) is used to construct 
the solution space for that problem. For every bit xi where 
1 ≤ i ≤ d, two distinct 15 base value sequences are designed. 
One represents the value 1 for xi and another represents the 
value 0 for xi. For the convenience of presentation, assume 
that 1

ix  denotes the value of xi to be 1 and 0
ix  defines the 

value of xi to be zero. Each of the 2d possible subsets is 
represented by a library sequence of 15 × d bases consisting 
of the concatenation of one value sequence for each bit. 
DNA molecules with library sequences are termed library 
strands and a combinatorial pool containing library strands 
is termed a library. The probes used for separating the 
library strands have sequences complementary to the value 
sequences. Similarly, d 15 base value sequence is also 
applied to represent every element in a subset of a collection 
C, where C is a set of subsets for a finite set S. 

It is pointed out from (Roweis et al., 1999;  
Braich et al., 2000) that errors in the separation  
of the library strands are errors in the computation. 
Sequences must be designed to ensure that library strands 
have little secondary structure that might inhibit intended 
probe-library hybridisation. The design must also exclude 
sequences that might encourage unintended probe-library 
hybridisation. To help achieve these goals, sequences are 
computer generated to satisfy the following constraint 
(Braich et al., 2000). 

• library sequences contain only A’s, T’s, and C’s 

• all library and probe sequences have no occurrence of  
5 or more consecutive identical nucleotides; i.e., no 
runs of more than 4 A’s, 4 T’s, 4 C’s or 4 G’s occur in 
any library or probe sequences 

• every probe sequence has at least four mismatches with 
all 15 base alignment of any library sequence (except 
for with its matching value sequence) 

• every 15 base subsequence of a library sequence has at 
least four mismatches with all 15 base alignment of 
itself or any other library sequence 

• no probe sequence has a run of more than seven 
matches with any eight base alignment of any  
library sequence (except for with its matching value 
sequence) 

 
 

• no library sequence has a run of more than seven 
matches with any eight base alignment of itself or any 
other library sequence 

• every probe sequence has 4, 5, or 6 Gs in its sequence. 

Constraint (1) is motivated by the assumption that library 
strands composed only of As, Ts, and Cs will have less 
secondary structure than those composed of As, Ts, Cs, and 
Gs (KalimMir, 1996). Constraint (2) is motivated by two 
assumptions: first, that long homopolymer tracts may have 
unusual secondary structure and second, that the melting 
temperatures of probe-library hybrids will be more uniform 
if none of the probe-library hybrids involve long 
homopolymer tracts. Constraints (3) and (5) are intended to 
ensure that probes bind only weakly where they are not 
intended to bind. Constraints (4) and (6) are intended to 
ensure that library strands have a low affinity for 
themselves. Constraint (7) is intended to ensure that 
intended probe-library pairings have uniform melting 
temperatures. 

The Adleman program (Braich et al., 2000) was 
modified for generating those DNA sequences to satisfying 
the constraints above. For example, for representing the two 
elements in the finite set S in Figure 2, the DNA sequences 
generated are:  

0 0
1 2
1 1
1 2

, ,
and .

x CCACATATCCATCCC x CCTACCTCTCACCTT
x CCCATCTTTCTTAAC x CATTACCTCTTTACT

= =

= =
  

Because the first subset in the collection C in Figure 2 only 
includes the first element in S, two 15 base DNA sequences, 

0 1
2 1( ) and ( )CCTACCTCTCACCTT x CCCATCTTTCTTAAC x

 are used for representing it. Similarly, the second subset in 
the collection C in Figure 2 only contains the second 
element in S, so two 15 base DNA sequences, 

1 0
2 1( ) and ( )CATTACCTCTTTACT x CCACATATCCATCCC x

 are used for representing it. For every possible subset of the 
finite set S in Figure 2, the corresponding library strand is 
synthesised by employing a mix and split combinatorial 
synthesis technique (Cukras et al., 1998). Similarly, for any 
d-element set, all of the library strands for representing 
every possible subset can be also synthesised with the same 
technique. 

3.3 The DNA algorithm for solving the set-basis 
problem 

The following DNA algorithm is proposed to solve the  
set-basis problem. 

Algorithm 1: Solving the set-basis problem. 

(1) Input (T0), where the tube T0 includes solution space of 
DNA sequences to encode all of the possible subsets 
for any d-element set S, with those techniques 
mentioned in Subsection 3.2. 
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(2) For  = 1 to |C|, where |C| is the number of subsets in a 
collection C. 

(a) For k = 1 to |Cj|, where |Cj| is the number of 
elements in Cj in C. Assume that the kth element in 
Cj is the ith element in S and XI is used to  
represent it. 

(b) T0 = + (T0, x´
i ) and TOFF = –(T0, x´

i ). 

(c) TON = U(TOFF, TON) 

EndFor 

(d) For k = 1 to |S| – |Cj|, where |S| is the number of 
elements in S. Assume that the mth element in S 
for 1 < m < d is out of Cj and xm is used to 
represent it. 

(e) T0 = + (T0, x0
m) and TOFF = –(T0, x0

m). 
(f) TON = U(TOFF,TON) 

EndFor 

(g) Tj=U(Tj, T0) 
(h) T0=U(T0, TON) 

EndFor 

(3) For j = 1 to |C|, where |C| is the number of subsets ina 
collection C. 

(a) Read (Tj). 

EndFor 

Theorem 3.1: From those steps in Algorithm 1, the  
set-basis problem can be solved. 

Proof: In Step 1, a test tube of DNA strands, that encode all 
2d possible input bit sequences xd, …, x1, is generated. It is 
very clear that the test tube includes all 2d possible subsets 
for any d-element set, S. 

In Step 2, it contains one outer loop and two inner loops. 
The outer loop will execute |C| times, where |C| is the 
number of subsets in a collection C. The first inner loop will 
execute (|Cj| × |C|) times, where |Cj| is the number of 
elements in Cj in C. The second inner loop will  
execute ((|S| – Cj|) × |C|) times, where |S| is the number of 
elements in S. According to definition of set-basis  
(Cormen et al., 1990; Garey and Johnson, 1979), the first 
execution of Step 2b applies ‘extraction’ to form two test 
tubes: T0 and TOFF. The first tube T0 contains all of the 
strands that have xi = 1. The second tube TOFF consists of all 
of the strands that have xi = 0. The tube TON represents those 
subsets, which contains the element si. The tube TOFF 
represents those subsets, which do not include the element 
si. Then, the first execution of Step 2(c) uses the ‘merge’ 
operation to pour two tubes, TOFF and TON into the tube, TON. 
That is to say that the tube TON obtains the strands in the tube 
TOFF. After Steps 2(b)–2(c) are repeated to execute (|Cj|) 
times, the tube T0 includes the strands, which currently 
satisfy the subset Cj in C to definition of set-basis. 

Next, the first execution of Step 2(e) employs the 
‘extraction’ operation to generate two test tubes: T0 and TOFF. 

The first tube T0 contains all of the strands that have xm = 0. 
The second tube TOFF consists of all the strands that have 
xm = 1. Because there is no element, sm, in Cj, the tube T0 
represents those strands which do not contain the element sm 
and the tube TOFF represents those strands which include the 
element sm. The first execution of Step 2(f) uses the ‘merge’ 
operation to pour two tubes, TOFF and TON into the tube, TON. 
This is to say that the tube TON obtains the strands in the tube 
TOFF. After Steps 2(e)–2(f) are repeated to execute (|S| – |Cj|) 
times, the tube T0 includes the strands, which satisfy the 
subset Cj in C for definition of set-basis. 

Then, the first execution of Step 2(g) uses the ‘merge’ 
operation to pour two tubes, Tj and T0 into the tube, Tj. That 
is to say that the tube Tj consists of the strands satisfying the 
subset Cj in C for definition of set-basis. The first execution 
of Step 2(h) also applies the ‘merge’ operation to pour two 
tubes, TON and T0 into the tube, T0. This is to say that the tube 
T0 includes the strands, which do not satisfy the subset Cj in 
C for definition of set-basis. For other subsets in C, the 
similar processing is also finished. Therefore, after all of the 
second steps are processed, d new tubes are generated. The 
new tube Tj for d ≥ j ≥ 1 contains those strands that satisfy 
the subset Cj in C for definition of set-basis. 

Since the set-basis problem is to find a collection B of 
subsets of S such that for each Cj ∈ C, there is a 
subcollection of B whose union is exactly Cj, the tube Tj for 
d ≥ j ≥ 1 contains those DNA sequences that satisfy the 
subset Cj in C for definition of set-basis. Therefore, the first 
execution of Step 3(a) employs ‘Read’ operation to describe 
‘sequence’ of a molecule in the tube T1. After  
Step 3(a) is repeated to execute |C| times, the answer for the 
set-basis problem is found and described. �  

The finite set S and the collection C in Figure 2 are used 
to show the power of Algorithm 1. It is pointed out from 
Step 1 in Algorithm 1 that the tube T0 is filled with four 
library stands with those techniques mentioned in 
subsection 3.2, representing four possible subsets for the set 
S in Figure 2. The number of the elements in S in Figure 2 is 
two, so the number of executions to the outer loop in Step 2 
of Algorithm 1 is two times. The number of the element in 
the two subsets in the collection C is one. Therefore, the 
number of executions for the first inner loop in Step 2 of 
Algorithm 1 is two times and the number of execution for 
the second inner loop in Step 2 of Algorithm 1 is also two 
times. 

According to the first execution of Step 2(b) of 
Algorithm 1, two tubes are generated. The first tube, T0, 
includes those subsets: {1} and {1, 2} and the second tube, 
TOFF, also contains those subsets: φ and {2}. Next, the first 
execution to Step 2(c) in Algorithm 1 pours the two tubes 
TOFF and TON into the tube TON. Therefore, the tube TON now 
includes those subsets: φ and {2}. Two tubes are produced 
from the first execution to Step 2(e) in Algorithm 1. The 
first tube, T0, includes the subset: {1} and the second tube, 
TOFF, also contains the subset: {1, 2}. Then, the first 
execution to Step 2(f) in Algorithm 1 pours the two tubes 
TOFF and TON into the tube TON. Hence, the tube TON now 
includes those subsets: φ, {2} and {1, 2}. The first 
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execution to Step 2(g) in Algorithm 1 pours the two tubes Tj 
and T0 into the tube Tj. So, the tube Tj now includes the 
subset: {1}. Next, the first execution to Step 2(h) in 
Algorithm 1 pours the two tubes T0 and TON into the tube T0. 
Hence, the tube T0 now includes those subsets: φ, {2} and 
{1, 2}. The same processing can be applied to deal with the 
second subset {2} in the collection C. After all of the 
second steps are processed, it finally produces two new 
tubes. The two tubes T1 and T2, respectively, include {1} 
and {2}. 

Because the number of the subsets in the collection C is 
two, the number of execution to Step 3 is two times.  
The first execution of Step 3(a) employs the ‘Read’ 
operation to describe the ‘sequence’ of a molecule in the 
tube T1. After Step 3(a) is repeated to execute two times, the 
answer for the set-basis problem to the finite set S and  
the collection C in Figure 2 is found to be {{1}, {2}}. 

3.4 The complexity of the proposed DNA algorithm 

The following theorems describe time complexity of 
Algorithm 1, volume complexity of solution space in 
Algorithm 1, the number of the tube used in Algorithm 1 
and the longest library strand in solution space in  
Algorithm 1. 

Theorem 3.2: The set-basis problem for any d-element set S 
and any f-subset collection C can be solved with O(d × f) 
biological operations in the Adleman-Lipton model. 

Proof: Algorithm 1 can be applied for solving the set-basis 
problem for any d-element set S and any f-subset  
collection C. Algorithm 1 includes two main steps. Step 2 is 
mainly used to determine legal set-basis and to remove 
illegal set-basis from all of the 2d possible library strands. 
From Algorithm 1, it is very obvious that Step 2(b) and  
Step 2(e) totally take (d × f) ‘extraction’ operations and  
Step 2(c) and Step 2(f) totally take (d × f) ‘merge’ 
operations. Since C contains f elements, therefore, it is very 
clear from Algorithm 1 that Step 2(g) and Step 2(h) totally 
take (2 × f) ‘merge’ operations. Step 3 is used to find a  
set-basis. It is pointed out from Algorithm 1 that Step 3(a) 
takes f ‘read’ operations. Hence, from the statements 
mentioned above, it is at once inferred that the time 
complexity of Algorithm 1 is O(d × f) biological operations 
in the Adleman-Lipton model. �  

Theorem 3.3: The set-basis problem for any d-element set S 
and any f-subset collection C can be solved with a sticker to 
construct O(2d) library strands in the Adleman-Lipton 
model, where d is the number of elements in S. 

Proof: Refer to Theorem 3.2. �  

Theorem 3.4: The set-basis problem for any d-element set S 
and any f-subset collection can be solved with O(f) tubes in 
the Adleman-Lipton model, where f is the number of 
elements in C. 

Proof: Refer to Theorem 3.2. �  

Theorem 3.5: The set-basis problem for any d-element set S 
and any f-subset collection can be solved with the longest 
library strand, O(15 × d), in the Adleman-Lipton model, 
where d is the number of elements in S. 

Proof: Refer to Theorem 3.2. �  

4 Experimental results of simulated DNA 
computing 

We modified the Adleman program (Braich et al., 2000) and 
implemented in a PC with one Pentium II 200 MHz CPU 
and 64 MB main memory. Our operating system is 
Windows 98 and our compiler is C++ Builder 6.0. The 
modified program was executed to generate DNA sequences 
for solving the set-basis problem for any d-element set S and 
any f-subset collection C. Because the source code of the 
two functions drand48() and drand48() were not found in 
the original Adleman program, we used the standard 
function srand() in C++ builder 6.0 to replace the function 
srand48() and added the source code for the function 
drand48(). We also added subroutines to the Adleman 
program for simulating biological operations in the 
Adleman-Lipton model in Section 2. We added subroutines 
to the Adleman program to simulating Algorithm 1 in 
Subsection 3.3. For any d-element set S and any f-subset 
collection C, the size of library strands is 2d. Due to the limit 
of memory space and harddisk space, the value of d was less 
than or equal to 20. 

The Adleman program is used for constructing each  
15-base DNA sequence for each bit of the library. For each 
bit, the program is applied for generating two 15-base 
random sequences (for the ‘1’ and the ‘0’) and checking to 
see if the library strands satisfy the seven constraints in 
subsection 3.2 with the new DNA sequences added. If the 
constraints are satisfied, the new DNA sequences are  
‘greedily’ accepted. If the constraints are not satisfied, then 
mutations are introduced one by one into the new block 
until either: (A) the constraints are satisfied and the new 
DNA sequences are then accepted or (B) a threshold for the 
number of mutations is exceeded and the program fails and 
so it exits, printing the sequence found so far. If d-bits that 
satisfy the constraints are found then the program succeeds 
and it outputs these sequences. 

Consider the finite set S and the collection C in Figure 2. 
The finite set includes {1, 2} and the collection C  
contains {{1}, {2}}. DNA sequences generated by the 
Adleman program modified were shown in Table 3. The 
program, correspondingly, takes one mutation to make new 
DNA sequences for the first element and the second element 
in S. With the nearest neighbour parameters, the program is 
used to calculate the enthalpy, entropy, and free energy for 
the binding of each probe to its corresponding region on a 
library strand. The energy is shown in Table 4. Only G 
really matters to the energy of each bit. For example, the 
delta G for the probe binding a T in the first bit is thus 
estimated to be 25.8 kcal/mol and the delta G for the probe 
binding a ‘0’ is estimated to be 28.0 kcal/mol. 
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Table 3 Sequences chosen to represent the two elements in S 
in Figure 2 

Vertex 5' → 3' DNA sequence 
0
2x  CCTACCTCTCACCTT 

0
1x  CCACATATCCATCCC 

1
2x  CATTACCTCTTTACT 

1
1x  CCCATCTTTCTTAAC 

Table 4 The energy for the binding of each probe to its 
corresponding region on a library strand 

Vertex 
Enthalpy energy 

(H) 
Entropy energy 

(S) Free energy (G)
0
2x  109.3 278.4 26.2 

0
1x  110.9 278 28 

1
2x  106.7 279.7 23 

1
1x  112.1 288.8 25.8 

The program simulates a mix and split combinatorial 
synthesis technique (Cukras et al., 1998) to synthesise the 
library strand to every possible subset. Those library strands 
are shown in Table 5 and, correspondingly, represent four 
possible subsets: φ, {1}, {2}, and {1, 2}. The program is 
also applied to figure out the average and standard deviation 
for the enthalpy, entropy and free energy over all 
probe/library strand interactions. The energy is shown in 
Table 6. The standard deviation for delta G is small because 
this is partially enforced by the constraint that there are 4, 5, 
or 6 Gs (the seventh constraint in Subsection 3.2) in the 
probe sequences. 

Table 5 DNA sequences chosen represent all possible subsets 

5' – CCT ACCTCTC ACCTTCC AC AT ATCC ATCCC – 3' 
3' – GGATGGAGAGTGGAAGGTGTATAGGTAGGG –5' 
5' – CCT ACCTCTC ACCTTCCC ATCTTTCTT AAC – 3' 
3' – GGATGGAGAGTGGAAGGGTAGAAAGAATTG – 5' 
5' – CATTACCTCTTTACTCC AC AT ATCC ATCCC – 3' 
3' – GT AATGGAGAAATGAGGTGT AT AGGT AGGG – 5' 
5' – CATTACCTCTTTACTCCC ATCTTTCTT AAC – 3' 
3' – GTAATGGAGAAATGAGGGTAGAAAGAATTG – 5' 

Table 6 The energy over all probe/library strand interactions 

 
Enthalpy 

energy (H) 
Entropy 

energy (S) 
Free energy 

(G) 
Average 109.75 281.225 25.75 
Standard deviation 2.02161 4.41807 1.79095 

The Adleman program was employed for computing the 
distribution of the types of potential mishybridisations. The 
distribution of the types of potential mishybridisations is the 
absolute frequency of a probestrand match of length k from 
0 to the bit length 15 (for DNA sequences) where probes are 
not supposed to match the strands. The distribution was, 
subsequently, 52, 102, 85, 95, 105, 109, 77, 36, 13, 12, 2, 0, 

0, 0, 0 and 0. It is pointed out from the last five zeros that 
there are 0 occurrences where a probe matches a strand at 
11, 12, 13, 14 or 15 places. This shows that the third 
constraint in subsection 3.2 has been satisfied. It is very 
clear that the number of matches peaks at five (109). That is 
to say that there are 109 occurrences where a probe matches 
a strand at five places. 

It is indicated from the execution of Step 2 of simulation 
that the result generated by Step 2 was shown in Table 7. 
The goal of Step 3 is to find a set-basis from the result 
generated by Step 2. Hence, Step 3(a) of simulation, the  
set-basis was shown in Table 8. That is to say that the 
answer of the set-basis problem for the finite set S and the 
collection C in Figure 2 is {{1}, {2}}. 

Table 7 DNA sequences generated by Step 2 represent legal 
subsets 

5' – CCT ACCTCTC ACCTTCCC ATCTTTCTT AAC – 3' 
5' – CATTACCTCTTTACTCC AC AT ATCC ATCCC – 3' 

Table 8 DNA sequence represents the answer of the set-basis 
problem for the finite set S and the collection C in 
Figure 2 

5' – CCTACCTCTCACCTTCCCATCTTTCTTAAC – 3' 
5' – CATTACCTCTTTACTCCACATATCCATCCC – 3' 

5 Conclusions 

Applying splints constructs the solution space of the DNA 
sequence for solving the NPcomplete problem in the 
Adleman-Lipton and this is the reason that hybridisation  
has higher probabilities for errors. Adleman and his 
coauthors (Roweis et al., 1999) proposed a sticker to 
decrease probabilities of errors in hybridisation in the 
Adleman-Lipton model. In the proposed algorithm, the size 
of the solution space of the sticker is exponential. Hence, 
this is the limit to which we can resolve the size of the 
NPcomplete problem. The main result of the proposed 
algorithm shows that the set-basis problem is resolved with 
biological operations in the Adleman-Lipton model from 
solution space of sticker. Furthermore, this work 
demonstrates the ability of DNA based computing to solve 
NPcomplete problems. 
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