
72 Int. J. Computational Science and Engineering, Vol. 2, Nos. 1/2, 2006

Copyright © 2006 Inderscience Enterprises Ltd.

Fast parallel bio-molecular solutions: the set-basis
problem

Weng-Long Chang*
Department of Computer Science and Information Engineering,
National Kaohsiung University of Applied Sciences,
415 Chien Kung Road, 807 Kaohsiung, Taiwan, ROC
E-mail: changwl@cc.kuas.edu.tw
*Corresponding author

Michael Ho
Department of Information Management,
School of Information Technology,
Ming Chuan University,
5, Teh-Ming Rd., Gwei-Shan, 333 Taoyuan, Taiwan, ROC
E-mail: mhoincerritos@yahoo.com

Minyi Guo
School of Computer Science and Engineering,
University of Aizu, Aizu Wakamatsu City, 965 8580 Fukushima, Japan
E-mail: minyi@u-aizu.ac.jp

Chengfei Liu
Faculty of Information and Communication Technologies,
Swinburne University of Technology,
Melbourne, 3122 VIC, Australia
E-mail: cliu@swin.edu.au

Abstract: In the paper, it is demonstrated how to apply sticker in the sticker-based model for
constructing solution space of DNA for the setbasis problem and how to apply DNA operations
in the Adleman-Lipton model to solve that problem from solution space of sticker. Furthermore,
this work shows the ability of DNA-based computing for resolving the NP-complete problems.

Keywords: biological parallel computing; DNA-based supercomputer; NP-complete problem;
set-basis problem.

Reference to this paper should be made as follows: Chang, W-L., Ho, M., Guo, M. and Liu, C.
(2006) ‘Fast parallel bio-molecular solutions: the set-basis problem’, Int. J. Computational
Science and Engineering, Vol. 2, Nos. 1/2, pp.72–80.

Biographical notes: Weng-Long Chang received his PhD Degree in Computer Science and
Information Engineering from the National Cheng Kung University, Taiwan in 1999.
His research interests include molecular computing, and languages and compilers for parallel
computing.

Michael Ho is an Associate Professor of Ming Chuan University with 25 years
industrial/academic experiences in the computing field. He had worked as a Senior Software
Engineer and Project Leader developing B2B/B2C/C2C web/multimedia applications and a
Senior Database Administrator for SQL/Oracle/DB2 with many major US corporation
LAN/WAN systems. He had ten years of college teaching/research experiences as an
Associate/Assistant Professor at Southern Taiwan University of Technology/Central Missouri
State University/the University of Texas. He earned a PhD in IS/CS with management
/accounting minors from UT Austin. His research interests include computation theories,
software engineering, multimedia, data mining, SOC, parallel/quantum/DNA computing.

 Fast parallel bio-molecular solutions: the set-basis problem 73

Minyi Guo received his PhD Degree in Information Science from the University of Tsukuba,
Japan in 1998. From 1998 to 2000, He had been a research scientist of NEC Soft, Ltd. Japan.
He is currently an Associate Professor at the Department of Computer Software, The University
of Aizu, Japan. He has served as General Chair, Program Committee and Organising Committee
Chair for many international conferences. He is an Editor in Chief of the Journal of Embedded
Systems. He is also on the editorial board of the International Journal of High Performance
Computing and Networking, Journal of Embedded Computing, Journal of Parallel and
Distributed Scientific and Engineering Computing, and International Journal of Computer and
Applications. His research interests include parallel and distributed processing, parallelising
compilers, data parallel languages, data mining, molecular computing and software engineering.

Chengfei Liu received his PhD Degree in Computer Science from the Nanjing University in
1988. He is currently an Associate Professor at the Faculty of Information and Communication
Technologies, Swinburne University of Technology, Australia. He was a Senior Lecturer at the
University of South Australia, a Lecturer at the University of Technology Sydney, and a Senior
Research Scientist at DSTC in University of Queensland. He also held visiting positions at the
IBM Silicon Valley Laboratory and the University of Aizu. His current research interests include
advanced databases, XML data management and integration, advanced transaction models,
workflows, and Web services.

1 Introduction

Nowadays, producing roughly 1018 DNA strands, that too in
a test tube, through advances in molecular biology is
possible (Sinden, 1994). Basic biological operations
can be applied to simultaneously operate 1018 bits of
information. This is to say that there are 1018 data
processors to be parallelly executed. Hence, it is very clear
that biological computing can provide a very similar
parallelism for dealing with the problem in the real
world.

Adleman (1994) wrote the first paper that DNA strands
could be used to deal with solutions for an instance
of the NP-complete Hamiltonian path problem (HPP).
Lipton (1995) wrote the second paper that demonstrated that
the Adleman techniques could be used to solve the
NP-complete satisfiability (SAT) problem (the first
NP-complete problem). Adleman and his coauthors
(Roweis et al., 1999) proposed sticker for enhancing the
Adleman-Lipton model.

In this paper, we use a sticker in the sticker based model
for constructing a solution space of DNA for the setbasis
problem. Simultaneously, we also apply DNA operations in
the Adleman-Lipton model to develop a DNA algorithm.
It is shown from the main result of the proposed DNA
algorithm that the setbasis problem is resolved with
biological operations in the Adleman-Lipton model from the
solution space of the sticker. Furthermore, this work
shows the ability of DNAbased computing for resolving the
NP-complete problems.

The rest of this paper is organised as follows. In
Section 2, the Adleman-Lipton model is introduced in detail
and the comparison of the model with other models is given.
Section 3 introduces a DNA algorithm for solving the
setbasis problem from the solution space of the sticker in the
Adleman-Lipton model. In Section 4, the experimental
result of simulated DNA computing is discussed.
Conclusions are drawn in Section 5.

2 DNA model of computation

In Subsection 2.1, a summary of DNA structure is given
and the Adleman-Lipton model is described in detail.
In Subsection 2.2, a comparison of the Adleman-Lipton
model with other models is given.

2.1 The Adleman-Lipton model

A DNA (DeoxyriboNucleic Acid) is the molecule
that plays the main role in DNA based computing
(Paun et al., 1998). In the biochemical world of large and
small molecules, polymers, and monomers, DNA is a
polymer, which is strung together from monomers called
deoxyribonucleotides. The monomers used for the
construction of DNA are deoxyribonucleotides. Each
deoxyribonucleotide contains three components: a sugar, a
phosphate group, and a nitrogenous base. The sugar has five
carbon atoms – for the sake of reference, there is a fixed
numbering for them. Because the base also has carbons, to
avoid confusion, the carbons of the sugar are numbered
from 1' to 5' (rather than from 1 to 5). The phosphate group
is attached to the 5' carbon, and the base is attached to the
1' carbon. Within the sugar structure there is a hydroxyl
group attached to the 3' carbon.

Distinct nucleotides are detected only with their bases,
which come in two sorts: purines and pyrimidines
(Sinden, 1994; Paun et al., 1998). Purines include adenine
and guanine, abbreviated A and G. Pyrimidines contain
cytosine and thymine, abbreviated C and T. Because
nucleotides are only distinguished from their bases, they are
simply represented as A, G, C, or T nucleotides, depending
upon the sort of base that they have. The structure of a
nucleotide, cited from (Paun et al., 1998), is illustrated
(in a very simplified way) in Figure 1. In Figure 1, B is one
of the four possible bases (A, G, C, or T), P is the phosphate
group, and the rest (the ‘stick’) is the sugar base (with its
carbons enumerated 1' through 5').

74 W-L. Chang, M. Ho, M. Guo and C. Liu

Figure 1 A schematic representation of a nucleotide

Nucleotides can link together in two different ways
(Sinden, 1994; Boneh et al., 1996; Paun et al., 1998). In the
first method, the 5'-phosphate group of one nucleotide is
joined with a 3'-hydroxyl group of the other, forming a
phosphodiester bond. The resulting molecule has the
5'-phosphate group of one nucleotide, denoted as the 5' end,
and the 3'-OH group of the other nucleotide available,
denoted as the 3' end, for bonding. This gives the molecule
directionality, and we can talk about the direction of 5' end
to 3' end or 3' end to 5' end. The second method is that the
base of one nucleotide interacts with the base of the other to
form a hydrogen bond. This bonding is the subject of the
following restriction on the base pairing: A and T can pair
together, and C and G can pair together – no other pairings
are possible. This pairing principle is called the
Watson-Crick complementarity (named after James D.
Watson and Francis H.C. Crick who deduced the famous
double helix structure of DNA in 1953, and won the Nobel
Prize for the discovery).

A DNA strand is essentially a sequence (polymer) of
four types of nucleotides detected by one of the four bases
that they contain (Sinden, 1994; Boneh et al., 1996;
Paun et al., 1998). Two strands of DNA can form (under
appropriate conditions) a double strand, if the respective
bases are the Watson-Crick complements of each other – A
matches T and C matches G; also 3' end matches 5' end. The
length of a single stranded DNA is the number of
nucleotides comprising the single strand. Thus, if a single
stranded DNA includes 20 nucleotides, then we say that it is
a 20 monomer (i.e., it is a polymer containing 20
monomers). The length of a double stranded DNA (where
each nucleotide is base paired) is counted in the number of
base pairs. Thus if we make a double stranded DNA from a
single stranded 20 monomer, then the length of the double
stranded DNA is 20 base pairs, also written 20 bp.
(For more discussion of the relevant biological
background refer to Sinden (1994), Boneh et al. (1996) and
Paun et al. (1998)).

In the Adleman-Lipton model (Adleman, 1994;
Lipton, 1995), splints are used to construct and correspond
to the edges of a particular graph, the paths of which
represent all possible binary numbers. As it stands, their
construction indiscriminately builds all splints that lead to a
complete graph. This is to say that hybridisation has higher
probabilities of errors. Hence, Adleman and his coauthors
(Roweis et al., 1999) proposed the sticker based model,
which is an abstract model of molecular computing based
on DNA with a random access memory and a new form of
encoding the information, to enhance the Adleman-Lipton
model.

The DNA operations in the Adleman-Lipton model,
cited from Adleman (1994, 1996) Lipton (1995)
and Boneh et al. (1996) are described below. These

operations will be used for figuring out solutions of the
setbasis problem.

The Adleman-Lipton model:

A (test) tube is a set of molecules of DNA (i.e., a multiset of
finite strings over the alphabet {A, C, G, T}). Given a tube,
one can perform the following operations:

• Extract. Given a tube P and a short single strand of
DNA, S, produce two tubes +(P, S) and –(P, S), where
+(P, S) is all of the molecules of DNA in P which
contain the strand S as a substrand and –(P, S) is all of
the molecules of DNA in P which do not contain the
short strand S.

• Merge. Given tubes P1 and P2, yield ((P1, P2), where
((P1, P2) = P1 (P2 . This operation is to pour two tubes
into one, with no change of the individual strands.

• Detect. Given a tube P, say ‘yes’ if P includes at least
one DNA molecule, and say ‘no’ if it contains none.

• Discard. Given a tube P, the operation will discard the
tube P.

• Read. Given a tube P, the operation is used to describe
a single molecule which is contained in the tube P.
Even if P contains many different molecules, each
encoding a different set of bases, the operation can give
an explicit description of exactly one of them.

2.2 The comparison of the Adleman-Lipton model
with other models

Techniques in the Adleman-Lipton model could be applied
for solving the NPcomplete Hamiltonian path
problem and satisfiability (SAT) problem in linearly
increasing time and exponentially increasing volumes of
DNA (Adleman, 1994; Lipton, 1995). Quyang et al. (1997)
proved that restriction enzymes could be used to solve the
NPcomplete clique problem (MCP). The maximum
number of vertices that they can process is limited to 27
because the size of the pool with the size of the problem
increases exponentially. Arito et al. (1997) described new
molecular experimental techniques for searching a
Hamiltonian path. Morimoto et al. (1999) offered
a solid phase method for finding a Hamiltonian path.
Narayanan et al. (1998) demonstrated that the
Adleman-Lipton model was extended towards
solving the travelling salesman problem. Shin et al. (1999)
presented an encoding scheme that applies fixed length
codes for representing integers and real values. Their
method could also be employed towards solving the
travelling salesman problem. Amos (1997) proposed
the parallel filtering model for resolving the
Hamiltonian path problem, the subgraph isomorphism
problem, the 3-vertex-colourability problem, the clique
problem and the independent set problem. Roweis
et al. (1999) proposed the stickerbased model to enhance the
Adleman-Lipton model. Their model could be used for
determining solutions to an instance of the set cover

 Fast parallel bio-molecular solutions: the set-basis problem 75

problem. Perez-Jimenez and Sancho-Caparrini (2001)
employed the stickerbased model (Roweis et al., 1999) to
resolve knapsack problems. Fu (1997) proposed new
algorithms to resolve 3-SAT, 3-Coloring and the
independent set. In our previous work, Chang et al. (2002a,
2002b, 2002c, 2002d) proved how the DNA operations from
the solution space of splint in the Adleman-Lipton model
could be employed for developing DNA algorithms. Those
DNA algorithms could be applied for resolving the
dominating set problem, the vertex cover problem,
the clique problem, the independent set problem, the
3-dimensional matching problem and the setpacking
problem. In our previous work, Guo et al. (2004) also
employed the stickerbased model and the Adleman-Lipton
model to deal with the dominating set problem for
decreasing the error rate of hybridisation.

3 Using sticker for solving the set-basis problem
in the Adleman-Lipton model

In Subsection 3.1, the set-basis problem is defined.
Applying sticker for constructing solution space
of DNA sequences for the set-basis problem is introduced in
Subsection 3.2. In subsection 3.3, a DNA algorithm is
proposed for resolving the set-basis problem. In
subsection 3.4, the complexity of the proposed algorithm is
discussed.

3.1 Definition of the set-basis problem

Assume that a finite set S is {s1, …, sd}, where se is the eth
element for 1 ≤ e ≤ d in S. |S| is denoted as the number of
elements in S and |S| is equal to d. Suppose that a collection
C is a set of subsets of the finite set S and is {C1, …, Cf},
where Cg is the gth element for 1 ≤ g ≤ f in C. |C| is denoted
as the number of subsets in C and |C| is equal to f. Assume
that a positive integer k ≤ |C|. Mathematically, the set-basis
problem is to find a collection B of subsets of S with |B| = k
such that for each Cg ∈ C, there is a subcollection
of B whose union is exactly Cg. That problem has
been proved to be an NPcomplete problem (Garey and
Johnson, 1979).

A finite set S and a collection C of subsets for S are
shown in Figure 2. The finite set S is {1,2} and the
collection C is {{1}, {2}}. The two sets define a set-basis
problem. The set-basis for S and C in Figure 2 is {{1},
{2}}. Hence, the size of the set-basis problem for S
and C in Figure 2 is two. It is indicated from
(Garey and Johnson, 1979) that finding a set-basis is a
NPcomplete problem, so it can be formulated as a ‘search’
problem.

Figure 2 A finite set S and a collection C of subsets for S

3.2 Using sticker for constructing solution space
of DNA sequence for the set-basis problem

In the Adleman-Lipton model, the main idea is to first
generate solution space of DNA sequences for those
problems. Then, basic biological operations are used to
select a legal solution and to remove the illegal solution
from the solution space. Therefore, for a finite set S, with d
elements and a collection C with f elements for subsets of
the finite set, the first step for resolving the set-basis
problem is to produce a test tube, which includes all of the
possible subsets for the finite set. A d-digit binary number
can be used to represent each possible subset for S. Suppose
that S1 is a subset of S and a d-digit binary number is used to
represent S1. If the ith bit in the d-digit binary number is set
to 1, then it represents that the ith element in S is in S1. If the
ith bit in a d-digit binary number is set to 0, then it
represents that the corresponding element is not in S1. In this
way, all of the possible subsets in S are transformed into an
ensemble of all d-digit binary numbers.

Hence, with the above method, Table 1 denotes the
solution space of the subsets for the finite S in Figure 2. The
binary number 00 in Table 1 represents the empty subset.
The binary numbers 01 and 10 in Table 1 represent the
subsets {1} and {2}, respectively. The binary number 11 in
Table 1 represents the subset {2,1}. Though there are four
2-digit binary numbers for representing four possible
subsets in Table 1, not every 2-digit binary number
corresponds to a legal solution. Hence, in next subsection,
basic biological operations are used to develop an algorithm
for removing illegal subsets and determining legal solutions.

Since a collection C with f elements is a set of subsets of
S, every element in each subset in C comes from S.
Therefore, every subset in C is represented by the same
method above. Table 2 denotes representation of each
subset in the collection C in Figure 2. The first subset {1} in
Table 2 is represented as the 2 digit binary number 01. The
second subset {2} in Table 2 is represented as the 2 digit
binary number 10.

Table 1 The solution space of the subsets for the finite S in
Figure 2

2-digit binary number The corresponding subset

00 <t>
01 {1}
10 {2}
11 {2,1}

Table 2 Denotation of each subset in the collection C in
Figure 2

The subset The corresponding 2-digit binary representation

{1} 01
{2} 10

76 W-L. Chang, M. Ho, M. Guo and C. Liu

To implement this method, assume that an unsigned integer
X is represented by a binary number xd, xd–i, …, x1, where
the value of xi is 1 or 0 for 1 ≤ i ≤ d. The integer X
can take 2d possible values. Each such value represents a
subset for a finite set S of size d. Therefore, it is very clear
that an unsigned integer X forms 2d possible subsets. A bit xi
in X represents the ith element in S. Given a subset of S, if
the ith element is in the subset, then the value of xi is
set to 1; if the ith element is not in the subset, then the value
of xi is set to 0.

To represent all possible subsets for a finite set S
with d elements for the set-basis problem, a sticker
(Roweis et al., 1999; Braich et al., 2000) is used to construct
the solution space for that problem. For every bit xi where
1 ≤ i ≤ d, two distinct 15 base value sequences are designed.
One represents the value 1 for xi and another represents the
value 0 for xi. For the convenience of presentation, assume
that 1

ix denotes the value of xi to be 1 and 0
ix defines the

value of xi to be zero. Each of the 2d possible subsets is
represented by a library sequence of 15 × d bases consisting
of the concatenation of one value sequence for each bit.
DNA molecules with library sequences are termed library
strands and a combinatorial pool containing library strands
is termed a library. The probes used for separating the
library strands have sequences complementary to the value
sequences. Similarly, d 15 base value sequence is also
applied to represent every element in a subset of a collection
C, where C is a set of subsets for a finite set S.

It is pointed out from (Roweis et al., 1999;
Braich et al., 2000) that errors in the separation
of the library strands are errors in the computation.
Sequences must be designed to ensure that library strands
have little secondary structure that might inhibit intended
probe-library hybridisation. The design must also exclude
sequences that might encourage unintended probe-library
hybridisation. To help achieve these goals, sequences are
computer generated to satisfy the following constraint
(Braich et al., 2000).

• library sequences contain only A’s, T’s, and C’s

• all library and probe sequences have no occurrence of
5 or more consecutive identical nucleotides; i.e., no
runs of more than 4 A’s, 4 T’s, 4 C’s or 4 G’s occur in
any library or probe sequences

• every probe sequence has at least four mismatches with
all 15 base alignment of any library sequence (except
for with its matching value sequence)

• every 15 base subsequence of a library sequence has at
least four mismatches with all 15 base alignment of
itself or any other library sequence

• no probe sequence has a run of more than seven
matches with any eight base alignment of any
library sequence (except for with its matching value
sequence)

• no library sequence has a run of more than seven
matches with any eight base alignment of itself or any
other library sequence

• every probe sequence has 4, 5, or 6 Gs in its sequence.

Constraint (1) is motivated by the assumption that library
strands composed only of As, Ts, and Cs will have less
secondary structure than those composed of As, Ts, Cs, and
Gs (KalimMir, 1996). Constraint (2) is motivated by two
assumptions: first, that long homopolymer tracts may have
unusual secondary structure and second, that the melting
temperatures of probe-library hybrids will be more uniform
if none of the probe-library hybrids involve long
homopolymer tracts. Constraints (3) and (5) are intended to
ensure that probes bind only weakly where they are not
intended to bind. Constraints (4) and (6) are intended to
ensure that library strands have a low affinity for
themselves. Constraint (7) is intended to ensure that
intended probe-library pairings have uniform melting
temperatures.

The Adleman program (Braich et al., 2000) was
modified for generating those DNA sequences to satisfying
the constraints above. For example, for representing the two
elements in the finite set S in Figure 2, the DNA sequences
generated are:

0 0
1 2
1 1
1 2

, ,
and .

x CCACATATCCATCCC x CCTACCTCTCACCTT
x CCCATCTTTCTTAAC x CATTACCTCTTTACT

= =

= =

Because the first subset in the collection C in Figure 2 only
includes the first element in S, two 15 base DNA sequences,

0 1
2 1() and ()CCTACCTCTCACCTT x CCCATCTTTCTTAAC x

 are used for representing it. Similarly, the second subset in
the collection C in Figure 2 only contains the second
element in S, so two 15 base DNA sequences,

1 0
2 1() and ()CATTACCTCTTTACT x CCACATATCCATCCC x

 are used for representing it. For every possible subset of the
finite set S in Figure 2, the corresponding library strand is
synthesised by employing a mix and split combinatorial
synthesis technique (Cukras et al., 1998). Similarly, for any
d-element set, all of the library strands for representing
every possible subset can be also synthesised with the same
technique.

3.3 The DNA algorithm for solving the set-basis
problem

The following DNA algorithm is proposed to solve the
set-basis problem.

Algorithm 1: Solving the set-basis problem.

(1) Input (T0), where the tube T0 includes solution space of
DNA sequences to encode all of the possible subsets
for any d-element set S, with those techniques
mentioned in Subsection 3.2.

 Fast parallel bio-molecular solutions: the set-basis problem 77

(2) For = 1 to |C|, where |C| is the number of subsets in a
collection C.

(a) For k = 1 to |Cj|, where |Cj| is the number of
elements in Cj in C. Assume that the kth element in
Cj is the ith element in S and XI is used to
represent it.

(b) T0 = + (T0, x´
i) and TOFF = –(T0, x´

i).

(c) TON = U(TOFF, TON)

EndFor

(d) For k = 1 to |S| – |Cj|, where |S| is the number of
elements in S. Assume that the mth element in S
for 1 < m < d is out of Cj and xm is used to
represent it.

(e) T0 = + (T0, x0
m) and TOFF = –(T0, x0

m).
(f) TON = U(TOFF,TON)

EndFor

(g) Tj=U(Tj, T0)
(h) T0=U(T0, TON)

EndFor

(3) For j = 1 to |C|, where |C| is the number of subsets ina
collection C.

(a) Read (Tj).

EndFor

Theorem 3.1: From those steps in Algorithm 1, the
set-basis problem can be solved.

Proof: In Step 1, a test tube of DNA strands, that encode all
2d possible input bit sequences xd, …, x1, is generated. It is
very clear that the test tube includes all 2d possible subsets
for any d-element set, S.

In Step 2, it contains one outer loop and two inner loops.
The outer loop will execute |C| times, where |C| is the
number of subsets in a collection C. The first inner loop will
execute (|Cj| × |C|) times, where |Cj| is the number of
elements in Cj in C. The second inner loop will
execute ((|S| – Cj|) × |C|) times, where |S| is the number of
elements in S. According to definition of set-basis
(Cormen et al., 1990; Garey and Johnson, 1979), the first
execution of Step 2b applies ‘extraction’ to form two test
tubes: T0 and TOFF. The first tube T0 contains all of the
strands that have xi = 1. The second tube TOFF consists of all
of the strands that have xi = 0. The tube TON represents those
subsets, which contains the element si. The tube TOFF
represents those subsets, which do not include the element
si. Then, the first execution of Step 2(c) uses the ‘merge’
operation to pour two tubes, TOFF and TON into the tube, TON.
That is to say that the tube TON obtains the strands in the tube
TOFF. After Steps 2(b)–2(c) are repeated to execute (|Cj|)
times, the tube T0 includes the strands, which currently
satisfy the subset Cj in C to definition of set-basis.

Next, the first execution of Step 2(e) employs the
‘extraction’ operation to generate two test tubes: T0 and TOFF.

The first tube T0 contains all of the strands that have xm = 0.
The second tube TOFF consists of all the strands that have
xm = 1. Because there is no element, sm, in Cj, the tube T0
represents those strands which do not contain the element sm
and the tube TOFF represents those strands which include the
element sm. The first execution of Step 2(f) uses the ‘merge’
operation to pour two tubes, TOFF and TON into the tube, TON.
This is to say that the tube TON obtains the strands in the tube
TOFF. After Steps 2(e)–2(f) are repeated to execute (|S| – |Cj|)
times, the tube T0 includes the strands, which satisfy the
subset Cj in C for definition of set-basis.

Then, the first execution of Step 2(g) uses the ‘merge’
operation to pour two tubes, Tj and T0 into the tube, Tj. That
is to say that the tube Tj consists of the strands satisfying the
subset Cj in C for definition of set-basis. The first execution
of Step 2(h) also applies the ‘merge’ operation to pour two
tubes, TON and T0 into the tube, T0. This is to say that the tube
T0 includes the strands, which do not satisfy the subset Cj in
C for definition of set-basis. For other subsets in C, the
similar processing is also finished. Therefore, after all of the
second steps are processed, d new tubes are generated. The
new tube Tj for d ≥ j ≥ 1 contains those strands that satisfy
the subset Cj in C for definition of set-basis.

Since the set-basis problem is to find a collection B of
subsets of S such that for each Cj ∈ C, there is a
subcollection of B whose union is exactly Cj, the tube Tj for
d ≥ j ≥ 1 contains those DNA sequences that satisfy the
subset Cj in C for definition of set-basis. Therefore, the first
execution of Step 3(a) employs ‘Read’ operation to describe
‘sequence’ of a molecule in the tube T1. After
Step 3(a) is repeated to execute |C| times, the answer for the
set-basis problem is found and described. �

The finite set S and the collection C in Figure 2 are used
to show the power of Algorithm 1. It is pointed out from
Step 1 in Algorithm 1 that the tube T0 is filled with four
library stands with those techniques mentioned in
subsection 3.2, representing four possible subsets for the set
S in Figure 2. The number of the elements in S in Figure 2 is
two, so the number of executions to the outer loop in Step 2
of Algorithm 1 is two times. The number of the element in
the two subsets in the collection C is one. Therefore, the
number of executions for the first inner loop in Step 2 of
Algorithm 1 is two times and the number of execution for
the second inner loop in Step 2 of Algorithm 1 is also two
times.

According to the first execution of Step 2(b) of
Algorithm 1, two tubes are generated. The first tube, T0,
includes those subsets: {1} and {1, 2} and the second tube,
TOFF, also contains those subsets: φ and {2}. Next, the first
execution to Step 2(c) in Algorithm 1 pours the two tubes
TOFF and TON into the tube TON. Therefore, the tube TON now
includes those subsets: φ and {2}. Two tubes are produced
from the first execution to Step 2(e) in Algorithm 1. The
first tube, T0, includes the subset: {1} and the second tube,
TOFF, also contains the subset: {1, 2}. Then, the first
execution to Step 2(f) in Algorithm 1 pours the two tubes
TOFF and TON into the tube TON. Hence, the tube TON now
includes those subsets: φ, {2} and {1, 2}. The first

78 W-L. Chang, M. Ho, M. Guo and C. Liu

execution to Step 2(g) in Algorithm 1 pours the two tubes Tj
and T0 into the tube Tj. So, the tube Tj now includes the
subset: {1}. Next, the first execution to Step 2(h) in
Algorithm 1 pours the two tubes T0 and TON into the tube T0.
Hence, the tube T0 now includes those subsets: φ, {2} and
{1, 2}. The same processing can be applied to deal with the
second subset {2} in the collection C. After all of the
second steps are processed, it finally produces two new
tubes. The two tubes T1 and T2, respectively, include {1}
and {2}.

Because the number of the subsets in the collection C is
two, the number of execution to Step 3 is two times.
The first execution of Step 3(a) employs the ‘Read’
operation to describe the ‘sequence’ of a molecule in the
tube T1. After Step 3(a) is repeated to execute two times, the
answer for the set-basis problem to the finite set S and
the collection C in Figure 2 is found to be {{1}, {2}}.

3.4 The complexity of the proposed DNA algorithm

The following theorems describe time complexity of
Algorithm 1, volume complexity of solution space in
Algorithm 1, the number of the tube used in Algorithm 1
and the longest library strand in solution space in
Algorithm 1.

Theorem 3.2: The set-basis problem for any d-element set S
and any f-subset collection C can be solved with O(d × f)
biological operations in the Adleman-Lipton model.

Proof: Algorithm 1 can be applied for solving the set-basis
problem for any d-element set S and any f-subset
collection C. Algorithm 1 includes two main steps. Step 2 is
mainly used to determine legal set-basis and to remove
illegal set-basis from all of the 2d possible library strands.
From Algorithm 1, it is very obvious that Step 2(b) and
Step 2(e) totally take (d × f) ‘extraction’ operations and
Step 2(c) and Step 2(f) totally take (d × f) ‘merge’
operations. Since C contains f elements, therefore, it is very
clear from Algorithm 1 that Step 2(g) and Step 2(h) totally
take (2 × f) ‘merge’ operations. Step 3 is used to find a
set-basis. It is pointed out from Algorithm 1 that Step 3(a)
takes f ‘read’ operations. Hence, from the statements
mentioned above, it is at once inferred that the time
complexity of Algorithm 1 is O(d × f) biological operations
in the Adleman-Lipton model. �

Theorem 3.3: The set-basis problem for any d-element set S
and any f-subset collection C can be solved with a sticker to
construct O(2d) library strands in the Adleman-Lipton
model, where d is the number of elements in S.

Proof: Refer to Theorem 3.2. �

Theorem 3.4: The set-basis problem for any d-element set S
and any f-subset collection can be solved with O(f) tubes in
the Adleman-Lipton model, where f is the number of
elements in C.

Proof: Refer to Theorem 3.2. �

Theorem 3.5: The set-basis problem for any d-element set S
and any f-subset collection can be solved with the longest
library strand, O(15 × d), in the Adleman-Lipton model,
where d is the number of elements in S.

Proof: Refer to Theorem 3.2. �

4 Experimental results of simulated DNA
computing

We modified the Adleman program (Braich et al., 2000) and
implemented in a PC with one Pentium II 200 MHz CPU
and 64 MB main memory. Our operating system is
Windows 98 and our compiler is C++ Builder 6.0. The
modified program was executed to generate DNA sequences
for solving the set-basis problem for any d-element set S and
any f-subset collection C. Because the source code of the
two functions drand48() and drand48() were not found in
the original Adleman program, we used the standard
function srand() in C++ builder 6.0 to replace the function
srand48() and added the source code for the function
drand48(). We also added subroutines to the Adleman
program for simulating biological operations in the
Adleman-Lipton model in Section 2. We added subroutines
to the Adleman program to simulating Algorithm 1 in
Subsection 3.3. For any d-element set S and any f-subset
collection C, the size of library strands is 2d. Due to the limit
of memory space and harddisk space, the value of d was less
than or equal to 20.

The Adleman program is used for constructing each
15-base DNA sequence for each bit of the library. For each
bit, the program is applied for generating two 15-base
random sequences (for the ‘1’ and the ‘0’) and checking to
see if the library strands satisfy the seven constraints in
subsection 3.2 with the new DNA sequences added. If the
constraints are satisfied, the new DNA sequences are
‘greedily’ accepted. If the constraints are not satisfied, then
mutations are introduced one by one into the new block
until either: (A) the constraints are satisfied and the new
DNA sequences are then accepted or (B) a threshold for the
number of mutations is exceeded and the program fails and
so it exits, printing the sequence found so far. If d-bits that
satisfy the constraints are found then the program succeeds
and it outputs these sequences.

Consider the finite set S and the collection C in Figure 2.
The finite set includes {1, 2} and the collection C
contains {{1}, {2}}. DNA sequences generated by the
Adleman program modified were shown in Table 3. The
program, correspondingly, takes one mutation to make new
DNA sequences for the first element and the second element
in S. With the nearest neighbour parameters, the program is
used to calculate the enthalpy, entropy, and free energy for
the binding of each probe to its corresponding region on a
library strand. The energy is shown in Table 4. Only G
really matters to the energy of each bit. For example, the
delta G for the probe binding a T in the first bit is thus
estimated to be 25.8 kcal/mol and the delta G for the probe
binding a ‘0’ is estimated to be 28.0 kcal/mol.

 Fast parallel bio-molecular solutions: the set-basis problem 79

Table 3 Sequences chosen to represent the two elements in S
in Figure 2

Vertex 5' → 3' DNA sequence
0
2x CCTACCTCTCACCTT

0
1x CCACATATCCATCCC

1
2x CATTACCTCTTTACT

1
1x CCCATCTTTCTTAAC

Table 4 The energy for the binding of each probe to its
corresponding region on a library strand

Vertex
Enthalpy energy

(H)
Entropy energy

(S) Free energy (G)
0
2x 109.3 278.4 26.2

0
1x 110.9 278 28

1
2x 106.7 279.7 23

1
1x 112.1 288.8 25.8

The program simulates a mix and split combinatorial
synthesis technique (Cukras et al., 1998) to synthesise the
library strand to every possible subset. Those library strands
are shown in Table 5 and, correspondingly, represent four
possible subsets: φ, {1}, {2}, and {1, 2}. The program is
also applied to figure out the average and standard deviation
for the enthalpy, entropy and free energy over all
probe/library strand interactions. The energy is shown in
Table 6. The standard deviation for delta G is small because
this is partially enforced by the constraint that there are 4, 5,
or 6 Gs (the seventh constraint in Subsection 3.2) in the
probe sequences.

Table 5 DNA sequences chosen represent all possible subsets

5' – CCT ACCTCTC ACCTTCC AC AT ATCC ATCCC – 3'
3' – GGATGGAGAGTGGAAGGTGTATAGGTAGGG –5'
5' – CCT ACCTCTC ACCTTCCC ATCTTTCTT AAC – 3'
3' – GGATGGAGAGTGGAAGGGTAGAAAGAATTG – 5'
5' – CATTACCTCTTTACTCC AC AT ATCC ATCCC – 3'
3' – GT AATGGAGAAATGAGGTGT AT AGGT AGGG – 5'
5' – CATTACCTCTTTACTCCC ATCTTTCTT AAC – 3'
3' – GTAATGGAGAAATGAGGGTAGAAAGAATTG – 5'

Table 6 The energy over all probe/library strand interactions

Enthalpy

energy (H)
Entropy

energy (S)
Free energy

(G)
Average 109.75 281.225 25.75
Standard deviation 2.02161 4.41807 1.79095

The Adleman program was employed for computing the
distribution of the types of potential mishybridisations. The
distribution of the types of potential mishybridisations is the
absolute frequency of a probestrand match of length k from
0 to the bit length 15 (for DNA sequences) where probes are
not supposed to match the strands. The distribution was,
subsequently, 52, 102, 85, 95, 105, 109, 77, 36, 13, 12, 2, 0,

0, 0, 0 and 0. It is pointed out from the last five zeros that
there are 0 occurrences where a probe matches a strand at
11, 12, 13, 14 or 15 places. This shows that the third
constraint in subsection 3.2 has been satisfied. It is very
clear that the number of matches peaks at five (109). That is
to say that there are 109 occurrences where a probe matches
a strand at five places.

It is indicated from the execution of Step 2 of simulation
that the result generated by Step 2 was shown in Table 7.
The goal of Step 3 is to find a set-basis from the result
generated by Step 2. Hence, Step 3(a) of simulation, the
set-basis was shown in Table 8. That is to say that the
answer of the set-basis problem for the finite set S and the
collection C in Figure 2 is {{1}, {2}}.

Table 7 DNA sequences generated by Step 2 represent legal
subsets

5' – CCT ACCTCTC ACCTTCCC ATCTTTCTT AAC – 3'
5' – CATTACCTCTTTACTCC AC AT ATCC ATCCC – 3'

Table 8 DNA sequence represents the answer of the set-basis
problem for the finite set S and the collection C in
Figure 2

5' – CCTACCTCTCACCTTCCCATCTTTCTTAAC – 3'
5' – CATTACCTCTTTACTCCACATATCCATCCC – 3'

5 Conclusions

Applying splints constructs the solution space of the DNA
sequence for solving the NPcomplete problem in the
Adleman-Lipton and this is the reason that hybridisation
has higher probabilities for errors. Adleman and his
coauthors (Roweis et al., 1999) proposed a sticker to
decrease probabilities of errors in hybridisation in the
Adleman-Lipton model. In the proposed algorithm, the size
of the solution space of the sticker is exponential. Hence,
this is the limit to which we can resolve the size of the
NPcomplete problem. The main result of the proposed
algorithm shows that the set-basis problem is resolved with
biological operations in the Adleman-Lipton model from
solution space of sticker. Furthermore, this work
demonstrates the ability of DNA based computing to solve
NPcomplete problems.

References
Adleman, L.M. (1996) ‘On constructing a molecular computer.

DNA based computers’, DIMACS: Series in Discrete
Mathematics and Theoretical Computer Science, American
Mathematical Society, pp.1–21, in the First Annual Meeting
on DNA-based Computers.

Adleman, V. (1994) ‘Molecular computation of solutions to
combinatorial problems’, Science, Vol. 266, 11th November,
pp.1021–1024.

Amos, M. (1997) DNA Computation, PhD Thesis, Department of
Computer Science, the University of Warwick, pp.29–38.

80 W-L. Chang, M. Ho, M. Guo and C. Liu

Arita, M., Suyama, A. and Hagiya, M. (1997) ‘A heuristic
approach for Hamiltonian path problem with molecules’,
Proceedings of 2nd Genetic Programming (GP-97),
pp.457–462.

Boneh, D., Dunworth, C., Lipton, R.J. and Sgall, J. (1996) ‘On the
computational power of DNA. In discrete applied
mathematics, Special Issue on Computational Molecular
Biology, Vol. 71, pp.79–94.

Braich, R.S., Johnson, C., Rothemund, P.W.K., Hwang, D.,
Chelyapov, N. and Adleman, L.M. (2000) ‘Solution of a
satisfiability problem on a gel-based DNA computer’,
Proceedings of the 6th International Conference on DNA
Computation in the Springer-Verlag Lecture Notes in
Computer Science Series, pp.27–42.

Chang, W-L. and Guo, M. (2002a) ‘Solving the dominating-set
problem in Adleman-Lipton’s Model’, The Third
International Conference on Parallel and Distributed
Computing, Applications and Technologies, Japan,
pp.167–172.

Chang, W-L. and Guo, M. (2002b) ‘Solving the Clique
problem and the vertex cover problem in Adleman-Lipton’s
Model’, IASTED International Conference, Networks,
Parallel and Distributed Processing, and Applications, Japan,
pp.431–436.

Chang, W-L. and Guo, M. (2002c) ‘Solving NP-complete problem
in the Adleman-Lipton Model’, The Proceedings of 2002
International Conference on Computer and Information
Technology, Japan, pp.157–162.

Chang, W-L. and Guo, M. (2002d) ‘Resolving the 3-dimensional
matching problem and the set packing problem in
Adleman-Lipton’s Model’, IASTED International
Conference, Networks, Parallel and Distributed Processing,
and Applications, Japan, pp.455–460.

Guo, M., Ho, M. and Chang, W-L. (2004) ‘Fast parallel molecular
solution to the dominating-set problem on massively parallel
bio-computing’, Parallel Computing, Vol. 30, Nos. 9/10,
September–October, pp.1109–1125.

Cormen, T.H., Leiserson, C.E. and Rivest, R.L. (1990)
Introduction to Algorithms, MIT Press, Cambridge,
Massachusetts.

Cukras, A.R., Faulhammer, D., Lipton, R.J. and Landweber, L.F.
(1998) ‘Chess games: a model for RNA-based computation’,
Proceedings of the 4th DIMACS Meeting on DNA Based
Computers, held at the University of Pennsylvania, 16–19
June, pp.27–37.

Fu, B. (1997) ‘Volume Bounded Molecular Computation, PhD
Thesis, Department of Computer Science, Yale University,
http://fano.ics.uci.edu/cites/Document/
Volume-Bounded-Molecular-Computation.html.

Garey, M.R. and Johnson, D.S. (1979) Computer and
Intractability, Freeman, San Francisco, CA.

KalimMir (1996) ‘A restricted genetic alphabet for DNA
computing’, in Baum, E.B. and Landweber, L.F. (Eds.): DNA
Based Computers II: DIMACS Workshop, 10–12 June, Vol.44
of DIMACS: Series in Discrete Mathematics and Theoretical
Computer Science, Providence, RI, 1998, pp.243–246.

Lipton, R.J. (1995) ‘DNA solution of hard computational
problems’, Science, Vol. 268, pp.542–545.

Morimoto, N., Arita, M. and Suyama, A. (1999) ‘Solid phase DNA
solution to the Hamiltonian path problem’, DIMACS (Series
in Discrete Mathematics and Theoretical Computer Science),
Vol. 48, pp.93–206.

Narayanan, A. and Zorbala, S. (1998) ‘DNA algorithms for
computing shortest paths’, in Koza, J.R. et al. (Eds.): Genetic
Programming 1998: Proceedings of the Third Annual
Conference, pp.718–724.

Paun, G., Rozenberg, G. and Salomaa, A. (1998) DNA Computing:
New Computing Paradigms, Springer-Verlag, New York,
ISBN: 3-540-64196-3.

Perez-Jimenez, M.J. and Sancho-Caparrini, F. (2001) ‘Solving
Knapsack problems in a sticker based model’, 7th Annual
Workshop on DNA Computing, DIMACS: Series in Discrete
Mathematics and Theoretical Computer Science, American
Mathematical Society.

Quyang, Q., Kaplan, P.D., Liu, S. and Libchaber, A. (1997) ‘DNA
solution of the maximal clique problem’, Science, Vol. 278,
pp.446–449.

Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.V.,
Goodman, M.F., Rothemund, P.W.K. and Adleman, L.M.
(1999) ‘A sticker based model for DNA computation’, in
Landweber, L. and Baum, E. (Eds.): 2nd Annual Workshop on
DNA Computing, Princeton University, DIMACS: Series in
Discrete Mathematics and Theoretical Computer Science,
American Mathematical Society, pp.1–29.

Shin, S-Y., Zhang, B-T. and Jun, S-S. (1999) ‘Solving traveling
salesman problems using molecular programming’,
Proceedings of the 1999 Congress on Evolutionary
Computation (CEC99), Vol. 2, pp.994–1000.

Sinden, R.R. (1994) DNA Structure and Function, Academic
Press, ISBN 0126457506.

