COMMUNICATIONS IN COMPUTATIONAL PHYSICS Commun. Comput. Phys.
Vol. 4, No. 5, pp. 1151-1169 November 2008

A Scalable Domain Decomposition Method for
Ultra-Parallel Arterial Flow Simulations’

Leopold Grinberg and George Em Karniadakis*

Division of Applied Mathematics, Brown University, Providence 02912, USA.
Received 18 March 2008; Accepted (in revised version) 10 July 2008
Available online 9 September 2008

Abstract. Ultra-parallel flow simulations on hundreds of thousands of processors re-
quire new multi-level domain decomposition methods. Here we present such a new
two-level method that has features both of discontinuous and continuous Galerkin
formulations. Specifically, at the coarse level the domain is subdivided into several
big patches and within each patch a spectral element discretization (fine level) is em-
ployed. New interface conditions for the Navier-Stokes equations are developed to
connect the patches, relaxing the C’ continuity and minimizing data transfer at the
patch interface. We perform several 3D flow simulations of a benchmark problem and
of arterial flows to evaluate the performance of the new method and investigate its
accuracy.
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1 Introduction

Current and projected advances in computer architectures involving hundreds of thou-
sands of processors cannot be exploited for large-scale simulations of the human arterial
tree [1,2] (or of many other physical and biological problems) based on existing domain
decomposition algorithms and corresponding parallel paradigms. Not only we have to
address the tremendous complexity associated with data transfer amongst thousands
of processors, but more fundamentally the solution of linear systems with billions de-
grees of freedom (DOFs) and corresponding condition number exceeding one million is
a rather formidable task.

In this paper we develop a significant extension of the spectral/hp element method
(SEM) for large-scale simulation of arterial blood flow dynamics. In particular, we adopt
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two levels of discretization by introducing coarse-level patches to decompose the compu-
tational domain. SEM, similarly to finite element method, is based on discretization of the
computational domain into non-overlapping elements. Within each element the solution
is approximated with a high-order (spectral) polynomial expansion. The total number of
DOFs depends on the number of elements and the order of polynomial expansion within
each element. The two common approaches for solution of partial differential equations
with SEM are [3]: (a) Discontinuous Galerkin method (DG), where discontinuity of the
numerical solution at the interfaces of elements is allowed; and (b) Continuous Galerkin
method, where the boundary degrees of freedom defined at the interfaces of elements
are shared, hence enforces C° continuity of the numerical solution. In the CO0 approxi-
mation global linear operators are constructed from the local ones by static condensation
and due to sharing of the boundary degrees of freedom the rank of the global operator is
lower than the total number of local DOFs.

In 3D large-scale simulations, the number of spectral elements can be well over a mil-
lion, and due to the high-order polynomial expansion the number of DOFs may be over
several billions. For example, the aorta domain in Fig. 1 has 325,795 tetrahedral elements
and includes only 17 arteries while a domain to discretize 65 major cranial arteries [4]
has 459,250 tetrahedral elements. To resolve the complex patterns of unsteady blood
flow such as secondary flows, turbulence and recirculation, high-order spatial resolution
is required. Hence, in the aorta domain employing sixth-order polynomial expansions
leads to 187,657,920 number of unknowns per variable$ while in the cranial domain it
leads to 264,528,000 number of unknowns. In bigger domains with 10 millions elements
and sixth-order polynomial approximation the number of unknowns for each variable
would be 5.76 billions or more than 20 billions DOFs for all four variables (3D velocity
vector plus pressure).

This large number of unknowns leads to construction of a global linear operator ma-
trix with very high rank and consequently with very large condition number. Decoupling
of the interior degrees of freedom by applying Schur decomposition leads to reduction in
the size of the linear operator that must be inverted, however, the rank of the Schur com-
plement is still very large. In the current study we use the parallel solver NEKTAR [5],
which employs a Preconditioned Conjugate Gradient (PCG) algorithm to solve the four
linear systems for the velocity and pressure. Among the different preconditioners we
have tested for parallel computations, the so-called Low Energy Basis Preconditioner
(LEBP) [6-8] is the most effective. In Fig. 2 we plot the performance of NEKTAR (using
LEBP) on the CRAY XT3 for a simulation involving 120,813 elements. The scaling is fa-
vorable for high-order polynomial approximation. In the parallel LEBP the coarse linear
vertex preconditioner is implemented in two steps: In the first step, the global operator
constructed from the linear (vertex) modes, which are shared by different partitions, is
constructed and inverted in parallel. In the second step, the local operator constructed
from linear modes within each partition is inverted. The size of the global operator is

8Here we define the number of unknowns as the number of quadrature points required for exact integration
of the linear terms in the Navier-Stokes equation.
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Figure 1: Computational domain of aorta consisting of 325,795 tetrahedral elements with edge length of 0.4 to
1.5 mm. The geometry obtained from CT images; colors represent different patches of the domain.
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Figure 2: Performance of NEKTAR with LEBP: Left: Parallel speed-up. Problem size: 120,813 tetrahedral
elements with 6th (circle), 8th (square) and 10th (triangle) polynomial-order approximation. The table shows
the mean cpu-time per time step for solution of a problem with polynomial order P =10 and 226,161,936
unknowns. Right: geometry of the computational domain; color corresponds to pressure values. Computation
performed on CRAY XT3 (ERDC) and CRAY XT3 (PSC). The result for 4096 CPUs was obtained on the CRAY
XT3 of PSC, which is about 5-10% slower than the CRAY XT3 of ERDC.
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increasing with the number of partitions, and this imposes two problems: (1) Inversion
of a full matrix with large rank. For example, in a domain of 162,909 tetrahedral elements
the rank of the coarse linear vertex operator for the pressure solver is 1000 when 256
processes are used and almost 27,000 when the domain is sub-divided (using METIS [9])
onto 3072 partitions. It grows almost linearly with an increase in the number of pro-
cesses. (2) The volume of computation performed by each process decreases relatively
to the volume of communication between processes required by parallel matrix vector
multiply; hence the parallel efficiency of the preconditioner degrades. This last point is
illustrated in Fig. 2, which shows the degradation in parallel efficiency of the iterative
solver as the number of processors increases.

To overcome the aforementioned problems, we propose to decompose the arterial net-
work into a series of weakly coupled sub-domains or patches of manageable size for which
high parallel efficiency can be achieved on a sub-cluster of processors. The continuity
of numerical solution across different patches is achieved by providing appropriate in-
terface conditions, based on a hybrid C°— DG-like approach. The method preserves the
advantages of CY discretization, namely low number of DOFs compared to a full DG dis-
cretization and implicit treatment of the viscous terms of Navier-Stokes equation within
a patch. The entire simulation can be performed in two levels: (i) in the inner level, we
solve a series of tightly coupled problems in each sub-domain using semi-implicit time
stepping scheme and C° polynomial approximation, and (ii) in the outer level, we explic-
itly solve the weakly coupled problems by imposing interface boundary conditions on
the sub-domains interfaces with a DG-like approach.

The paper is organized as follows: In Section 2 we briefly overview the numerical
method for spatial and temporal discretization and present the interface conditions. In
Section 3 we present results of numerical simulations using the two-level approach and
investigate its accuracy in solving steady and unsteady flow problems. Finally, in Section
4 we conclude with a summary.

2 The new method

The numerical approach we propose is based on a two-level domain decomposition
(2DD), where the large computational domain is initially decomposed into several
patches (coarse level) and SEM domain decomposition (1DD) is applied within each
patch. For example, in the illustration of Fig. 1 the computational domain is subdivided
into four non-overlapping patches A-D, with the thick black lines depicting the location
of the patch interfaces; here we denote the interface between two patches by I'. At ev-
ery time step the tightly coupled problem defined within each patch is solved using the
numerical scheme presented in the Section 2.1. The boundary conditions at the interface
are provided by exchanging values of the numerical solution across I' as we explain in
Section 2.2.
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2.1 Discretization within a patch

We use SEM discretization within a patch implemented in our code NEKTAR [5]. The
computational domain used by NEKTAR consists of polymorphic elements e.g., tetrahe-
dra, hexahedra, prisms, pyramids or a combination of these. Within each element the
solution is approximated in terms of hierarchical, mixed-order, semi-orthogonal Jacobi
polynomial expansions [3]. They are hierarchical in a sense that the modes are separated
into vertex (linear term) ®;, edge Yy, face ®, and interior or bubble modes Ay. The
polynomial approximation of a field V (¢,x) at any point x; is given by

Nf
V(tx;)= ka )P (x; —|—ZVk ) ¥k (x —|—ZVk ) Ok (x; —|—ZVk JAK(x)+%, (2.1)

where Nv is the number of vertex modes and Ne= (P—1)(number of edges), Nf = (P—
2)(P—1)/2(number of faces) and Ni=(P—1)(P—2)(P—3)/6 are the number of the edge,
face and interior modes respectively and P is polynomial order of the expansion (here a
tetrahedral element is considered); the 3t term represents the truncation error. In Fig. 3 we
provide an illustration of the domain decomposition and the polynomial bases employed
in NEKTAR. The boundary degrees of freedom, corresponding to adjacent elements, are
coupled due to the C%-continuity. The interior modes have zero support on the elemental
boundaries, thus the boundary and interior degrees of freedom are solved in a decoupled
manner by a technique known as substructuring (also referred to as static condensation)
[3].

For the temporal discretization, a second-order accurate semi-implicit time integra-
tion scheme is employed based on a high-order splitting scheme [10], that decouples the
velocity and pressure fields, i.e.,

Je—1 Je—1
vi= Y v At ( > ﬁk<nl>"—k+f>, nl=v-(Vv), (2.2a)
k=0 k=0
1
2~ XT7.v*
\Y p_AtV VY, (2.2b)
Yov" T =v* +AH(—Vp+v V2. (2.2c)

By applying Galerkin projection, we obtain the weak formulations of Egs. (2.2b) and
(2.2c), namely

1 3
and »
n

where H=M — 2“1, and M and L are the mass and stiffness matrices, respectively. The
quantities with hat denote modal amplitudes, as the linear solves are performed in the
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Figure 3: lllustration of the unstructured mesh and the polynomial spectral bases employed in NEKTAR. The
solution domain is decomposed into nonoverlaping elements. Within each element the solution is approximated
by vertex, edge, face and interior modes. The shape functions associated with the vertex, edge and face modes
for fourth-order polynomial expansion on surface triangular and quadrilateral elements are shown in color.

modal domain. The Neumann pressure boundary condition at the boundaries with pre-
scribed velocity are computed from

Je—1 n—k
g_fl:kz_:o [‘Bk (—%—nl—vi(va))-n] . (24)

According to this scheme, the provisional field v* is computed explicitly (see formula
(2.2a)), then the Poisson equation is solved to compute the pressure (2.3a), and at the final
step three Helmholtz solvers are employed for implicit solution for the three velocity
vector components (2.3b). The solution of three Helmholtz and one Poisson equations
is the bottleneck in scaling efficient numerical parallel solvers for use with thousands of
processors.

2.2 Inter-patch conditions

The inter-patch conditions (IPC), required for coupling 3D patches, are computed explic-
itly and include the velocity boundary condition at the inlets along with pressure and
velocity fluxes at the outlets. An illustration of two patches coupled by IPC is presented
in Fig. 4. The outlet of patch A marked as I'” conforms with the inlet of patch B marked
asT'T.

To impose IPC we follow a procedure similar to the discontinuous Galerkin (DG)
method [11]. The hyperbolic component of the Navier-Stokes equation dictates the choice
of interface condition for the velocity based on the upwinding principle. Assuming that
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Figure 4: Two Level Domain Decomposition: two patches A and B are connected by the interface boundary
conditions. Velocity computed at the outlet of A (I'") is imposed as Dirichlet B.C. at the inlet of B (I'");
pressure and velocity flux computed at T'" are imposed as B.C. at T'~.

v-n >0 (with n pointing outward) at the patch outlet we impose the inlet velocity condi-
tion in patch B as
Vn+1’r+ :Vn’r—, (25)

where the superscripts denote time steps. The velocity flux at the patch A outlet is com-
puted as weighted average of the normal velocity derivatives from both sides of the in-
terface, i.e.,

dvitl

dn

dav”
—(1—C1) d]’l

av"

Ml , (2.6)

T+

-
where the coefficient c; is in the range 0 <c; <1. The choice of c¢; is important and will be
investigated systematically in future work. Alternative choices of numerical fluxes may
be considered; for example, imposing the total flux for the velocity at I'" was advocated
in [12,13]. Also, different choices for the flux in the DG formulation can be found in
[14,15].

The pressure at the patch outlet is given by

P =F(t—to) p+ (1= F(t—to))pic, 27)

where p=0.5(p" |- +p"|r+), F(t—tg) = (1—e~*""~1))f with x>0 and p>0and pjc is the
initial conditions for the pressure; in our simulations we used a =20 and p=2. The role of
pic is explained bellow. The filter function F(f—t) suppresses erroneous large pressure
oscillations. The pressure oscillations at the inlet are due to the numerical scheme and
incompatible initial conditions; e.g., in the beginning of the simulation the initial velocity
field may not satisfy the continuity equation V-v=0. In simulations on a single domain
(1DD), the pressure oscillations at the beginning of a simulation do not affect the stabil-
ity of the solver. However, in the 2DD formulation, the pressure computed at the inlet
I'" is imposed as Dirichlet B.C. at the outlet I'", thus oscillations in pr+ propagate to the
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Figure 5: Steady flow simulation with 2DD: High amplitude oscillations of the pressure at the patch interface in
the beginning of a simulation performed in a convergent pipe domain subdivided as illustrated in Fig. 8 (left).
Solution is computed with third-order approximation in space and different size of time steps: (a) At=0.005,

and (b) At=0.00125. High amplitude oscillations in pr+ are reduced by the filter function F(t—t) resulting in
low amplitude oscillations in pr-.

adjacent patch. In the case of multiple interfaces required in complex arterial networks,
out-of-phase pressure oscillations at outlets may lead to catastrophic results. Large oscil-
lations in pressure may also appear when the simulation is restarted; in this case, the last
term of Eq. (2.7) works to reduce the oscillations and, during the first few time steps, it
keeps the pressure values at the patch interface close to p;c. In Fig. 5 we show the oscil-
lations of the mean pressure = (Ar) ! [pdA, computed at the patch interface for two
choices of At. The dramatic reduction in the amplitude of the oscillations at I'” is a result
of applying the filter function F(t—tj) of Eq. (2.7).

The error introduced by the explicit treatment of the interface boundary conditions
is controlled by the size of time step. In order to minimize the error, an iterative proce-
dure for computing v**! and p"*! may be applied. However, from the computational
standpoint, such procedure is very inefficient in a sense that the computational time will
grow linearly with the number of iterations required for convergence of the velocity and
the pressure at patch interfaces. In large scale simulations of blood flow in the human
arterial tree, computing the solution over one cardiac cycle typically takes 1-3 days at the
present time, thus such iterations are computationally prohibitive.

An alternative way for enhancing the numerical accuracy is to approximate the
boundary condition at the time step t"*1) by applying a penalty term, i.e.,

v pe = v +apcF(t—to) (V" |r- —v"|r+) (2.8)
or by extrapolation, i.e.,
Vn+l’r+:Vn|rf+0€BCF(t—t0)(Vn—Vn_l)|r—, (2.9)

where 0 <wapc <1 is a relaxation parameter and 0 < F(t—t() < 1. The choice of apc affects
both accuracy and stability, however, the latter dictates its value.
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In the SEM approach, the solution for velocity and pressure is performed in modal
space, hence, the values of velocity and pressure can be transferred and imposed as B.C.
in modal space bypassing expensive transformation from modal to physical space and
vise versa. Of course, this can be done only when the computational meshes at I'” and
['" are conforming. Imposing B.C. in modal space has an additional advantage: we can
exploit the hierarchical structure of the base functions and reduce communication by
imposing IPC by transferring only the most energetic modes. Although a small reduction
in accuracy may occur, from the computational standpoint, limiting the number of modes
to be collected from one subset of processors to another leads to shorter messages and
consequently to reduction in computation time associated with imposing IPC. The latter
is very important in ultra-parallel simulations.

3 Results

In this section we compare the parallel efficiency of two solvers based on the 1DD and
2DD approaches. Subsequently, we investigate the accuracy of numerical simulations of
steady and unsteady flow performed with the 1DD and 2DD methods.

3.1 Performance

From the computational standpoint, one of the advantages of the 2DD approach over the
1DD approach is the minimization of blocking communication between processes, which
enhances parallel efficiency. In the first simulation we use a computational domain con-
sisting of 67456 tetrahedral elements sub-divided into two equal size patches. Separate
runs are performed using the 1DD and the 2DD approaches, and in Fig. 6 we plot the
mean-cpu time per time step. The computational saving with the 2DD approach is clear
even for this relatively small size problem.

The potentially great advantage of the 2DD approach is in simulating very large scale
problems. There are two difficulties in the solution of a such problems: (a) limited avail-
able memory per processor, and (b) tight communication between thousands of proces-
sors. Limited memory requires the use of many processors, which decreases the volume
of computation versus volume of communication ratio. Implementation of coarse par-
titioning of a computational domains into M patches leads to partitioning of the com-
municator into M non-overlapping groups of processes [16]. The tight communication
between processes is performed as intra-group message passing only. The communica-
tion between groups is required to exchange data across patch interfaces and it is limited
to a small number of processes. This communication is non-blocking and is performed
once in a time step. The overall computational efficiency is strongly affected by the par-
allel efficiency in the solution of a problem within a patch. In Fig. 7 we show the parallel
efficiency of NEKTAR for the domain shown in Fig. 1. On a coarse level the domain is



1160 L. Grinberg and G. E. Karniadakis / Commun. Comput. Phys., 4 (2008), pp. 1151-1169

T
-©-P=4,1DD ||

2.25¢
-8-P=4,2DD
2r —©—P=5, 1DD |
—8—P=5, 2DD
1.5F 1

=

N

al
T

mean cpu-time [sec]
[

o

~

o
i

0.5F

. .
64 128 256

NCPU

Figure 6: Simulation with 1DD and 2DD: performance. Y-axis is the mean-cpu time required per time step.
Problem size: 67456 tetrahedral elements, polynomial order P=4 (dash line) and P=5 (solid line). Computation
performed on the CRAY XT3 supercomputer.

partitioned into four patches. The parallel efficiency E, is computed as:

T,/ T
Ey(N) =L,

where N is the number of processes employed in simulation, 7 is the reference (mini-
mum) number of processes used for parallel solution of a given problem and Ty (T})
is the mean cpu-time per time step required for simulation on N (1) processes. The re-
sults of Fig. 7 verify that the overall parallel efficiency depends on the parallel efficiency
of each subproblem on the different patches. Here patches A and C suffer from rela-
tively low efficiency. In terms of optimizing the overall performance, this implies that
we should optimize the parallel performance on the individual patches — a much sim-
pler task than dealing with tens or hundreds of thousands of processors involved in the
solution of the overall problem.

Table 1: Solution of large scale problem, computational complexity: flow simulation in the domain of Fig. 1.
On a coarse level the computational domain is subdivided into four patches A-D. Nel — number of spectral
elements. DOF — number of degrees of freedom, computed as a total number of quadrature points: DOF =

Nel*(P+3)(P+2)? required for exact integration of linear terms.

patch | Nel P # DOF
A | 120,813 | 6 | 69,588,288
B 20,797 | 6 | 11,979,072
C |106219 | 6 | 61,182,144
D 77,966 | 6 | 44,908,416
total | 325,795 | 6 | 187,657,920
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Figure 7: Simulation with 2DD: parallel efficiency. Steady flow simulation in the human aorta. The domain is
sub-divided into four patches as shown in Fig. 1. Details on computational complexity are summarized in Table
1. Y-axis - parallel efficiency of a solver, E,. Left: parallel efficiency in solution of tightly coupled system within

a patch. Right: overall parallel efficiency. Computation performed on the CRAY XT3 supercomputer.

3.2 Accuracy verification

Our objective is to evaluate the potential loss of spectral accuracy in the numerical so-
lution obtained using the 2DD approach. The accuracy degrades due to two factors:
a) explicit treatment of the IPC; and b) incomplete transfer of the velocity and pressure
modes in imposing the inter-patch conditions.

We use the following notations:

P — order of polynomial expansion;

Pypc — maximum order of polynomial expansion in imposing the velocity IPC;

Pppc — maximum order of polynomial expansion in imposing the pressure IPC;

Prpc — maximum order of polynomial expansion in imposing the velocity flux IPC.

3.2.1 Benchmark problem

Numerical simulations were performed in a simple computational domain whose shape
is similar to a converging blood vessel. Although the domain is axisymmetric, we use
full 3D solver and non axisymmetric mesh to perform the simulations.

The domain consists of two blocks A and B as illustrated in Fig. 8. For reference,
we also combined the two blocks into one, i.e., block AB. In the first configuration, the
patch interface is normal to the z-axis and in the second configuration it intersects the z-
axis at 80 degrees. First, we performed a steady flow simulation with Reynolds number
Re=D sU,, /v=350 where D 4 is a diameter of the inlet of patch A, U,, is the mean velocity
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Figure 8: lllustration of two configurations of two-level domain decomposition into patches A and B. The
interfaces are centered at z=D5. Left: interface is normal to the pipe axis. Patch A has 4203 tetrahedral spectral
elements and patch B has 8906 elements. Right: interface is at an angle of 80° to the pipe-axis. The sizes of
patches A and B are 7246 and 11331 tetrahedral spectral elements, respectively. Primary flow direction (z—)
is from left to right.

at the inlet and v is a kinematic viscosity. Poiseuille flow is imposed at the entrance of the
block A. At the outlet of the patch B a fully developed flow is assumed defined by zero
velocity flux and constant pressure. Second, we simulate unsteady flow by imposing the
Womersley velocity profile at the inlet of patch A. In this simulation the main character-
istics of the flow are Re=350 and Womersley number Ws=(D,4/ 2)2 vw/v=4.375, which
are typical values for the arterial flow in vessels with diameter of 4 to 5mm.

3.2.2 Convergence of flowrate and mean pressure at patch interface
We define the error in mass conservation across the interface as:

o= ‘ Qlr+—Qlr-

Qlp+ | G1)

where Q=| [ v-ndA| and n is an unit vector normal to I'. The error in the mean pressure
p is computed from
Plr-—Plr- ‘ ‘ (3.2)

Plr+

First, we consider steady flow simulation with relatively low spatial resolution within
a patch, P=3. In Fig. 9 we plot i(t) at the interface. In the first simulation the pressure
IPC were imposed with Pppc =1 (i.e., using vertex modes only) and relatively large size
of time step was used i.e., At=0.005. Low spatial and temporal resolution result in high
frequency oscillations in p(t), whose amplitude is of order At at I'" and considerably
lower at I'", as shown in Fig. 9(a). The next two simulations are performed with smaller
size of the time step At =0.00125 (Fig. 9(b)) or with higher spatial accuracy in imposing
the pressure IPC, i.e., Pppc =2 (Fig. 9(c)); we observe that the oscillations can be removed
by either reducing the size of a time step or by increasing Pppc.

To investigate further the effect of spatial under-resolution we consider a steady flow
simulation in the domain illustrated in Fig. 8(left) performed with higher order of ac-
curacy i.e., P=>5 and At =0.00125. We focus on the effects of spatial under-resolution
in imposing IPC. In Table 2 we summarize details of simulations where the velocity
IPC were imposed with Pypc =1,2,3 and pressure IPC with Pppc =1,2. Exponential
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Figure 9: Steady flow simulation with 2DD: Simulation performed in domain of convergent pipe, sub-divided as
illustrated in Fig. 8 (left). Convergence of the mean pressure at the patch interface. Solution computed with
P=3. Velocity IPC is imposed with Pypc=3.

(a) - At=0.005 pressure IPC is imposed with Ppgc=1.

(b) - At=0.00125 pressure IPC is imposed with Ppgc=1.

(c) - At=0.005 pressure IPC is imposed with Ppgc=2.

convergence in €g and €5 is observed. Simulations (a), (b) and (c) also show that im-
posing velocity IPC with higher order of accuracy has significant effect on both €, and
€g. We should note that the time splitting scheme (2.2a)-(2.2c) introduces an error in
mass conservation. For example, the error in mass conservation in simulation (d) was
€0=(Qintet — Qoutiet) / Qintet| =6.1e=7 in patch A and eg=1.4e—6 in patch B, which is com-
parable to the error introduced by incomplete transfer of modes in imposing the velocity
IPC.

Decoupling the solution for the velocity and the pressure allows to approximate the
two fields with the same polynomial order. The solution for the Poisson equation for the
pressure, supplemented with Dirichlet boundary condition at the outlet and Neumann
boundary condition at the Dirichlet-velocity boundaries, is unique and the spurious pres-
sure modes are eliminated [3]. However, imposing outlet pressure boundary condition
with Ppgc =P or Ppgc = P—1 may lead to an instability. In our tests, we observed that
using Pppc = P or Pppc = P—1 (in the domain of Fig. 8) led to unstable simulations. In
steady flow simulation, only Pppc = P led to instability. This issue deserves further in-
vestigation in the future. In simulations (c) and (d) (see Table 2) we observed that using
Pppc=P—1 gave practically the same result as Pppc=P—2 as far as the mass conservation
is concerned.



1164 L. Grinberg and G. E. Karniadakis / Commun. Comput. Phys., 4 (2008), pp. 1151-1169

Table 2: Steady flow simulation with 2DD: exponential convergence in the error of a flow rate Q and mean
pressure f computed across the patch interface. Simulation performed in a domain of convergent pipe, sub-
divided as illustrated in Fig. 8(left).

simulation | N At NVBC NPBC NFBC €0 €p
a 5 | 1.25E-3 1 1 5 3.3E-2 | 1.0E-2
b 5 | 1.25E-3 2 1 5 8.2E-4 | 6.8E-4
C 5 | 1.25E-3 3 1 5 1.3E-7 | 3.1E4
d 5 | 1.25E-3 3 2 5 1.6E-7 | 1.7E-5
sub-domain B (a) Z\Lx sub-domain B (c)

sub-domain A (c)

sub-domain A (d)

Figure 10: Steady flow simulation with 2DD: pressure distribution from both sides of patch interface. Simulation
performed in a domain of convergent pipe, sub-divided as illustrated in Fig. 8(left) with P=5 and At=0.00125.
The set-up is consistent with Table 2. Top plots: p|r+; bottom plots: plots p|r-. Left: case (a), Pygc=1,
PPBC:1' Center: case (C), PVBC =3, PPBC:1' Right: case (d), PVBC =3, PPBC:2'

In Fig. 10 we plot the pressure distribution from both sides of the interface. The upper
plots show the computed pressure at the inlet of the patch B, p|r+, while the lower plots
show the pressure imposed as IPC, p|r- at the outlet of patch A. To understand the origin
of high frequency oscillations in pressure we refer to formula (2.4). Under-resolution in
imposing velocity boundary condition results in significant discontinuity in the second
derivatives of velocity computed at the inlet, and this induces pressure oscillations due
to pressure-velocity coupling through the pressure B.C. In contrast, incomplete transfer
of pressure modes from I't to I'” is equivalent to applying a cut-off filter and results
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Figure 11: Unsteady flow simulation with 2DD: Convergence of flow rates at the patch interface. Simulation
performed in a domain of convergent pipe, sub-divided as illustrated in Fig. 8 (left). Left upper plot: a«=0.0.
Left center plot: penalty formulation, x=0.5. Left lower plot: extrapolation, a=0.5. Solid line At=0.005, dash
line At=0.0025, dash-dot line At=0.00125. Right: convergence rate of numerical error € at time t=1.9.

in considerable smoothing of the pressure field particularly in a case of under-resolved
velocity field.

The effect of explicit treatment of velocity IPC on the mass conservation across the in-
terface was investigated also using unsteady flow simulation, where third-order accuracy
in space (P =3) and second-order accuracy in time discretization within each patch was
employed. Velocity and flux IPC were imposed with full resolution (Pypc =3, Prpc =3)
and pressure IPC with Ppgc =1. Velocity and flux boundary conditions were imposed
using three different methods: a) according to formula (2.5); b) using the penalty formu-
lation (2.8) with « =0.5; and c) using the extrapolation formula (2.9) with « =0.5. The
results are summarized in Fig. 11. All three methods are based on first-order (in time)
explicit scheme in imposing IPC, however the coefficients (C;) of the leading term in the
truncation error are different as we show in Fig. 11(right).

3.2.3 Errors due to inter-patch interface

Here we compare the error in the pressure and vorticity fields obtain with the 1DD and
2DD approaches. In Fig. 12 we show the computational domain and the location where
the pressure field was extracted for comparison. In Fig. 13 we compare the pressure
computed with the two methods. We observe that the error in the numerical solution
is greatest in the vicinity of patch interface and rapidly decays upstream where it is of
order At, and downstream, where it converges to the imposed value of the pressure at the
outlet, i.e., p=0. The localization of numerical error at the vicinity of the patch interface



1166 L. Grinberg and G. E. Karniadakis / Commun. Comput. Phys., 4 (2008), pp. 1151-1169

Figure 12: lllustration of computational domain and location of slice y=0 and lines x=0, y=0 (black) and
x=—1.6, y=0 (blue); colors represent the non-dimensional u-velocity.

x 107 x107°

(d) 1

p(0,0,2)

w
o

p(-1.6,0,2)

Figure 13: Unsteady flow simulation with 2DD in the computational domain of Fig. 8(right). Pressure along
lines y=0, x=0 and y=0, x=—1.6 as marked in Fig. 12. (a) and (b) non-dimensional pressure values computed
with 1DD and 2DD. (c) and (d) normalized difference between the pressure computed with 2DD and 1DD; (c)
- Pypc=3, Pppc=1, (d) Pypc=3, Pppc=2. P=>5, At=0.0005.

is due to reduced space for imposing IPC and also due to explicit treatment of the IPC.
Next we compare the vorticity field. In Fig. 14 we plot the y-component of the vorticity,
wy computed with 1DD and 2DD. We define the maximum deviation in the vorticity field

by:
 MAX(|lw(1DD)—w(2DD)|)
Cw= w05 (1DD) ’
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Figure 14: Unsteady flow simulation with 2DD: comparison of vorticity filed computed with 1DD and 2DD:
Y-component of vorticity field (wy) contours at slices y=0. Y-axis is wy. Solid lines represent location (z=5
and z=7.5) where wy, was extracted. Dash line depicts the location of patch interface. P=5, At=0.0005.

w (x,0,5)

wy(x,0,7.5)

pBC = 1: sm=0.006

-50 o i
PPBC =2: Sm—0.002
-2 -15 -1 -05 0 0.5 1 1.5 2
X

Figure 15: Unsteady flow simulation with 2DD: comparison of vorticity filed computed with 1DD and 2DD.
Computational domain is illustrated in Fig. 8(right). Y-component of vorticity field, wy, extracted at (a) -

y=0,z=5 and (b) - y=0,z=7.5. €, - deviation in wy. Pypc=3, Pppc=1,2, P=5, At=0.0005.

here the value of a scaling factor w;(1DD) is computed at a point where the difference
|w(1DD)—w(2DD)| is maximum; results are presented in Fig. 15. The maximum value
of €w, IN simulation with Pppc =1 (Pppc =2) is about 4% (2%) and decreases by an order
of magnitude a short distance from the interface.
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4 Summary

Currently none of the existing domain decomposition methods for the Navier-Stokes
equations scale well beyond a few thousand processors, and hence their anticipated per-
formance on petaflop-size systems will be very poor. We have presented a two-level
decomposition method that can potentially scale well to hundreds of thousands of pro-
cessors. The main advantage of the suggested method is in splitting a large domain,
where the solution is approximated with C° polynomial expansion, into a set of patches
of manageable size with negligible increase in the number of degrees of freedom. Conti-
nuity of the solution at patch interfaces is obtained by implementing a DG-like approach
both for the advection and diffusion contributions. There is a potential loss of accuracy
due to the patch interfaces but more elaborate conditions can be applied to enhance the
accuracy as we have demonstrated here for a benchmark problem. One possibility is the
use of overlapped domains, and we are currently working along this direction. A theo-
retical analysis of the accuracy and the stability of the new method is also required in the
near future.

From the computational standpoint, solution of a set of small tightly coupled prob-
lems is more efficient than solution of a single much larger problem. In particular, the
new two-level method we presented matches well with the new petaflop hybrid-type
architectures, consisting of a few hundreds of “fat nodes”, with each node containing
several thousand processors. We can envision, therefore, a natural mapping of patches
and nodes, with all intensive data transfers taking place efficiently within each node.
This new parallel paradigm can be readily implemented using an MPI/OpenMP ap-
proach [17].
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