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Abstract — This paper introduces a novel Gabor-Fisher Classifier (GFC) for face recognition.

The GFC method, which is robust to changes in illumination and facial expression, applies the

Enhanced Fisher linear discriminant Model (EFM) to an augmented Gabor feature vector de-

rived from the Gabor wavelet representation of face images. The novelty of this paper comes

from (i) the derivation of an augmented Gabor feature vector, whose dimensionality is further

reduced using the EFM by considering both data compression and recognition (generalization)

performance; (ii) the development of a Gabor-Fisher classifier for multi-class problems; and (iii)

extensive performance evaluation studies. In particular, we performed comparative studies of

different similarity measures applied to various classifiers. We also performed comparative ex-

perimental studies of various face recognition schemes, including our novel GFC method, the

Gabor wavelet method, the Eigenfaces method, the Fisherfaces method, the EFM method, the

combination of Gabor and the Eigenfaces method, and the combination of Gabor and the Fish-

erfaces method. The feasibility of the new GFC method has been successfully tested on face

recognition using 600 FERET frontal face images corresponding to 200 subjects, which were

acquired under variable illumination and facial expressions. The novel GFC method achieves

100% accuracy on face recognition using only 62 features.
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1 Introduction

Among the most challenging tasks for visual form (‘shape’) analysis and object recognition are

understanding how people process and recognize each other’s face, and the development of cor-

responding computational models for automated face recognition. Face recognition is largely

motivated by the need for surveillance and security, telecommunication and digital libraries,

human-computer intelligent interaction, and smart environments [33], [4], [8], [30].

A good face recognition methodology should consider representation as well as classification

issues, and a good representation method should require minimum manual annotations. The

Gabor wavelets, whose kernels are similar to the 2D receptive field profiles of the mammalian

cortical simple cells, exhibit desirable characteristics of spatial locality and orientation selectiv-

ity. The biological relevance and computational properties of Gabor wavelets for image analysis

have been described in [5], [27], [6], [18]. The Gabor wavelet representation facilitates recog-

nition without correspondence (hence, no need for manual annotations) because it captures the

local structure corresponding to spatial frequency (scale), spatial localization, and orientation se-

lectivity [34]. As a result, the Gabor wavelet representation of face images should be robust to

variations due to illumination and facial expression changes [32], [29], [34].

This paper introduces a novel Gabor-Fisher Classifier (GFC) method for face recognition.

The GFC method, which is robust to illumination and facial expression variability, applies the

Enhanced Fisher linear discriminant Model (EFM) [23] to an augmented Gabor feature vector

derived from the Gabor wavelet representation of face images. To encompass all the features

produced by the different Gabor kernels one concatenates the resulting Gabor wavelet features

to derive an augmented Gabor feature vector. The dimensionality of the Gabor vector space is

then reduced under the eigenvalue selectivity constraint of the EFM method to derive a low-

dimensional feature representation with enhanced discrimination power. The feasibility of the

new GFC method has been successfully tested on face recognition using a data set from the

FERET database, which is a standard testbed for face recognition technologies [31]. Specifically

we used 600 FERET frontal face images corresponding to 200 subjects, which were acquired us-
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ing variable illumination and facial expressions. The effectiveness of the GFC method is shown

in terms of both absolute performance indices and comparative performance against some popu-

lar face recognition schemes such as the Gabor wavelet method [10], the Eigenfaces method [36],

the Fisherfaces method [1], the EFM method [23], the combination of Gabor and the Eigenfaces

method, and the combination of Gabor and the Fisherfaces method. In particular, the novel GFC

method achieves 100% recognition accuracy using only 62 features.

2 Background

Face recognition depends heavily on the particular choice of features used by the classifier

[22], [23]. One usually starts with a given set of features and then attempts to derive an opti-

mal subset (under some criteria) of features leading to high classification performance with the

expectation that similar performance can also be displayed on future trials using novel (unseen)

test data. Principal component analysis (PCA) is a popular technique used to derive a starting

set of features for both face representation and recognition. Kirby and Sirovich [19] showed

that any particular face can be (i) economically represented along the eigenpictures coordinate

space, and (ii) approximately reconstructed using just a small collection of eigenpictures and

their corresponding projections (‘coefficients’). Applying PCA technique to face recognition,

Turk and Pentland [36] developed a well-known Eigenfaces method. The Eigenfaces method,

however, does not consider the classification aspect, as it is based on the optimal representation

criterion (PCA) in the sense of mean-square error. To improve the PCA standalone classifica-

tion performance, one needs to combine further this optimal representation criterion with some

discrimination criterion.

One widely used discrimination criterion in the face recognition community is the Fisher linear

discriminant (FLD, a.k.a. linear discriminant analysis, or LDA) [16], which defines a projection

that makes the within-class scatter small and the between-class scatter large. As a result, FLD

derives compact and well-separated clusters. FLD is behind several face recognition methods

[35], [1], [12], [23]. As the original image space is high dimensional, most of these methods
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apply PCA first for dimensionality reduction, as it is the case with the Fisherfaces method due

to Belhumeur et al. [1]. Subsequent FLD transformation is used then to build the most discrim-

inating features (MDF) space for classification [35]. The drawback of FLD is that it requires

large training sample size for good generalization. For a face recognition problem, however,

usually there are a large number of faces (classes), but only a few training examples per face.

One possible remedy for this drawback is to artificially generate additional data and thus increase

the sample size [12]. Yet another remedy is to improve FLD’s generalization performance by

balancing the need for adequate signal representation and subsequent classification performance

using sensitivity analysis on the spectral range of the within-class eigenvalues [23].

Gabor wavelets model quite well the receptive field profiles of cortical simple cells [15]. The

Gabor wavelet representation, therefore, captures salient visual properties such as spatial local-

ization, orientation selectivity, spatial frequency characteristic. Lades et al. [21] pioneered the

use of Gabor wavelets for face recognition using the Dynamic Link Architecture (DLA) frame-

work. The DLA starts by computing the Gabor jets, and then it performs a flexible template

comparison between the resulting image decompositions using graph-matching. Wiskott et al.

[38] have expanded on DLA when they developed a Gabor wavelet based elastic bunch graph

matching method to label and recognize human faces. Based on the 2D Gabor wavelet repre-

sentation and the labeled elastic graph matching, Lyons et al. [26], [25] proposed an algorithm

for two-class categorization of gender, race, and facial expression. The algorithm includes two

steps: registration of a grid with the face using either labeled elastic graph matching [21], [38] or

manual annotation of 34 points on every face image [26]; and categorization based on the features

extracted at grid points using linear discriminant analysis (LDA). Donato et al. [10] have recently

shown through experiments that the Gabor wavelet representation is optimal for classifying facial

actions.

����� ���	��
����������������

Gabor wavelets were introduced to image analysis due to their biological relevance and com-

putational properties [27], [6], [18], [7]. The Gabor wavelets, whose kernels are similar to the 2D
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receptive field profiles of the mammalian cortical simple cells, exhibit desirable characteristics of

spatial locality and orientation selectivity, and are optimally localized in the space and frequency

domains.

The Gabor wavelets (kernels, filters) can be defined as follows [5], [27], [21]:����� ���	��
����� ��� � ���� � � ����	��� ��� �!� "#���� $ � % �'&)( �*� �!+-, � � $ ��/. (1)

where 0 and 1 define the orientation and scale of the Gabor kernels,
�2�3�547698:


, �<;=� denotes the

norm operator, and the wave vector � ��� �
is defined as follows:

� ��� �>� � � � &)? � (2)

where � �@� �BADC#E�FHG �
and I �J�LK 0 FNM . �BADC#E is the maximum frequency, and G is the spacing

factor between kernels in the frequency domain [21].

The Gabor kernels in Eq. 1 are all self-similar since they can be generated from one filter, the

mother wavelet, by scaling and rotation via the wave vector � ��� �
. Each kernel is a product of a

Gaussian envelope and a complex plane wave, while the first term in the square brackets in Eq. 1

determines the oscillatory part of the kernel and the second term compensates for the DC value.

The effect of the DC term becomes negligible when the parameter � , which determines the ratio

of the Gaussian window width to wavelength, has sufficiently large values.

In most cases one would use Gabor wavelets of five different scales, 1PORQ�S 6UTVTWTV69X:Y
, and eight

orientations, 0ZO[Q�S 6'TWTVTW6*\]Y
[13], [18], [3]. Fig. 1 shows the real part of the Gabor kernels at

five scales and eight orientations and their magnitude, with the following parameters: � �_^�K
,�BADC#E �`K F ^

, and G ��a ^
. The kernels exhibit desirable characteristics of spatial frequency,

spatial locality, and orientation selectivity.

��� � ���	��
�2b � � ��c � �ed �Bf � � � �Bg � � ��h�
:g
The Gabor wavelet representation of an image is the convolution of the image with a family

of Gabor kernels as defined by Eq. 1. Let i �547698:

be the gray level distribution of an image, the

convolution of image i and a Gabor kernel
�j��� �

is defined as follows:k ��� ���	��
� i �l��
�m<����� ���l�H

(3)
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where
� � �547698:


,
m

denotes the convolution operator, and
k ��� �B�l��


is the convolution result

corresponding to the Gabor kernel at orientation 0 and scale 1 . Therefore, the set
� � Q k ��� ���l�H
��

0PO Q�S 6UTVTVTW6�\�Y�6 1eO Q�S 6UTVTWTV69X:Y�Y
forms the Gabor wavelet representation of the image i �	��


Applying the convolution theorem, we can derive each
k ��� ���l�H


from Eq. 3 via the Fast Fourier

Transform (FFT): � Q k ��� �B�l��
*Y � � Q�i �l�H
�Y � Q ����� ���	��
�Y
(4)

and k ��� ���	��
� � ��� Q � Q�i �l��
*Y � Q � ��� �H�l��
*Y�Y
(5)

where
�

and
� ��� denote the Fourier and inverse Fourier transform, respectively.

Fig. 2 shows the Gabor wavelet representation (the real part and the magnitude) of a sample

image. These representation results display scale, locality, and orientation properties correspond-

ing to those displayed by the Gabor wavelets in Fig. 1. To encompass different spatial frequencies

(scales), spatial localities, and orientation selectivities, we concatenate all these representation re-

sults and derive an augmented feature vector � . Before the concatenation, we first downsample

each
k ��� �H�l��


by a factor � to reduce the space dimension, and normalize it to zero mean and unit

variance. We then construct a vector out of the
k ��� �H�l��


by concatenating its rows (or columns).

Now, let
k
	������ �

denote the normalized vector constructed from
k ��� ���	��


(downsampled by � and

normalized to zero mean and unit variance), the augmented Gabor feature vector � 	��� is then

defined as follows:

� 	��� ��� k�	���� � ��� k
	���� � � � ; ; ; k
	���� � � ��� � (6)

where � is the transpose operator. The augmented Gabor feature vector thus encompasses all the

elements (downsampled and normalized) of the Gabor wavelet representation set,
� � Q k ��� ���l�H
��

0 O Q�S 6UTVTWTV6�\]Y�6 1JORQ�S 6UTVTWTV69X:Y�Y
, as important discriminating information. Fig. 3 shows (in image

form rather than in vector form) an example of the augmented Gabor feature vector, where the

downsampling factor is 64, i.e. � =64.
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3 Gabor-Fisher Classifier

We describe in this section our novel Gabor-Fisher Classifier (GFC) method which applies the

Enhanced Fisher linear discriminant Model (EFM) [23] to the augmented Gabor feature vector

� 	��� derived in Sect. 2.2. The dimensionality of the resulting vector space is reduced, using the

eigenvalue selectivity constraint of the EFM method, in order to derive low-dimensional features

with enhanced discrimination power.

� ������ h�� �Hg ��h�
=g �	��h ��� d ��� c
	 ��h�
=g � g���� h��	��'h��@h g �]g ���2g �	������h��
The augmented Gabor feature vector introduced in Sect. 2.2 resides in a space of very high

dimensionality: � 	��� O���� , where � is the dimensionality of the vector space. Psychophys-

ical findings indicate, however, that “perceptual tasks such as similarity judgment tend to be

performed on a low-dimensional representation of the sensory data. Low dimensionality is es-

pecially important for learning, as the number of examples required for attaining a given level

of performance grows exponentially with the dimensionality of the underlying representation

space” [11]. Low-dimensional representations are also important when one considers the intrin-

sic computational aspect. Principal component analysis, or PCA [17], [9], whose primary goal

is to project the high dimensional visual stimuli (face images) into a lower dimensional space, is

the optimal method for dimensionality reduction in the sense of mean-square error.

PCA is a standard decorrelation technique and following its application one derives an or-

thogonal projection basis that directly leads to dimensionality reduction, and possibly to feature

selection. Let ���������/O�� �! "� define the covariance matrix of the augmented feature vector � 	��� :
� � ���#� �%$'&)( � 	��� , $+* � 	���#,.- ( � 	��� , $/* � 	���0,1- �32 (7)

where
$ � ; 
 is the expectation operator. The PCA of a random vector � 	��� factorizes its covariance

matrix � �����#� into the following form:

� � ����� ��4!564 �87)9 �;: 4 �=< I � I � TUTUT I �?> 6@5 �8A 9�B"C QED � 6 D � 6UTUTUT�6 D � Y
(8)
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where
4 O � �� "� is an orthogonal eigenvector matrix and

5 O � �� "� a diagonal eigenvalue

matrix with diagonal elements in decreasing order ( D � � D � � ; ; ; � D � ).

An important property of PCA is its optimal signal reconstruction in the sense of minimum

mean-square error when only a subset of principal components is used to represent the original

signal. Following this property, an immediate application of PCA is dimensionality reduction:

� 	��� ��� � � 	���
(9)

where
� � < I � I � TUT'T I A > , � � � and

� O � �� A . The lower dimensional vector
� 	��� O � A

captures the most expressive features of the original data � 	��� .
However, one should be aware that the PCA driven coding schemes are optimal and useful

only with respect to data compression and decorrelation of low (second) order statistics. PCA

does not take into account the recognition (discrimination) aspect and one should thus not expect

optimal performance for tasks such as face recognition when using such PCA-like encoding

schemes. To address this obvious shortcoming, one has to reformulate the original problem as

one where the search is still for low-dimensional patterns but is now also subject to seeking a

high discrimination index, characteristic of separable low-dimensional patterns. One solution

that has been proposed to solve this new problem is to use the Fisher linear discriminant (FLD)

[16] for the very purpose of achieving high separability between the different patterns in whose

classification one is interested. Characteristic of this approach are recent schemes such as the

most discriminating features (MDF) method [35] and the Fisherfaces method [1].

FLD is a popular discriminant criterion that measures the between-class scatter normalized by

the within-class scatter [17]. Let � � 6 � � 6UTUTUT�6 �	� and � � 6 � � 6UTUTUT�6 �
� denote the classes and the

number of images within each class, respectively. Let � � 6 � � 6UT'TUT'6 ��� and � be the means of

the classes and the grand mean. The within- and between-class scatter matrices, �� and ��� , are

defined as follows:

�� � ��

&�� �
� � � &


 $�� � � 	��� , � &

�� � 	��� , � &


 ��� � &
�

(10)
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and

��� � ��

& � �
� � � &


'� � & , � 
'� � & , � 
 � (11)

where
� � � &



is a priori probability, �� 6 ���-O�� A  A , and

�
denotes the number of classes.

FLD derives a projection matrix � that maximizes the ratio � � � ����� � F � � � ���� � [1]. This ratio

is maximized when � consists of the eigenvectors of the matrix � ��� ��� [35]:

� ��� ����� � ��� (12)

where � 6 � O�� A  A are the eigenvector and eigenvalue matrices of � ��� ��� , respectively.

One drawback of FLD is that it requires large training sample size for good generalization.

When such requirement is not met, FLD overfits to the training data and thus generalizes poorly

to the novel testing data [23].

� � � ���
	 ��� g	 �]g�	��E� b-h���	 � ���Dh�g ��� � � h��	��'h��@h�g �]g ��� 
 � ���
The Enhanced Fisher linear discriminant Model (EFM) improves the generalization capabil-

ity of FLD by decomposing the FLD procedure into a simultaneous diagonalization of the two

within- and between-class scatter matrices [23]. The simultaneous diagonalization is stepwisely

equivalent to two operations as pointed out by Fukunaga [17]: whitening the within-class scatter

matrix and applying PCA on the between-class scatter matrix using the transformed data. The

stepwise operation shows that during whitening the eigenvalues of the within-class scatter matrix

appear in the denominator. As the small (trailing) eigenvalues tend to capture noise [23], they

cause the whitening step to fit for misleading variations and thus generalize poorly when exposed

to new data. To achieve enhanced performance EFM preserves a proper balance between the need

that the selected eigenvalues (corresponding to the principal components for the original image

space) account for most of the spectral energy of the raw data, i.e., representational adequacy,

and the requirement that the eigenvalues of the within-class scatter matrix (in the reduced PCA

space) are not too small, i.e., better generalization.

The choice of the range of principal components ( � ) for dimensionality reduction (see Eq. 9)

takes into account both the spectral energy and the magnitude requirements. The eigenvalue
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spectrum of the covariance matrix (see Eq. 8) provides a good indicator for meeting the energy

criterion; one needs then to derive the eigenvalue spectrum of the within-class scatter matrix

in the reduced PCA space to facilitate the choice of the range of principal components so that

the magnitude requirement is met. Towards that end, one carries out the stepwise FLD process

described earlier. In particular, the stepwise FLD procedure derives the eigenvalues and eigen-

vectors of � ��� ��� as the result of the simultaneous diagonalization of �  and ��� . First whiten the

within-class scatter matrix:

���� � ��� B�� A � � � � i (13)

� ����� � � � ������ ����� � � i (14)

where � 6 � O�� A  A are the eigenvector and the diagonal eigenvalue matrices of �  , respectively.

The eigenvalue spectrum of the within-class scatter matrix in the reduced PCA space can be

derived by Eq. 13, and different spectra are obtained corresponding to different number of prin-

cipal components utilized (see Eq. 9 and Eq. 10). Now one has to simultaneously optimize the

behavior of the trailing eigenvalues in the reduced PCA space (Eq. 13) with the energy criteria

for the original image space (Eq. 8).

After the feature vector
� 	��� (Eq. 9) is derived, EFM first diagonalizes the within-class scatter

matrix �� using Eq. 13 and 14. Note that now � and � are the eigenvector and the eigenvalue

matrices corresponding to the feature vector
� 	��� . EFM proceeds then to compute the between-

class scatter matrix as follows:

� ����� � � � ������� ����� � �
	 � (15)

Diagonalize now the new between-class scatter matrix
	 � :

	 ��� � �� B�� A � � � � i (16)

where � 6  O'� A  A are the eigenvector and the diagonal eigenvalue matrices of
	 � , respectively.

The overall transformation matrix of EFM is now defined as follows:

� � ��� ����� � � (17)
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� � ����� h��@h ���	�'h���� � � � ��c � � � � g���� ��� ����h�� 	�� ��h�
:g d c ����� 
� � � ��
 � b ��� �'c � �	� � � ����� ��� � ��h���

	 � �'h�
=g

The Gabor-Fisher Classifier (GFC) applies the EFM method on the (lower dimensional) aug-

mented Gabor feature vector
� 	��� derived by Eq. 9. When an image is presented to the GFC clas-

sifier, the augmented Gabor feature vector of the image is first calculated as detailed in Sect. 2.2,

and the lower dimensional feature,
� 	���

, is derived using Eq. 9. The dimensionality of the lower

dimensional feature space is determined by the EFM method, which derives further the overall

transformation matrix,
�

, as defined by Eq. 17. The new feature vector, � 	��� , of the image is

defined as follows:

� 	��� � � � � 	��� (18)

Let  �
(
6 � � �B6�^ 6UTUT'T�6 �

, be the mean of the training samples for class � ( after the EFM

transformation. The GFC method applies, then, the nearest neighbor (to the mean) rule for clas-

sification using some similarity (distance) measure � :

� � � 	��� 6  �
(

�������� � � � 	��� 6  �� 
 ,�� � 	��� O�� ( (19)

The image feature vector, � 	��� , is classified as belonging to the class of the closest mean,  �
( ,

using the similarity measure � .

The similarity measures used in our experiments to evaluate the efficiency of different repre-

sentation and recognition methods include
� � distance measure, � ��� , � � distance measure, � � � ,

Mahalanobis distance measure, ����� , and cosine similarity measure, � �"!$# , which are defined as

follows:

� � � � � 6 � 
j� �

&
� � & , � & � (20)

� � � � � 6 � 
/�3� � , � 
 � � � , � 

(21)

� ��� � � 6 � 
/�3� � , � 
 � � ��� � � , � 

(22)

�%�&!'# � � 6 � 
j� , � � �� � �� � � (23)
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where � is the covariance matrix, and � ;D� denotes the norm operator. Note that the cosine

similarity measure includes a minus sign in Eq. 23, because the nearest neighbour (to the mean)

rule of Eq. 19 applies minimum (distance) measure rather than maximum similarity measure.

4 Experiments

We assessed the feasibility and performance of our novel Gabor-Fisher Classifier (GFC) on

the face recognition task, using a data set from the FERET database, which is a standard testbed

for face recognition technologies [31], [2]. Specifically we used 600 FERET frontal face images

corresponding to 200 subjects, which were acquired under variable illumination and facial expres-

sions. Comparative performance is carried out against some popular face recognition schemes

such as the Gabor wavelet method [10], the Eigenfaces method [36], the Fisherfaces method [1],

the EFM method [23], the combination of Gabor and the Eigenfaces method, and the combination

of Gabor and the Fisherfaces method.

The FERET database used for evaluating face recognition algorithms displays diversity across

gender, ethnicity, and age. The image sets were acquired without any restrictions imposed on

facial expression and with at least two frontal images shot at different times during the same

photo session. The experiments involve 600 face images corresponding to 200 subjects such that

each subject has three images of size 256 � 384 with 256 gray scale levels. First, the centers of

the eyes of an image are manually detected, then rotation and scaling transformations align the

centers of the eyes to predefined locations. Finally, the face image is cropped to the size of 128

� 128 to extract the facial region, which is further normalized to zero mean and unit variance.

Fig. 4 shows some example images used in our experiments that are already cropped to the size

of 128 � 128. Note that as the images were acquired during different photo sessions, they display

different illumination characteristics and facial expressions. As two images are randomly chosen

for training, while the remaining image (unseen during training) is used for testing (see Fig. 4),

the GFC has to cope with both illumination and facial expression variabilities.

For comparison purpose, we first implemented the Eigenfaces method [36], the Fisherfaces
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method [1], and the EFM method [23] and tested their performance using the original face im-

ages as shown in Fig. 4. The comparative face recognition performance of these three meth-

ods is shown in Fig. 5, and one can see from the figure that the EFM method performs better

than the Fisherfaces method followed by the Eigenfaces method. Both the EFM method and

the Fisherfaces method apply the
� � distance measure, while the Eigenfaces method applies the

Mahalanobis distance measure. For the Eigenfaces method, the Mahalanobis distance measure

performs better than the
� � distance measure, followed in order by the

� � distance measure and

the cosine similarity measure as shown in Fig. 6. The Mahalanobis distance measure performs

better than the other similarity measures because the Mahalanobis distance measure counteracts

the fact that
� � and

� � distance measures in the PCA space weight preferentially for low fre-

quencies, and this is consistent with the results reported by Moghaddam and Pentland [28] and

Sung and Poggio [20]. As the
� � measure weights more the low frequencies than

� � does, the
� �

distance measure should perform better than the
� � distance measure, a conjecture validated by

our experiments as shown in Fig. 6. The cosine similarity measure does not compensate the low

frequency preference, and it performs the worst among all the measures. Actually, the superior-

ity of the cosine similarity measure to the others can be revealed only when the discriminating

features (derived by the GFC method) rather than the expressive features (derived by the PCA)

are used for classification [24].

The next series of experiments exploits the Gabor wavelet representation,
� � Q k ��� �H�	��
 �

0 O Q�S 6UTVTWTV6�\]Y�6 1[O Q�S 6UTVTWTV69X:Y�Y
, derived in Sect. 2.2, using the

� � , � � and cosine similarity

measures, respectively. (The Mahalanobis metric is not used here because it involves trans-

formed data and covariance matrix suitable for PCA-like schemes. The
� � , � � and cosine

metrics are here compared at different downsampling rates without further data transforma-

tions.) For the first set of experiments, we downsampled the Gabor wavelet representation set,� � Q k ��� ���	��
 � 0 O Q�S 6UTVTWTV6�\]Y�6 1eO Q�S 6UTWTVTV69X:Y�Y
, by a factor of 16 to reduce the dimensionality and

normalized each
k ��� �B�l��


to unit length, as suggested by Donato et al. [10]. The face recognition

performance using such a Gabor representation corresponding to different similarity measures is

tabulated in Table 1, which shows that the best performance is achieved using the
� � similarity
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measure. Comparing Table 1 with Fig. 6, we found that (i) under the
� � and cosine similarity

measures, the Gabor features carry more discriminating information than the PCA features do, a

finding consistent with that reported by Donato et al. [10] on facial action classification; and (ii)

the performance with the three similarity measures,
� � , � � and cosine, varies less drastically than

that shown in Fig. 6. The second finding indicates Gabor representation is less likely affected by

preferential low frequency weighting, which qualifies the Gabor representation as a discriminat-

ing representation method. We have also experimented on the augmented Gabor feature vector

� 	��� as defined by Eq. 6 with three different downsampling factors, respectively: � = 4, 16, or 64.

From the face recognition performance shown in Table 1, we found that (i) the augmented Gabor

feature vector � 	��� carries quite similar discriminating information to the one used by Donato

et al. [10]; and (ii) the performance differences among using the three different downsampling

factors are not significant. As a result, we choose the downsampling factor of 64 for the next

series of experiments, since it reduces to a larger extent the dimensionality of the vector space

than the other two factors do. (We experimented with other downsampling factors as well. When

the downsampling factors are 256 and 1024, the performance is marginally less effective; when

the downsampling factor is 4096, the recognition rate drops drastically.)

Even though the performance shown in Table 1 indicates that Gabor feature representation

carries discriminating information, it is still not convenient to use such representation directly

for classification, since the dimensionality of the augmented Gabor feature vector space is very

high. To reduce the dimensionality of the vector space, we applied PCA on the augmented Gabor

feature vector � 	��� , where the downsampling factor � is set to be 64. Fig. 7 shows the face recog-

nition performance of PCA using the augmented Gabor feature vector � 	��� . Our results indicate

that (i) the recognition performance improves by a large margin for all the similarity measures

as compared with Fig. 6; and (ii) Mahalanobis and
� � distance measures perform better than the

other two similarity measures, which shows again that PCA derives features that preferentially

weight low frequencies. Our last series of experiments, performed using the novel Gabor-Fisher

Classifier (GFC) method described in this paper, show that the GFC derives discriminating Gabor

features with low dimensionality and enhanced discrimination power. Fig. 8 shows comparative
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measure \representation
� 	 �#Q  � 	 �  � 	 �#Q  � 	 Q � 

L1 76% 76.5% 76.5% 76.5%

L2 73.5% 72% 72% 72%

Cos 72% 70.5% 70.5% 70%

face recognition performance of the combination of Gabor and the Eigenfaces method, and the

combination of Gabor and the Fisherfaces method, and the GFC method, using the augmented

Gabor feature vector � 	��� downsampled by a factor of 64, i.e. � =64. The GFC method performs

better than both of the other two methods. In particular, GFC method achieves 100% correct

recognition accuracy when using only 62 features (note that the curves in Fig. 8 were drawn with

an interval resolution of 10 features, and it shows that 100% correct recognition rate happens

when 65 features are used).

5 Conclusions

We have introduced in this paper a novel Gabor-Fisher classification method for face recogni-

tion. The GFC method, which is robust to variations in illumination and facial expression, applies

the EFM method to an augmented Gabor feature vector derived from the Gabor wavelet repre-

sentation of face images. The Gabor transformed face images yield features that display scale,

locality, and orientation selectivity. The feasibility of the new GFC method has been success-

fully tested on face recognition using a data set from the FERET database, which is a standard
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testbed for face recognition technologies. Specifically we used 600 FERET frontal face images

corresponding to 200 subjects, which were acquired under variable illumination and facial ex-

pressions. The effectiveness of the GFC method is shown in terms of both absolute performance

indices and comparative performance against some popular face recognition schemes such as the

Gabor wavelet method, the Eigenfaces method, the Fisherfaces method, the EFM method, the

combination of Gabor and the Eigenfaces method, and the combination of Gabor and the Fish-

erfaces method. In particular, the novel GFC method achieves 100% recognition accuracy using

only 62 features.

The excellent performance shown by the GFC method is the direct result of coupling an aug-

mented Gabor feature vector with the EFM method. The benefits resulting from using Gabor

wavelets come from them being the result of evolutionary pressure on the mammalian visual sys-

tem to develop an optimal sensory architecture tuned to an environment where people live and

operate on a regularly basis [14], [15]. While the effectiveness of Gabor wavelets has been shown

so far to match and capture only the statistics of natural scenes [14], it is also quite possible that

the same Gabor wavelets are also tuned for face processing tasks [32], another task highly relevant

for people. In particular, Field [14] has shown for natural scenes that “they are approximately

scale invariant with regards to both their power spectra and their phase spectra. Principally be-

cause of the phase spectra, self-similar wavelet-like codes are capable of producing a sparse but

informative representation of these images.” What we see and the range of images we are likely

to see are limited. Therefore, the human visual system might be tuned for both natural scenery

and human faces, and it can take advantage of “the degree of predictability or redundancy in our

environment”. Note that as the Gabor wavelets are scale invariant, the statistics of the image must

remain constant as one magnifies any local region of the image. The two statistics Field refers

to are (a) invariance in contrast across scale (reflected in the power spectrum) and (b) invariance

in the local structure (reflected in the phase spectrum). Invariance in local structure means that

there exists a number of structures which extend across different frequency bands. Therefore,

for both consistency and robustness one can check if such structures are confirmed across several

(bandwidth) channels, while moving from coarse to fine resolution, i.e., low to high frequency,
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even that some drifting may occur. The location of features at one scale can provide a guide for

the search for features at other scales. In summary Gabor wavelets yield sparse codes. This does

not mean dimensionality reduction, but rather something approaching a factorial code. The non-

accidental occurrence of coincidences in the self-similar wavelet code should facilitate enhanced

associations and face recognition [15].

Our next goal is to further search for an optimal and sparse code resulting from the Gabor

wavelet representation of face images, before forming the augmented Gabor feature vector and

applying the GFC method for classification. The sparse code should represent the sparse struc-

tures as displayed by the features of the Gabor transformed face images in terms of spatial local-

ity, scale and orientation selectivity, along the lines suggested by Olshausen and Field [29] for

natural image analysis. Another possibility is to search, using evolutionary pursuit (EP) method

[22], for the sparse features directly with the twin goals of reducing the amount of data used for

classification and simultaneously providing enhanced discriminatory power. The search for such

features would be driven by the need to increase the generalization ability of the learning clas-

sification machine as a result of leveraging the trade-off between minimizing the empirical risk

encountered during training and narrowing the confidence interval for reducing the guaranteed

risk while testing on unseen data [37].
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