
A New Mesh Simplification Algorithm Combining Half-edge Data Structure with
Modified Quadric Error Metric

Li Guangming, Tian Jie, Zhao Mingchang, He Huiguang and Zhang Xiaopeng
AI LAB, Institute of Automation, the Chinese Academy of Sciences, Beijing, 100080, China

Email: {guangming.li, jie.tian, mingchang.zhao, huiguang.he, xiaopeng.zhang} @mail.ia.ac.cn

Abstract

This paper presents a fast mesh simplification algo-
rithm that combined the half-edge data structure with
modified quadric error metric (QEM). When half-edge
structure is used, the adjacency queries between compo-
nents of the mesh, such as vertices, faces and edges, can
be quickly achieved and thus the run time is reduced re-
markably. Furthermore, with the modified quadric error
metric, the quality of the simplified meshes for a certain
kind of 3D medical models whose normal vectors are
computed through voxel gradient during reconstruction
can be greatly improved. The experimental results illus-
trate the efficiency of the algorithm.

1. Introduction

In computer graphics, objects are often represented by
triangle mesh. With the advances in data acquisition and
the development of modeling techniques, 3D models be-
come more and more complex. Although the rendering
capability of current graphic hardware has been improved
considerably, it can’t yet keep up with the growing of
model size, which makes real-time rendering difficult.
However, in many applications, the highly detailed po-
lygonal models are not necessary and the rendering time is
relatively more important. In this case, we should substi-
tute simpler approximations of the original model, i.e., the
original surface should be simplified.

In recent years, many effective techniques for auto-
matic simplification have been developed. At Siggraph’92
Turk [1] presented an algorithm based on re-tiling. At the
same time, Schroeder [2] described a simplification
method called triangle decimation. Later Rossignac [3]
used vertex clustering to simplify meshes. In 1996, Hoppe
[4] proposed an algorithm called Progressive Meshes to
construct LOD (Level-Of-Detail) model. Garland and

Heckbert [5] described a new algorithm based on quadric
error metric (QEM) for mesh simplification in 1997.
Moreover, there exist many other methods such as copla-
nar facets merging [6], wavelet-based approaches [7] etc.

In this paper, we combine the half-edge data structure
with modified QEM algorithm to simplify models. The
advantages of half-edge structure in adjacency queries can
provide significant savings in running times and by modi-
fying the construction of vertex quadrics, we can improve
the quality of the simplified surfaces for a certain kind of
3D medical models that QEM can’t process well.

Section 2 introduces the details of our algorithm. The
experimental results are given in section 3 and we con-
clude in section 4.

2. Details of the algorithm

2.1. Data structure

Edge

Vertex

Half-edge

Face

e2

v1

v2

e

e1

Figure 1. A mesh represented by half-edge
As the name implies, a half-edge is a half of an edge

and is constructed by splitting the edge into two directed
half edges. The basic concept of half-edge is illustrated in
fig.1. The edge e is divided into two directed halves: e1,
e2. We call e1, e2 a pair. The vertex from which the half-
edge emanates is called its start point, and the vertex at
the end of the half-edge is called its end point. For exam-
ple, v2 is the start point of e1 and v1 is its end point. The
edge e has two adjacent faces. Each one has three half-

 Supported by the National Natural Science Foundation of China under
Grant Nos. 60071002,60072007,69931010,60172057

1051-4651/02 $17.00 (c) 2002 IEEE

2.2. Half-edge collapse edges. When using this structure, we store half-edges
instead of edges.

The half-edge collapse is similar to edge collapse. The
only difference lies in that for half-edge collapse, the start
point is pulled into the end point. In other words, the new
vertex after the half-edge collapse is the same as the end
point of this half-edge. If fact, the half-edge collapse can
be viewed as the general edge collapse without locating
new vertex. It can also be considered as the vertex re-
moval operator without re-triangulation.

According to different requirements, different vertex
lists, face lists and half-edge lists can be constructed be-
cause of the flexibility of half-edge structure. In our im-
plementation, we can get all information needed for mesh
simplification by adopting several simple structures
shown in fig.2 and the updates of the adjacency of verti-
ces, faces and half-edges can be easily achieved.

As we can see in fig.1, the half-edges that border a face
form a circular linked list. This list can either be oriented
clockwise or counter-clockwise around the face as long as
the same convention is used throughout. Each of the half-
edges in the loop stores four pointers: its start point, its
pair, the face it borders and its next half-edge around the
face. In C it looks like fig.2 (a).

2.3. The error metric

For general meshes whose normal vectors are com-
puted through the normal vectors of their neighbouring
faces, we can get acceptable results by using the QEM
presented by Garland. But for a certain kind of 3D medi-
cal models whose normal vectors are computed from
voxel gradient during reconstruction, the simplified mesh
is unacceptable if we use Garland’s QEM directly. To
solve this problem, we integrated the accurate normal
information to vertex quadrics by constructing a virtual
plane. In section 2.3.1, we briefly describe the quadric
error metric of Garland. In section 2.3.2, we introduce our
improvements.

In vertex list, it is not necessary to record the adjacent
faces or edges of each vertex. Besides the essential coor-
dinates and normal vector, one vertex only needs to store
a pointer to one of the half-edges whose start points are
this vertex. There may be several half-edges for us to
choose, but we only need one and it doesn’t matter which
one it is. The vertex structure looks like fig.2 (b).

A face in the face list only needs to store a pointer to
one of the half-edges that borders it. It is similar to the
vertex structure in that although there are three half-edges
bordering each face, we only need one and it doesn’t mat-
ter which one. The face structure looks like fig.2 (c).

2.3.1 Overview of QEM. Given a plane that is repre-
sented by the standard form nTv+d=0 where n=[a,b,c]T is
a unit normal (i.e., a2+b2+c2=1) and d is a scalar constant,
the squared distance of a vertex v=[x,y,z]T from the plane
is given by the equation D2(v)=(nTv+d)2=
vT(nnT)v+2(dn)Tv+d2. This equation is equivalent to the
formula D2(v)=vTQv=Q(v), where v=[x,y,z,1]T and the
quadric Q is treated as a homogeneous matrix

, A=nn







=

cb
bA

Q
T

T is a 3×3 matrix, b=dn is a 3-vector,

c=d2 is a scalar. Using this representation, we can easily
compute the sum of squared distances to a set of planes:

Struct HalfEdge
{
 Vertex *vert;
 HalfEdge *pair;
 HalfEdge *next;
 Face *face;
}；

Struct Face
{
 HalfEdge *he;
}；

Struct Vertex
{
 float vcoord[3];
 float ncoord[3];
 HalfEdge *he;
};

(a) (b) (c)

Figure 2. Structures of half-edge, vertex and
face

∑ ∑ ∑ ====
i i i

T
i

T
i

T
iQ QvvvQvvQvvDvE)()()(2 With the structures mentioned above, the adjacency

queries can be easily achieved. For example, the faces and
vertices that neighbour a half-edge can be found with the
codes in fig.3 (a), and the adjacent edges, points and faces
of a vertex can be obtained through the simple do…while
loop illustrated in fig.3 (b).

Where ∑=
i

iQQ . In other words, to compute the squared

distances to a set of planes, we only need one quadric that
is the sum of the quadrics defined by each of the planes in
the set. When contracting the edge (vi,vj), the quadric of
the new vertex vnew is merely Qnew=Qi+Qj and the cost of
contraction, which is defined as the sum of squared dis-
tances from vnew to the set of planes determined by the
adjacent faces of vi and vj, can be computed through the
equation Qnew(vnew)=vnew

TQnewvnew. The point we want to
find is the one that minimizes this cost.

Vertex *vert1=he->vert;
Vertex *vert2=
 he->pair->vert;
Face *face1=he->face;
Face *face2=
 he->pair->face;

HalfEdge *the=Vert->he;
Vertex *Vert;Face *face;
do{
 the=the->pair->next;
 Vert=the->next->vert;
 face=the->face;
}while(the!=vert->he);

(a) (b)
2.3.2 Modified quadric error metric. Fig.6 (a) is a 3D
medical model of human knee reconstructed by Marching
Cubes. Since we add two zero slices around the first layer

Figure 3. Examples of adjacency queries using
half-edge structure

1051-4651/02 $17.00 (c) 2002 IEEE

and the last layer to improve the visual quality of recon-
structed model (for instance, if the original datasets have
58 slices, when reconstructing, we will process 60 slices.
The pixel values in the first and last slices are all zero),
large amounts of flat region will occur in these two layers.
If the vertex normal is the weighted sum of the normals of
its adjacent faces, the visual quality of the reconstructed
model will be unacceptable. We employ the method of
computing voxel gradient to get more accurate normal
vectors, which makes these two layers look uneven. In
fact, through this approach, the information of vertex
normals can be expressed more accurately and the quality
of the 3D medical models can be improved greatly. But
when being simplified, because QEM method selects the
sum of squared distances from the point to a set of planes
as its cost criterion, the flat regions mentioned above will
be simplified very soon while the vertex normals remain
unchanged. This results in the great difference between
the simplified model and the original model as illustrated
in fig.6 (b). To solve this problem, we do some modifica-
tion on QEM.

Given a vertex v=[x,y,z]T with a unit normal n=[a,b,c]T
that is computed through voxel gradient, we can imagine
that there exists a virtual plane P on which the vertex v
lies and its normal is n. In other words, P is the tangential
plane of the vertex v. When constructing the quadrics of v,
we not only consider the contribution of the adjacent faces
of v but also consider the contribution of the virtual plane
P. The following equation illustrates this idea:

∑ +=
i

Piv wQQQ

Where Qi is the quadric of the i-th face around vertex v,
QP is the quadric of the virtual plane P and w is the
weight.

From section 2.3.1 we know that the quadric of a plane
is determined completely by its standard representation
form. For the virtual plane P, its unit normal and one of
the vertices on it are known, so we can easily compute the
scalar constant of the plane equation: d= -ax-by-cz. Then
the quadric of P can be constructed and thus the quadric
of vertex v can be obtained. Although this approach is
very simple, it can indeed improve the visual quality of
this kind of 3D medical models as fig.6 (c) shows.

In our approach, the weight w is defined by users. Our
tests have proved that if w is too small, it has little influ-
ence on simplification procedure while the global results
may suffer if w is too large. In our implementation, we
select the number of the adjacent faces of vertex v as the
weight. Experimental results show that the effect is rela-
tively good in this case.

2.4. Boundary constraints

We partition the edges of the mesh into two classes: the
interior edges and the boundary edges. The interior edge
has two adjacent faces and is represented by two half-

edges that form a pair. The boundary edge has only one
adjacent face and is represented by one half-edge whose
pair is null. Accordingly, the vertices of the model are also
classified into two categories: the interior vertices and the
boundary vertices. All adjacent edges of the interior ver-
tex are interior edges while at least one of adjacent edges
of the boundary vertex is boundary edge.

There are two cases that will change the boundary
shape. One is that a boundary vertex is collapsed to an
interior vertex, the other is that a boundary vertex is col-
lapsed to another boundary vertex, i.e., a boundary edge is
collapsed. It can be obviously seen that the former may
considerably change the boundary, so we don’t process it.
For the second case, however, we allow them to be simpli-
fied. The reason is that when most triangles have been
removed, the proportion of boundary edges will increase.
If we forbid them from being simplified, we can only
contract other edges of the mesh, thus although the
boundary is preserved fairly well, the global result will
drop back. We, during initialization, first compute a plane
perpendicular to the face through the boundary edge, then
form a quadric weighted with a large penalty factor for
this plane and add it into the initial quadric for each of the
endpoints just as Garland did. This can guarantee the
boundary edges against being collapsed soon while when
most triangles have been simplified, some boundary edges
will be contracted properly. Since this is only the merging
of boundary vertices and doesn’t occur very often, the
boundary can also be preserved fairly well.

2.5. Implementation

Here it is not necessary for us to describe the details of
the basic steps of our approach, for it is similar to those of
methods based on general edge collapse. What we would
say is that when using half-edge structure, we don’t need
to update the face list after every contraction and the up-
dates of the vertex and half-edge lists are also very simple.
Therefore, the computational time for decimation can be
greatly reduced. Moreover, when a half-edge is collapsed,
its pair will be removed too, so it is not necessary to put
all half-edges into the heap that keyed on cost with the
minimum at the top. We can simply allocate the size of
the heap according to the number of the edges instead of
half-edges. The cost of each edge is the smaller value of
the costs of its two half-edges and the new vertex is the
end point of the half-edge which has the smaller cost.

3. Experimental results

We implement our method with C++ and test it in sev-
eral different datasets. All of the tests are completed on a
PIII 800MHz PC with 128MB of main memory and Win-
dows 2000. The rendering is left to standard OpenGL API
using a GeForce 2 MX-400/32MB video adapter.

1051-4651/02 $17.00 (c) 2002 IEEE

4. Conclusion and future work Figure 4, 5 and 6 demonstrate the results of our method
on three models. In fig.4, the simplified model whose
triangle number is 99% less than the original can still keep
good features. The cow in fig.5 is a manifold model with-
out boundaries. The major details are kept even for the
approximation with 600 triangles. Fig.6 (a) is a 3D medi-
cal model of human knee with 95,936 faces reconstructed
by Marching Cubes. The two simplified models with
15,000 triangles using QEM and our method are shown in
(b) and (c) respectively. It can be seen that the visual qual-
ity is improved remarkably with our modified QEM de-
scribed in section 2.3.2. Table 1 gives the running times of
the two methods. It shows that our method is faster than
QEM.

In this paper we presented an efficient simplification
algorithm combining modified QEM with half-edge data
structure. The experimental results show that our method
is faster than QEM for general meshes and at the same
time, it can produce better visual quality for a certain kind
of 3D medical models whose accurate normal vectors are
known. Moreover, since the simplified model is the subset
of the original meshes, it can be easily used to the con-
structing and editing of multi-resolution models.

The half-edge is restricted to represent manifold sur-
faces, so the work on how to expand it to non-manifold
surfaces must be done in the future. We can consider the
following three methods to solve this problem. The first is
converting the non-manifold surfaces to manifold surfaces
before simplification. The second is allocating an addi-
tional memory to record the information of non-
manifolds. The third is using the more complicated data
structure such as winged-edge or radial-edge data struc-
ture to simplify meshes. Which to use depends on practi-
cal applications.

(a) (b) (c)

Figure 4. Crater model: (a) the original mesh
(199,114 faces), (b) the simplified mesh (20,000
faces) and (c) the simplified mesh (3,000 faces).

References

[1] Greg Turk. Re-tiling Polygonal Surfaces. In: Computer
Graphics Proceedings, Annual Conference Series, SIG-
GRAPH, Chicago, Zllinois, 1992, 55-64

[2] W. Schroeder, J. Zarge, and W. Lorensen, Decimation of
triangle meshes, Computer Graphics, 26(2): 65-70, July
1992

[3] Jarek Rossignac, Paul Borrel, Multi-resolution 3D ap-
proximations for rendering complex scenes, In B.Falcidieno
and T.Kunii, editors, Modeling in Computer Graph-
ics:Methods and Applications, pages 455-465, 1993

(a) (b) (c)
Figure 5. Cow model: (a) the original mesh

(5,804 faces), (b) the simplified mesh (1,000 faces)
and (c) the simplified mesh (600 faces). [4] Hugues Hoppe, Progressive Meshes, Proc. of SIG-

GRAPH’96, pp. 99-108

[5] Michael Garland, Paul S. Heckbert, Surface simplification
using quadric error metric, Proc. of SIGGRAPH’97, pp.
209-216

[6] Kalvin A. D., Taylor R. H., Surperfaces: Polygonal Mesh
Simplification with Bounded Error, IEEE Computer Graph-
ics and Applications, 1996, May, 64-77

(a) (b) (c) [7] Michael Lounsbery, Tony DeRose. Multiresolution Analy-
sis for Surfaces of Arbitrary Topological Type [Report].
Washington: University of Washington, January 1994

Figure 6. Knee model: (a) the original mesh
(95,936 faces), (b) the simplified mesh (15,000

faces) using QEM, (c) the simplified mesh (15,000
faces) using our method.

QEM Our Method Original Model
(Faces)

Simplified
Model
(Faces) Init. (Sec) Simp. (Sec) Total(Sec) Init. (Sec) Simp. (Sec) Total(Sec)

Crater (199,114) 3,000 11.837 21.992 33.829 5.257 5.998 11.255
Cow (5,804) 600 0.25 0.65 0.9 0.12 0.09 0.21

Knee (95,936) 15,000 3.675 8.863 12.538 2.003 2.083 4.086
Table 1. Running times for QEM and our method

1051-4651/02 $17.00 (c) 2002 IEEE

	ICPR 2002
	Return to Menu

