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Abstract  

This paper presents a fast mesh simplification algo-
rithm that combined the half-edge data structure with 
modified quadric error metric (QEM). When half-edge 
structure is used, the adjacency queries between compo-
nents of the mesh, such as vertices, faces and edges, can 
be quickly achieved and thus the run time is reduced re-
markably. Furthermore, with the modified quadric error 
metric, the quality of the simplified meshes for a certain 
kind of 3D medical models whose normal vectors are 
computed through voxel gradient during reconstruction 
can be greatly improved. The experimental results illus-
trate the efficiency of the algorithm.   

 
 

1. Introduction 

In computer graphics, objects are often represented by 
triangle mesh. With the advances in data acquisition and 
the development of modeling techniques, 3D models be-
come more and more complex. Although the rendering 
capability of current graphic hardware has been improved 
considerably, it can’t yet keep up with the growing of 
model size, which makes real-time rendering difficult. 
However, in many applications, the highly detailed po-
lygonal models are not necessary and the rendering time is 
relatively more important. In this case, we should substi-
tute simpler approximations of the original model, i.e., the 
original surface should be simplified.  

In recent years, many effective techniques for auto-
matic simplification have been developed. At Siggraph’92 
Turk [1] presented an algorithm based on re-tiling. At the 
same time, Schroeder [2] described a simplification 
method called triangle decimation. Later Rossignac [3] 
used vertex clustering to simplify meshes. In 1996, Hoppe 
[4] proposed an algorithm called Progressive Meshes to 
construct LOD (Level-Of-Detail) model. Garland and 

Heckbert [5] described a new algorithm based on quadric 
error metric (QEM) for mesh simplification in 1997. 
Moreover, there exist many other methods such as copla-
nar facets merging [6], wavelet-based approaches [7] etc. 

In this paper, we combine the half-edge data structure 
with modified QEM algorithm to simplify models. The 
advantages of half-edge structure in adjacency queries can 
provide significant savings in running times and by modi-
fying the construction of vertex quadrics, we can improve 
the quality of the simplified surfaces for a certain kind of 
3D medical models that QEM can’t process well.  

Section 2 introduces the details of our algorithm. The 
experimental results are given in section 3 and we con-
clude in section 4. 

2. Details of the algorithm 

2.1. Data structure  
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Figure 1. A mesh represented by half-edge 
As the name implies, a half-edge is a half of an edge 

and is constructed by splitting the edge into two directed 
half edges. The basic concept of half-edge is illustrated in 
fig.1. The edge e is divided into two directed halves: e1, 
e2. We call e1, e2 a pair. The vertex from which the half-
edge emanates is called its start point, and the vertex at 
the end of the half-edge is called its end point. For exam-
ple, v2 is the start point of e1 and v1 is its end point. The 
edge e has two adjacent faces. Each one has three half-
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2.2. Half-edge collapse edges. When using this structure, we store half-edges 
instead of edges. 

The half-edge collapse is similar to edge collapse. The 
only difference lies in that for half-edge collapse, the start 
point is pulled into the end point. In other words, the new 
vertex after the half-edge collapse is the same as the end 
point of this half-edge. If fact, the half-edge collapse can 
be viewed as the general edge collapse without locating 
new vertex. It can also be considered as the vertex re-
moval operator without re-triangulation. 

According to different requirements, different vertex 
lists, face lists and half-edge lists can be constructed be-
cause of the flexibility of half-edge structure. In our im-
plementation, we can get all information needed for mesh 
simplification by adopting several simple structures 
shown in fig.2 and the updates of the adjacency of verti-
ces, faces and half-edges can be easily achieved. 

As we can see in fig.1, the half-edges that border a face 
form a circular linked list. This list can either be oriented 
clockwise or counter-clockwise around the face as long as 
the same convention is used throughout. Each of the half-
edges in the loop stores four pointers: its start point, its 
pair, the face it borders and its next half-edge around the 
face. In C it looks like fig.2 (a). 

2.3. The error metric 

For general meshes whose normal vectors are com-
puted through the normal vectors of their neighbouring 
faces, we can get acceptable results by using the QEM 
presented by Garland. But for a certain kind of 3D medi-
cal models whose normal vectors are computed from 
voxel gradient during reconstruction, the simplified mesh 
is unacceptable if we use Garland’s QEM directly. To 
solve this problem, we integrated the accurate normal 
information to vertex quadrics by constructing a virtual 
plane. In section 2.3.1, we briefly describe the quadric 
error metric of Garland. In section 2.3.2, we introduce our 
improvements.  

In vertex list, it is not necessary to record the adjacent 
faces or edges of each vertex. Besides the essential coor-
dinates and normal vector, one vertex only needs to store 
a pointer to one of the half-edges whose start points are 
this vertex. There may be several half-edges for us to 
choose, but we only need one and it doesn’t matter which 
one it is. The vertex structure looks like fig.2 (b). 

A face in the face list only needs to store a pointer to 
one of the half-edges that borders it. It is similar to the 
vertex structure in that although there are three half-edges 
bordering each face, we only need one and it doesn’t mat-
ter which one. The face structure looks like fig.2 (c). 

 
2.3.1 Overview of QEM. Given a plane that is repre-
sented by the standard form nTv+d=0 where n=[a,b,c]T is 
a unit normal (i.e., a2+b2+c2=1) and d is a scalar constant, 
the squared distance of a vertex v=[x,y,z]T from the plane 
is given by the equation D2(v)=(nTv+d)2= 
vT(nnT)v+2(dn)Tv+d2. This equation is equivalent to the 
formula D2(v)=vTQv=Q(v), where v=[x,y,z,1]T and the 
quadric Q is treated as a homogeneous matrix 
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T is a 3×3 matrix, b=dn is a 3-vector, 

c=d2 is a scalar. Using this representation, we can easily 
compute the sum of squared distances to a set of planes: 

Struct HalfEdge
{
 Vertex *vert;
 HalfEdge *pair;
 HalfEdge *next;
 Face *face;
}；

Struct Face
{
  HalfEdge *he;
}；

Struct Vertex
{
 float vcoord[3];
 float ncoord[3];
 HalfEdge *he;
};

(a) (b) (c)

Figure 2. Structures of half-edge, vertex and 
face 
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queries can be easily achieved. For example, the faces and 
vertices that neighbour a half-edge can be found with the 
codes in fig.3 (a), and the adjacent edges, points and faces 
of a vertex can be obtained through the simple do…while 
loop illustrated in fig.3 (b). 

Where ∑=
i

iQQ . In other words, to compute the squared 

distances to a set of planes, we only need one quadric that 
is the sum of the quadrics defined by each of the planes in 
the set. When contracting the edge (vi,vj), the quadric of 
the new vertex vnew is merely Qnew=Qi+Qj and the cost of 
contraction, which is defined as the sum of squared dis-
tances from vnew to the set of planes determined by the 
adjacent faces of vi and vj, can be computed through the 
equation Qnew(vnew)=vnew

TQnewvnew. The point we want to 
find is the one that minimizes this cost. 

Vertex *vert1=he->vert;
Vertex *vert2=
        he->pair->vert;
Face *face1=he->face;
Face *face2=
        he->pair->face;

HalfEdge *the=Vert->he;
Vertex *Vert;Face *face;
do{
   the=the->pair->next;
   Vert=the->next->vert;
   face=the->face;
}while(the!=vert->he);

(a) (b)  
2.3.2 Modified quadric error metric. Fig.6 (a) is a 3D 
medical model of human knee reconstructed by Marching 
Cubes. Since we add two zero slices around the first layer 

Figure 3. Examples of adjacency queries using 
half-edge structure 
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and the last layer to improve the visual quality of recon-
structed model (for instance, if the original datasets have 
58 slices, when reconstructing, we will process 60 slices. 
The pixel values in the first and last slices are all zero), 
large amounts of flat region will occur in these two layers. 
If the vertex normal is the weighted sum of the normals of 
its adjacent faces, the visual quality of the reconstructed 
model will be unacceptable. We employ the method of 
computing voxel gradient to get more accurate normal 
vectors, which makes these two layers look uneven. In 
fact, through this approach, the information of vertex 
normals can be expressed more accurately and the quality 
of the 3D medical models can be improved greatly. But 
when being simplified, because QEM method selects the 
sum of squared distances from the point to a set of planes 
as its cost criterion, the flat regions mentioned above will 
be simplified very soon while the vertex normals remain 
unchanged. This results in the great difference between 
the simplified model and the original model as illustrated 
in fig.6 (b). To solve this problem, we do some modifica-
tion on QEM. 

Given a vertex v=[x,y,z]T with a unit normal n=[a,b,c]T 
that is computed through voxel gradient, we can imagine 
that there exists a virtual plane P on which the vertex v 
lies and its normal is n. In other words, P is the tangential 
plane of the vertex v. When constructing the quadrics of v, 
we not only consider the contribution of the adjacent faces 
of v but also consider the contribution of the virtual plane 
P. The following equation illustrates this idea: 

∑ +=
i

Piv wQQQ  

Where Qi is the quadric of the i-th face around vertex v, 
QP is the quadric of the virtual plane P and w is the 
weight. 

From section 2.3.1 we know that the quadric of a plane 
is determined completely by its standard representation 
form. For the virtual plane P, its unit normal and one of 
the vertices on it are known, so we can easily compute the 
scalar constant of the plane equation: d= -ax-by-cz. Then 
the quadric of P can be constructed and thus the quadric 
of vertex v can be obtained. Although this approach is 
very simple, it can indeed improve the visual quality of 
this kind of 3D medical models as fig.6 (c) shows.  

In our approach, the weight w is defined by users. Our 
tests have proved that if w is too small, it has little influ-
ence on simplification procedure while the global results 
may suffer if w is too large. In our implementation, we 
select the number of the adjacent faces of vertex v as the 
weight. Experimental results show that the effect is rela-
tively good in this case. 

2.4. Boundary constraints  

We partition the edges of the mesh into two classes: the 
interior edges and the boundary edges. The interior edge 
has two adjacent faces and is represented by two half-

edges that form a pair. The boundary edge has only one 
adjacent face and is represented by one half-edge whose 
pair is null. Accordingly, the vertices of the model are also 
classified into two categories: the interior vertices and the 
boundary vertices. All adjacent edges of the interior ver-
tex are interior edges while at least one of adjacent edges 
of the boundary vertex is boundary edge. 

There are two cases that will change the boundary 
shape. One is that a boundary vertex is collapsed to an 
interior vertex, the other is that a boundary vertex is col-
lapsed to another boundary vertex, i.e., a boundary edge is 
collapsed. It can be obviously seen that the former may 
considerably change the boundary, so we don’t process it. 
For the second case, however, we allow them to be simpli-
fied. The reason is that when most triangles have been 
removed, the proportion of boundary edges will increase. 
If we forbid them from being simplified, we can only 
contract other edges of the mesh, thus although the 
boundary is preserved fairly well, the global result will 
drop back. We, during initialization, first compute a plane 
perpendicular to the face through the boundary edge, then 
form a quadric weighted with a large penalty factor for 
this plane and add it into the initial quadric for each of the 
endpoints just as Garland did. This can guarantee the 
boundary edges against being collapsed soon while when 
most triangles have been simplified, some boundary edges 
will be contracted properly. Since this is only the merging 
of boundary vertices and doesn’t occur very often, the 
boundary can also be preserved fairly well. 

2.5. Implementation  

Here it is not necessary for us to describe the details of 
the basic steps of our approach, for it is similar to those of 
methods based on general edge collapse. What we would 
say is that when using half-edge structure, we don’t need 
to update the face list after every contraction and the up-
dates of the vertex and half-edge lists are also very simple. 
Therefore, the computational time for decimation can be 
greatly reduced. Moreover, when a half-edge is collapsed, 
its pair will be removed too, so it is not necessary to put 
all half-edges into the heap that keyed on cost with the 
minimum at the top. We can simply allocate the size of 
the heap according to the number of the edges instead of 
half-edges. The cost of each edge is the smaller value of 
the costs of its two half-edges and the new vertex is the 
end point of the half-edge which has the smaller cost. 

3. Experimental results 

We implement our method with C++ and test it in sev-
eral different datasets. All of the tests are completed on a 
PIII 800MHz PC with 128MB of main memory and Win-
dows 2000. The rendering is left to standard OpenGL API 
using a GeForce 2 MX-400/32MB video adapter. 
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4. Conclusion and future work Figure 4, 5 and 6 demonstrate the results of our method 
on three models. In fig.4, the simplified model whose 
triangle number is 99% less than the original can still keep 
good features. The cow in fig.5 is a manifold model with-
out boundaries. The major details are kept even for the 
approximation with 600 triangles. Fig.6 (a) is a 3D medi-
cal model of human knee with 95,936 faces reconstructed 
by Marching Cubes. The two simplified models with 
15,000 triangles using QEM and our method are shown in 
(b) and (c) respectively. It can be seen that the visual qual-
ity is improved remarkably with our modified QEM de-
scribed in section 2.3.2. Table 1 gives the running times of 
the two methods. It shows that our method is faster than 
QEM. 

In this paper we presented an efficient simplification 
algorithm combining modified QEM with half-edge data 
structure. The experimental results show that our method 
is faster than QEM for general meshes and at the same 
time, it can produce better visual quality for a certain kind 
of 3D medical models whose accurate normal vectors are 
known. Moreover, since the simplified model is the subset 
of the original meshes, it can be easily used to the con-
structing and editing of multi-resolution models. 

The half-edge is restricted to represent manifold sur-
faces, so the work on how to expand it to non-manifold 
surfaces must be done in the future. We can consider the 
following three methods to solve this problem. The first is 
converting the non-manifold surfaces to manifold surfaces 
before simplification. The second is allocating an addi-
tional memory to record the information of non-
manifolds. The third is using the more complicated data 
structure such as winged-edge or radial-edge data struc-
ture to simplify meshes. Which to use depends on practi-
cal applications. 

 

   
(a)               (b)               (c) 

Figure 4. Crater model: (a) the original mesh 
(199,114 faces), (b) the simplified mesh (20,000 
faces) and (c) the simplified mesh (3,000 faces).  
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Figure 6. Knee model: (a) the original mesh 
(95,936 faces), (b) the simplified mesh (15,000 

faces) using QEM, (c) the simplified mesh (15,000 
faces) using our method. 

 
 

QEM Our Method Original Model 
(Faces) 

Simplified 
Model 
(Faces) Init. (Sec) Simp. (Sec) Total(Sec) Init. (Sec) Simp. (Sec) Total(Sec)

Crater (199,114) 3,000 11.837 21.992 33.829 5.257 5.998 11.255 
Cow (5,804) 600 0.25 0.65 0.9 0.12 0.09 0.21 

Knee (95,936) 15,000 3.675 8.863 12.538 2.003 2.083 4.086 
Table 1. Running times for QEM and our method 
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