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Abstract 

The small sample size problem is often encountered in 
pattern recognition. It results in the singularity of the 
within-class scatter matrix Sw in Linear Discriminant 
Analysis (LDA). Different methods have been proposed to 
solve this problem in face recognition literature. Some 
methods reduce the dimension of the original sample 
space and hence unavoidably remove the null space of Sw, 
which has been demonstrated to contain considerable 
discriminative information; whereas other methods suffer 
from the computational problem. In this paper, we pro-
pose a new method to make use of the null space of Sw 
effectively and solve the small sample size problem of 
LDA. We compare our method with several well-known 
methods, and demonstrate the efficiency of our method. 

 

1. Introduction 

Linear Discriminant Analysis (LDA) is used to seek a 
projection W, from the original sample space to a lower-
dimensional space, which maximizes the between-class 
scatter while minimizing the within-class scatter. A typi-
cal way to achieve this is to maximize the ratio: 
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, where Sb is the between-class scatter matrix 

and Sw is the within-class scatter matrix. It has been 
proved that if Sw is a non-singular matrix then the ratio is 
maximized when the column vectors of W are the eigen-
vectors of bw SS 1− . Unfortunately, in many practical appli-
cations of pattern recognition, Sw is singular because the 
number of the samples is much smaller than the dimen-
sion of the sample space. This is called a small sample 
size problem [1]. Different methods have been proposed 
to solve this problem and applied to image retrieval, ob-
ject and face recognition tasks. We compare these meth-
ods and give a new solution to this problem. 

The rest of this paper is organized as follows: Section 2 
reviews the related work on LDA-based methods for 

pattern recognition (mainly for face recognition); section 
3 introduces one new method we proposed; the experi-
ments are shown and discussed in section 4; and section 5 
concludes this paper. 

2. Related work 

To simplify the discussion, some assumptions and 
definitions are given firstly. 

Suppose the dimension of the original sample space is 
n, and a c-class problem is considered. The between-class 
scatter matrix Sb and the within-class scatter matrix Sw are 
defined as: 
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where Ni is the number of the samples in class Ci (i = 1, 
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m 1  is the mean of the samples in class Ci, and 
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m 1  is the mean of all the samples. Then the 

total scatter matrix or mixture scatter matrix St is defined 
by: 
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which is also the covariance matrix of all the samples.  
The goal of LDA is to find an optimal projection: 
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It is easy to prove that the upper bounds of the rank of 
Sb, Sw and St are respectively c－1, N－c and N－1, which 
are all much less than n in many practical problems, i.e. 
Sb, Sw and St are all usually singular in practice. 



Null space (Kernel) of matrix A: { }nRxAxx ∈= ,0 . 

Its dimension (Nullity of A) is: n－rank (A). 

2.1. Regularization method 

To deal with the singularity of Sw, a regularization 
method was mentioned in [2]. Sw can be slightly modified 
to Sw＋KI, where K is a very small (relative to the eigen-
values of Sw) positive number such that Sw＋KI is strictly 
positive definite. This is a pure LDA method without 
dimensionality reduction. 

However, the computational complexity is very high to 
handle such a high-dimensional Sw. 

2.2. Subspace method 

Another kind of method to solve the small sample size 
problem is projecting the original samples to a lower-
dimensional space to make the resulting within-class 
scatter matrix full-rank. Various subspaces have been 
used previously. 

The most widely used subspace method [2, 3, 4] per-
forms Principle Component Analysis (PCA) firstly to 
reduce the dimension of the samples from n to an inter-
mediate dimension n1, which must be not more than the 
rank of Sw (usually N－c) so as to make the resulting 
within-class scatter matrix full-rank. Then standard LDA 
is used to reduce the dimension further to n2, which must 
be not more than c－1, for the rank of Sb is at most c－1. 

Another novel method called Direct LDA [5] removes 
the null space of Sb firstly by doing eigen-analysis. Then a 
simultaneous diagonalization procedure is used to seek 
the optimal discriminant vectors in the subspace of Sb. 

A more direct method is removing the null space of Sw 
firstly by doing eigen-analysis. Then standard LDA can 
be performed safely in the subspace of Sw. 

Concerning the computational complexity, because 
calculating the eigenvalues and eigenvectors from an    
n×n matrix (e.g. St, Sb or Sw) is hard for typical sample 
sizes, and what we care about are only those eigenvectors 
corresponding to nonzero eigenvalues, a more efficient 
procedure [1] can work by firstly solving the eigenvalues 
and eigenvectors from a lower-dimensional matrix (e.g. 
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These three methods do eigen-analysis on three differ-
ent scatter matrices: St, Sb, or Sw respectively, but they are 
all based on dimensionality reduction and in fact remove 
the null space of Sw. It is notable that Direct LDA appears 
to avoid removing the null space of Sw, but cannot sub-
stantially avoid it. In fact, the rank of Sb is usually smaller 
than that of Sw, so the subspace that guarantees the full 
rank of Sb also guarantees the full rank of Sw. Therefore, 

removing the null space of Sb by dimensionality reduction 
would indirectly lead to the losing of the null space of Sw. 

However, it was mentioned in [4] and investigated in 
detail in [6] that the optimal discriminant vectors of LDA 
could be derived from the null space (or kernel in [4]) of 
Sw. In fact, if a certain vector q belongs to the null space 
of Sw (i.e. 0=qSq w

T ), and also satisfies 0≠qSq b
T , 

then the ratio 
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 will definitely reach the maxi-

mum value. This means that the null space of Sw contains 
considerable discriminative information, whereas above 
subspace methods discard this information by removing 
the null space of Sw. 

2.3. Null space method 

In [6] an LDA-based method that makes use of the null 
space of Sw was proposed. All the samples are firstly 
projected onto the null space of Sw, where the within-class 
scatter is zero, and then the optimal discriminant vectors 
of LDA are those vectors that can maximize the between-
class scatter. PCA is used to yield them. 

Like the regularization method, the computational 
complexity of determining the null space of Sw is also 
very high because of the high dimension of Sw. So in [6] a 
pixel grouping method is used in advance to extract geo-
metric features and to reduce the dimension of the sam-
ples, and then the null space LDA method is used in the 
feature space but not the original sample space. 

3. Our work 

We proposed a new method to solve the computational 
problem of the original null space LDA method. As men-
tioned above, if 0=qSq w

T , and 0≠qSq b
T , then q is 

very useful for discrimination. But if 0=qSq w
T , and 

0=qSq b
T  too, then q is not useful for discrimination. 

This means that not the whole null space of Sw is useful 
for discrimination. We can prove that the null space of St 
is the common null space of both Sb and Sw. 
Proof: 

It is known that: wbt SSS += . 
Let Q be the null space of St, thus 
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 (since Sb and Sw are positive semi-definite). 
Q.E.D. 



Therefore, the null space of St can be removed firstly 
by eigen-analysis without losing useful discriminative 
information. Only in the lower-dimensional projected 
space does the null space of the resulting within-class 
scatter matrix need to be determined. Through above 
procedure, a much smaller and equally useful subspace of 
the null space of Sw is found, which is then used to derive 
the optimal discriminant vectors of LDA. A similar con-
cept was mentioned in [7], but they used an iteration algo-
rithm, which also suffers from the computational problem. 

We propose a new algorithm based on eigen-analysis 
and a procedure similar to simultaneous diagonalization. 
The whole algorithm and the computational considera-
tions are described as follows: 
1. Remove the null space of St. 

This can be done by doing eigen-analysis on the N×N 

matrix t
T
tN
ΦΦ

1  instead of the n×n matrix St [1]. Let U 

be the matrix whose columns are all the eigenvectors of St 
corresponding to the nonzero eigenvalues, then we get: 
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2. Calculate the null space of wS ′ . 

After step 1, the dimension of wS ′  is at most N－1, 
for the rank of St is at most N－1. It is now quite manage-
able to calculate the null space of wS ′  by doing eigen-
analysis again. The dimension of this null space (nullity 
of wS ′ ) is usually c－1, because the rank of wS ′  is usu-
ally equal to that of Sw, which is usually N－c. Let Q be 
the null space of wS ′ , then we get: 
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UQ is a subspace of the whole null space of Sw, and is 

really useful for discrimination. 
3. Remove the null space of bS ′′  if it exists, and reduce 
dimension further if necessary. 

Do eigen-analysis on bS ′′ . Let V be the matrix whose 
columns are all the eigenvectors of bS ′′  corresponding to 
the nonzero eigenvalues or part of them associated with 
the largest eigenvalues (for further dimensionality reduc-
tion), then the final LDA projection is: UQVW = .  

The last step is optional, because bS ′′  is usually full-
rank. So the number of the optimal discriminant vectors 
was c－1, which coincide with the number of ideal fea-
tures for classification [1]. 

4. Experiments 

To demonstrate the efficiency of our method, extensive 
experiments are performed on different face data sets, and 

two of them are shown here. Besides our method, the 
method proposed in [2, 3, 4], called Fisherface method, 
and Direct LDA method proposed in [5] were tested. We 
do not test the regularization method because a detailed 
comparison between this method and Fisherface method 
has been demonstrated in [2]. We also do not list the test 
result of the original null space LDA method because it 
just has the same recognition accuracy as our method. 

4.1. The ORL face database 

There are 10 different images of 40 distinct subjects in 
the ORL face database. For some of the subjects, the 
images were taken at different times, varying lighting 
slightly, facial expressions (open/closed eyes, smil-
ing/non-smiling) and facial details (glasses/no-glasses). 
All the subjects are in up-right, frontal position (with 
tolerance for some side movement). The size of each 
image is 92×112. Figure 1 shows 10 images of a subject.  

 

 
Figure 1. Samples from the ORL database 

 
We tested the recognition rates with different number 

of training samples. k (k = 2, 3, �, 9) images of each 
subject are randomly selected from the database for train-
ing and the remaining 10－k images of each subject for 
testing. For each value of k, at least 50 runs are performed 
with different random partition between training set and 
testing set, and table 1 shows the average recognition 
rates (%). No any pre-processing is done, and we choose 
39 (i.e. c－1) as the final dimension. The detailed choice 
of intermediate dimension is described in references. 

 
k Fisherface Direct LDA Our Method 
2 78.83 80.63 83.56 
3 87.09 87.33 90.11 
4 92.49 92.10 94.17 
5 94.19 94.68 95.63 
6 95.99 96.65 97.13 
7 97.27 98.06 98.08 
8 98.50 99.25 98.95 
9 99.00 99.95 99.15 

Table 1. Recognition rates on the ORL database 

4.2. The FERET Database 



To experiment on more challenging data, we have se-
lected 70 subjects from the FERET database [8] with 6 
up-right, frontal-view images of each subject. The number 
of subjects is more and the number of samples for each 
subject is less than the ORL database. The images were 
selected to bear with more differences in lighting, facial 
expressions and facial details. Figure 2 shows 2 subjects 
from the selected data set. 

 

 
Figure 2. Samples from the FERET dataset 
 
The eye locations are fixed by geometric normaliza-

tion. The size of face images is normalized to 92×112 (to 
be consistent with the ORL database). No other pre-
processing is done. Test process is the same as the ORL 
test. Here k is from 2 to 5, and final dimension is 69. The 
recognition rates (%) are shown in table 2. 

 
k Fisherface Direct LDA Our Method 
2 56.04 63.25 75.60 
3 76.95 76.71 86.47 
4 87.23 88.30 93.07 
5 94.80 94.71 97.64 

Table 2. Recognition rates on the FERET dataset 

4.3. Discussions 

Some observations can be obtained from above ex-
periments. Our algorithm outperforms Fisherface method 
and Direct LDA method on the whole, especially when 
the number of training samples is small, which is often the 
case in face recognition and other pattern recognition 
tasks. When the number of training samples is large, the 
recognition rates on the ORL database are very close. We 
conclude that is because there are too few testing samples. 

As to the computational complexity, the most time-
consuming procedure, eigen-analysis, is performed on 
two matrices (c×c and c－1×c－1) in Direct LDA 
method, on two matrices (N×N and N－1×N－1) in our 
method, and on three matrices (one of N×N, and two of 
N－c×N－c) in Fisherface method using simultaneous 
diagonalization [3]. Direct LDA method has the minimum 
computational complexity. The other two methods have 
similar complexity, which are also quite manageable. 

The experimental results have shown that our method 
gets the best recognition rates with a relatively low com-

putational complexity. We are currently performing vari-
ous experiments on other areas. 

5. Conclusions 

In this paper, we propose a new method using a sub-
space of the null space of the within-class scatter matrix 
Sw to solve the small sample size problem of LDA. Know-
ing that the null space of Sw contains considerable 
discriminative information but it is difficult to determine 
and redundant to use, we firstly remove the null space of 
St, which has been proved to be the common null space of 
both Sb and Sw, and useless for discrimination. Then in the 
lower-dimensional projected space, the null space of the 
resulting within-class scatter matrix is calculated. This 
lower-dimensional null space, combined with the previous 
projection, represents a subspace of the whole null space 
of Sw, and is really useful for discrimination. The optimal 
discriminant vectors of LDA are derived from it. The 
efficiency of our method is verified by extensive experi-
ments on face recognition. 
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