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Abstract

For many years, vehicle tracking in traffic images has suffered from the problems of oc-

clusions and sudden variations in illumination. In order to resolve these occlusion problems,

we have been proposing the Spatio-Temporal Markov Random Field model(S-T MRF) for seg-

mentation of spatio-temporal images. This S-T MRF optimizes the segmentation boundaries of

occluded vehicles and their motion vectors simultaneously, by referring to textures and segment

labeling correlations along the temporal axis, as well as the spatial axes. Consequently, S-T

MRF has been proven to be successful for vehicle tracking even against severe occlusions found

in low-angle traffic images with complicated motions, such at highway junctions. Furthermore

in this paper, we defined a method to obtain the illumination invariant images by estimating

MRF energy among neighbor pixel intensities. These illumination invariant images are very

stable even when sudden variations in illumination are caused by such as clouds hiding sun

shine in the original images. Thus, vehicle tracking was performed successfully even against

sudden variations in illumination or shading effects. In addition, we succeeded in seamlessly

integrating the method for MRF energy images into our S-T MRF model. In this paper, the

idea of the integrated S-T MRF model and successful results of vehicle tracking against sudden

variations in illumination as well as occlusions will be described in detail.

1 Introduction

Algorithms for object tracking have a long history in Computer Vision research. However,

’occlusions’ and ’variations in illumination’ had been the most difficult problems in computer

vision applications, and had impeded object tracking from being put into practical use for many

years. To resolve occlusion problems, some previous works employed stereo vision method[1],

and some other works employed shape models of objects to estimate texture matching with

images[5]. However, stereo systems would require a huge amount of calculation time and

complicated system architectures, and shape models would suffer from appearance of objects

that have unexpected shapes. Therefore, it is important to resolve occlusion problems by

using single camera images, and to use no information other than that obtained from the

images themselves. We then arrived at the idea that the tracking problem against occlusions is

equivalent to the segmentation of spatio-temporal images. In order to solve such segmentation

problems, the Spatio-Temporal Markov Random Field model was defined[12][13].

Many successful researches in Computer Vision employed Markov Random Field model.

Geman and Geman[6] has done the work which has become the base of subsequent researches
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on MRF. Originating from this work, MRF has since been widely used for various image

applications such as compression, restoration, and segmentation. For example, previous works

for image segmentation have done by Panjwani et.al.[7], Andrey et.al.[8], and Barker et.al.[9].

Although those previous works had been successful, those have applied the spatial MRF model

to spatial images such as static images.

Our Spatio-Temporal MRF model was define by extending the above spatial MRF model

so that it would be effective for segmentation of spatio-temporal images. Image sequences of

moving objects necessarily have correlations of textures and region-labeling between consecutive

images along the temporal axis. Therefore, our S-T MRF optimizes image segmentation The S-

T MRF optimizes segmentations of spatio-temporal images by referring to local motion vectors,

textures correlations and region-labeling correlations. In this paper, the above idea concerning

the Spatio-Temporal MRF model will be briefly described in Section.2. and the successful

results of segmentation against occlusions will be described in Section.4.

Some illumination invariant methods for image analyses have been proposed. For example,

Fieguth and Wesolkowski[10] employed Dichromatic Reflection model for an object segmenta-

tion problem. Gimel’farb[11] employed illumination invariant images; of these, each pixel has

an intensity represented by the MRF energy among neighbor pixels. Those pixel intensities

estimated as MRF energies are stable against illumination variations in original images. In

this paper, we succeeded in extending the above idea of illumination invariant method in order

to seamlessly integrate into our original Spatio-Temporal MRF model. The idea of obtaining

MRF-energy images will be described in Section.3, and successful results of vehicle tracking

against illumination variation will be described in Section.4.

2 Spatio-Temporal MRF Model

2.1 Basic Idea
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Figure 1: Segmentation of Spatio-Temporal Images

Usually, the spatial MRF segments an image by each pixel. However, since the usual video

cameras do not have such high frame rates, objects typically move for ten or twenty pixels

among consecutive image frames. Therefore, neighbor pixels within a cubic clique will never
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have correlations of either intensities or labeling. Consequently, we defined our Spatio-Temporal

Markov Random Field model(S-T MRF)[12][13] as to divide an image into blocks as a group of

pixels, and to optimize labeling of such blocks by referring to texture and labeling correlations

among them, in combination with their motion vectors. Combined with employing stochastic

relaxation method, our S-T MRF optimizes object boundaries precisely, even when serious

occlusions occur.

Here, a block corresponds to a site in the S-T MRF, and only the blocks that have different

textures from the background image are labeled as one of the object regions. In this paper, an

image has 640x480 pixels and a block has 8x8 pixels; such a distribution of labels on blocks

is referred to as an Object-Map. S-T MRF estimates current Object-map X(t) = y; given

previous Object-mapX(t − 1) = x, previous image G(t − 1; i, j) = g(i, j), and current image

G(t, i, j) = h(i, j).

2.2 Parameters for Optimization

In our previous works[12], three energy function were defined in order to solve the seg-

mentation problem by S-T MRF. Since details of the functions can be found in the previous

paper, summary of the idea will be explained here. Following energy functions were deduced

from the Boltzmann distribution which represents exponential value of Gaussian function about

parameters Mxyk
and Dxyk

as described in the previous paper[12].

previous image recent image

Object ID was estimated as Om Object ID is assumed as Om

Neighbor block in previous image which has same Object ID

Figure 2: Neighbor condition between Consecutive Images

At first, the motion vector of each block is estimated between the previous image and current
image by block matching technique. By referring to the motion vector, two S-T MRF energy
will be evaluated as shown in Function(1):

Upre(Dxyk
, Mxyk

) = b(Mxyk
− µMxy )2 + c(Dxyk

− µDxy )2 (1)

Dxyk
=

∑

0≤di<8,0≤dj<8

|G(t; i + di, j + dj)

−G(t − 1; i + di − vmi, j + dj − vmj)| (2)

Mxyk
is a goodness measure of the previous Object-map X(t − 1) = x under a currently

assumed Object-map X(t) = y. Assume that a block Ck has a object label Om in the current
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object map X(t), and Ck is shifted backward in the amount of estimated motion vector, −−−→
VOm =

(−vmi,−vmj) of the object Om, in the previous image (Figure.2). Then the degree of overlapping

is estimated as Mxyk
: the number of overlapping pixels of the blocks labeled as the same object.

The more the overlapping pixels are, the more likely a block Ck belongs to the object. The

maximum number is µMxy = 64, and the energy function UM(Mxyk
) takes a minimum value at

Mxyk
= 64 and a maximum value at Mxyk

= 0.

previous image recent image

Figure 3: Texture Matching

Dxyk
represents texture correlation between G(t−1) and G(t). Suppose that Ck is translated

backward in the image G(t− 1) referring to the estimate motion vector −−−→
VOm = (−vmi,−vmj).

The texture correlation at the block Ck is evaluated as(See Figure.3): UD(Dxyk
) takes maximum

value at Dxyk
= 0. The smaller Dxyk

is, the more likely Ck belong to the object. That is, the

smaller UD(Dxyk
) is, the more likely Ck belong to the object.

Ck

Object ID is same as Ck

Nyk = 5

Figure 4: 8 neighbor blocks

The last S-T MRF energy is of neighbor condition within a current Object-Map as shown
in Function(3).

UN (Nyk
) = a(Nyk

− µNy)
2 (3)

Here, Nyk
is the number of neighbor blocks of a block Ck that belong to the same object as Ck

as shown in Figure.4. Namely, the more neighbor blocks that have the same object label, the

more likely the block is to have the object label. Currently, it is assumed that µNy = 8, because

UN(Nyk
) should have minimum value when block Ck and all its neighbors have the same object

label.
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Consequently, this optimization problem results in a problem of determining a map X(t) = y
which minimizes the following energy function.

U(yk) = a(Nyk
− µNy)

2 + b(Mxyk
− µMxy)

2 + cD2
xyk

(4)

2.3 Optimization of Errors in Motion Vectors

However, some of such estimated motion vectors would have errors. Such errors frequently

occur on the boundaries of occluded objects, because the appearances of object boundaries

vary along sequence of images.

t-1

t

t+1

Cluster-1 Cluster-2

Vehecle-1

Vehicle-2 Vehicle-3

Figure 5: Optimizations of Motion Vectors

Since those errors should lead to segmentation errors, it is necessary to correct errors of
motion vectors themselves. For that purpose, it would be effective to optimize motion vectors
themselves by referring to motion vectors of their neighbor blocks. This condition can be
integrated as the following energy function(5):

U(yk(t)) + fUmv(Ck(t − 1)) =
a(Nyk

− µNy)2 + b(Mxyk
− µMxy)

2 + cD2
xyk

+f
∑

Bk

|−−−−−→VCk(t−1) −−−−−−→
VBk(t−1)|2/Nxk

(5)

Here, U(yk) is defined as function(4) at T = t; energy terms of UM (Mxyk
) and UD(Dxyk

)

will be evaluated by referring to respective motion vectors of blocks belonging to the object.

Umv(Ck(t − 1)) will be estimated by using motion vectors at T = t − 1; Ck(t − 1) represents

the original block of Ck(t), Nxk
represents the number of neighbor blocks that have same label

as Ck(t − 1).

Thus, motion vectors of blocks at T = t − 1 and Object-Map at T = t will be optimized

simultaneously by considering both similarities in motion vectors among neighbor blocks and

in texture correlations between consecutive images.

2.4 Applying S-T MRF Backward along Temporal Axis

In order to resolve the first problem, it will be effective to apply S-T MRF model backward

along temporal axis; we call this procedure ’reversed S-T MRF’. Since the Spatio-Temporal
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images are symmetrically arranged along temporal axis, this reversed S-T MRF model will be

able to divide each vehicle backward to the previous images. In practice, about fifty images

along with their corresponding Object-maps are accumulated; the S-T MRF model is applied

to such accumulated spatio-temporal images backward to the previous images with re-mapping

the Object-maps.

3 Illumination Invariant S-T MRF model

3.1 Spatial MRF energy of an Image

(a)without shadow

(b)shaded

Figure 6: Original Crossroad Images

(a)without shadow

(b)shaded

Figure 7: Illumination Invariant Images

Algorithms for object tracking have been suffering from illumination variations for a long

period. For example, Figure.6(a) is an original image of a traffic scene at a crossroad without

shadow, and Figure.6(b) a shaded image at the crossroad. Illumination, that is shadowing, has

varied between the two images within a few seconds. Since the intensities of image pixels vary

to a great extent in such a situation, previous algorithms would fail in tracking objects from

such a sequence of images.

In order to obtain illumination invariant images, Gimel’farb[11] employed a method for

creating images; of these, each pixel has intensity represented by the spatial MRF energy
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among neighbor pixels. Since this spatial MRF energy is focused on differentiation of the

image intensities among neighbor pixels, it would be stable against illumination variations in

original images. However, it is necessary to remap those spatial MRF energies into the defined

range of image intensities; [0,255] in this paper.

Therefore, we originally defined such a remapping function as follows: Spatial MRF energy

is defined as Function(6). And by using this function, intensity of each pixel is represented by

sigmoid function(7) as shown in Figure.8. The reason why we used sigmoid function is that

sigmoid function includes an edge function and a linear function as its limits. For example,

Function(7) will converge into a kind of edge function as β increases, and it will converge into

a linear function with threshold as β decreases. Here, Gmax is a maximum of pixel intensity

and is define as 255 in this paper.
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Figure 8: Translation from Spatial MRF energies into Illumination Invariant Image Intensities

Umrf =

∑
neighborpixels |G(t; i + di, j + dj) − G(t; i, j)|
max(G(t; i + di, j + dj), G(t; i, j))/Gmax

(6)

Imrf =
Gmax

1.0 + exp[−1.0 ∗ β ∗ (Umrf − α)]
(7)

By using this sigmoid function, illumination invariant images are obtained as shown in Figure.7(α =

80, β = 0.02). The two images in Figure.7 seems almost same, whereas intensities of original

images are much different because of shading.

3.2 Integration into the S-T MRF model

As described in the previous subsection, our illumination invariant images are estimated by

using spatial MRF energies in original images. Here, we would like to remind the S-T MRF

model as our previous work[12]. Table.1 shows that previous S-T MRF did not employ spatial

correlation of intensities with a image. It was because that artificial images such as of traffic

scenes does not necessarily have such spatial correlation of intensities. On the other hand, those

illumination invariant images evaluates spatial correlation of intensities within a image. Thus,

applying previous S-T MRF to illumination invariant images is equivalent to applying S-T
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MRF, including every correlation of intensity and labeling through both spatial and temporal

axes, to original images. And it is supposed that spatial correlation of intensity supposed can

be orthogonally decomposed from other correlation factors.

Spatial correlation Temporal correlation
Intensity Illumination Previous

Correlation Invariant S-T MRF
Labeling Previous Previous

Correlation S-T MRF S-T MRF

Table 1: Correlation used in S-T MRF model

4 Experimental Results

4.1 Robustness against Occlusions
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(a) Crossroad (b) Merge Traffic

Figure 9: Tracking results by S-T MRF
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Figure.9(a) shows the tracking result image and the Object-Map by applying our S-T MRF

to images at a crossroad, and Figure.9(a) shows the tracking result images of low-angle images

at highway merge traffic. Parameters were decided by trial and error as: a = 1/2, b = 1/256, c =

32/1000000, f = 1/4. 25 minute traffic images were examined for a large crossroad which has

three lanes for each direction. During the, 3214 vehicles went through the crossroad. As a

result, the method was able to segment and track vehicles at about 95% success rate against

occlusions. On the other hand, 40 minute images were also examined for the merge traffic on

the Tokyo Metropolitan Expressway. During then, 2,381 vehicles have passed this junction,

and the method achieved 91.3% success rates in tracking against occlusions.
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Figure 10: Success rates vs. Frame rates

Figure.10 shows dependencies of success rates in tracking results on frame rates. And they

also were examined by using both of the middle-angle images and the low-angle images. Since

one of the principal ideas of the S-T MRF is to link temporally-discrete images by motion

vectors, it is important to examine how success rates depend on frame rates. As shown in this

figure, success rates decreased steeply at 3frames/second in images of both angle. It seems

that use of block matching algorithm to obtain motion vectors did not work well for low frame

rate images as 3frames/second, because searching region becomes too broad to find the most

likely matched region.

4.2 Robustness against Illumination Variation

Figure.11 shows tracking results by using illumination invariant S-T MRF model; parame-

ters in function(7) were set as α = 80, β = 0.02. Although there was sudden shading, this S-T

MRF were able to track vehicles precisely across the shadow boundary. And Figure.12 shows

success rates against parameter β which represents steepness of the sigmoid function.

The success rate has a maximum around β = 0.05−0.50; where sigmoid function(7) becomes

similar to a linear function with threshold which contains much information about textures. It

is because that texture information was conserved much by linear transformation from MRF

energies to image intensities. However, the success rate decreased as β increased because texture

information decreased as β increased. Sigmoid function came close to the binary edge function
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as β increased. On the other hand, thus success rate decreases as β decreased more. It is

because that the function becomes similar to constant and only a few texture information was

conserved by the transformation.

(a)Crossroad

(b)Merge Traffic

Figure 11: Tracking Results using Illumination Invariant Images
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Figure 12: Success rates vs. β

5 Conclusions

The Spatio-Temporal MRF model has been proposed for segmentation of spatio-temporal

images; which is equivalent to object tracking in sequential images. S-T MRF simultaneously

optimizes segmentation boundaries and motion vectors by referring to texture and labeling

correlations along temporal axis. In this paper, we succeeded in seamlessly integrating spatial

MRF energy of a image intensity into the S-T MRF model. As shown in experimental results,

S-T MRF achieved 90 − 95% success rates for vehicle tracking in both crossroad images and

low-angle images of highway merge traffic. In addition, in order to resolve illumination invari-

ant problem, we employ spatial MRF energy of the image. The spatial MRF was seamlessly

integrated into our Spatio-Temporal MRF model. As a result, the integrated S-T MRF was

able to track vehicles against variations in illumination of images as well as occlusions. Thus,

S-T MRF was proven to be a general model which can resolve segmentation problem against

both of severe occlusions and sudden variations in illumination or shading effects.

References

[1] Y.Sugaya, Y.Ohta, “Stereo by Integration of Two Algorithms with/without Occlusion

Handling”, ICPR’00, Barcelona, Sep. 2000, Vol.1, pp109-113.

[2] Natan Peterfreund, ”Robust Tracking of Position and Velocity With Kalman Snakes” IEEE

Trans. Pattern Analysis and Machine Intelligence(PAMI), Vol.21 No.6, 1999, pp.564-569.

[3] M.Kass,A.Witkin,and D.Terzopoulos, “Snakes: Active contour models” Int’l J.Computer

Vision, Vol.1, 1988, pp.321-331.

[4] Holger Leuck and Hans-Hellmut Nagel, ”Automatic Differentiation Facilitates OF-

Integration into Steering-Angle-Based Road Vehicle Tracking”, IEEE CVPR’99, pp.360-

365.

[5] Warren F.Gardner and Daryl T.Lawton ”Interactive Model-Based Vehicle Tracking”, IEEE

Trans. PAMI, Vol.18 No.11, 1996, pp.1115-1121.

[6] S.Geman and D.Geman, “Stochastic Relaxation, Gibbs Distribution, and the Bayesian

Restoration of images”, IEEE trans. PAMI, Vol.6, No.6, pp721-741, 1984.

11



[7] D.K.Panjwani and G.Healey, “Markov random field models for unsupervised segmentation

of textured color images”, IEEE Trans. PAMI, vol.17, no.10, pp939-954, 1995.

[8] P. Andrey, P. Tarroux, “Unsupervised Segmentation of Markov Radom Field Modeled

Textured Images Using Selectionist Relaxation”, IEEE trans. PAMI, Vol20, No.3, 1998.

[9] S.A.Barker and P.J.W.Rayner, “Unsupervised Image Segmentation Using Markov Random

Field Models”, EMMCVPR’99(LNCS; Springer), pp179-194, May 1997.

[10] P.Fieguth and S.Wesolkowski, “Highlight and Shading Invariant Color Image Segmenta-

tion”, EMMCVPR’01, LNCS 2134; Springer, Sophia Antipolis(France), pp314-327.

[11] G.L.Gimel’farb, “Texture Modeling by Multiple Pairwise Pixel Interactions”, IEEE trans.

PAMI, Vol.18, No.11, 1996, pp1110-1114.

[12] S.Kamijo, Y.Matsushita, K.Ikeuchi, M.Sakauchi, “Occlusion Robust Vehicle Tracking uti-

lizing Spatio-Temporal Markov Random Field Model”, 7th World Congress on ITS, Torino,

Nov. 2000.

[13] S.Kamijo, K.Ikeuchi, M.Sakauchi, “Vehicle Tracking in Low-angle and Front-View Images

based on Spatio-Temporal Markov Random Field Model” 8th World Congress on ITS,

Sydney Oct.2001, CD-ROM.

[14] S.Kamijo, Y.Matsushita, K.Ikeuchi, M.Sakauchi, “Traffic Monitoring and Accident Detec-

tion at Intersections”, IEEE trans. ITS, Vol.1 No.2, June. 2000, pp.108-118.

12


	Return to Main Menu
	================
	Next Page
	Previous Page
	=================
	Search CD-ROM
	Search Results
	Print

