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Abstract

The fundamental matrix (FM) represents the perspective

transform between two or more uncalibrated images of a

stationary scene, and is traditionally estimated based on 2-

parameter point-to-point correspondences between image

pairs. Recent invariant correspondence techniques how-

ever, provide robust correspondences in terms of 4 to 6-

parameter invariant regions. Such correspondences con-

tain important information regarding scene geometry, in-

formation which is lost in FM estimation techniques based

solely on 2-parameter point translation. In this article, we

present a method of incorporating this additional informa-

tion into point-based FM estimation routines, entitled TIP

(transfer of invariant parameters). The TIP method trans-

forms invariant correspondence parameters into additional

point correspondences, which can be used with FM estima-

tion routines. Experimentation shows that the TIP methods

result in more robust FM estimates in the case of sparse

correspondence, and allows estimation based on as few as

3 correspondences in the case of affine-invariant features.

1. Introduction

Consider a set of 2D images of a scene acquired from a

moving camera. Should the epipolar geometry be known,

any 3D real world point that is captured in one image

can be mapped to a line in each subsequent image. With

constraints provided by point-to-point correspondences, the

three dimensional world can be recovered from a set of 2D

images. In an uncalibrated system, the epipolar geometry

is estimated by the fundamental matrix (FM), a 3×3 matrix

of rank two, estimated by using the corresponding matches

from one image to the next. The accuracy of the FM es-

timate (and subsequently the scene geometry) is therefore

crucial for applications such as 3D reconstruction and pose

estimation.

The accuracy of the FM estimate is a function of the

number of correct correspondences attained between im-

ages. Most algorithms rely on a minimum of eight such

correspondences, i.e. the 8-point algorithm [8, 4], although

other techniques can estimate the epipolar geometry with

fewer correspondences such as the seven, six and five point

algorithms [3, 13, 14]. FM estimation can be based on other

types of correspondences such as conics and curves [7, 1],

however. Recently, invariant features have been shown to

provide fast and robust correspondence over geometrical

deformations such scale [9, 10] and affine [17, 11] trans-

formations, in addition to illumination changes. As a re-

sult, such features have proven useful in estimating the FM

over large changes in viewpoint [2]. When combined with

robust sampling techniques, accurate FM estimates can be

obtained, provided a sufficient number of correct correspon-

dences exist. However there are many circumstances in

which a sufficient number of correct correspondences can-

not be determined, adversely effecting the accuracy of fun-

damental matrix estimation. This begs the question: Can

the additional parameters of invariant features indeed be in-

corporated in FM estimation?

Our contribution in this paper is a method of incorpo-

rating additional information from invariant feature corre-

spondences into existing point-based FM estimation rou-

tines, which we refer to as TIP (Transfer of Invariant Para-

meters). In the TIP method, geometrical parameters inher-

ent to invariant features are converted into additional point-

correspondences in order to increase the robustness of FM

estimation, particularly in cases where tradition estimation

fails. This method (1) leads to an increased number of ro-

bust feature points for correspondence, (2) reduces the min-

imum number of correspondences required for FM estima-

tion and (3) is contingent on the number of parameters as-

sociated with a particular invariant feature. In Section 2, we

discuss the uses of invariant features in FM estimation, in

Section 3 we then introduce the TIP method and in Section 4

we outline our experiments and present our results, demon-

strating the increased robustness presented by our technique

over traditional FM computations using the Harris-Affine

detector of Mikolajczyk and Schmid [11].

2. Invariant features and FM estimation

The majority of techniques aimed at estimating the fun-

damental matrix are based on point-to-point correspon-

dences between images. Consequently, a large body of liter-

ature is devoted to techniques that automatically determine

such correspondences between images [9, 10, 11, 15]. In
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general terms, the problem of finding correspondences can

be thought of as determining relations between geometrical

structures in different images.

Early approaches to feature-based correspondence at-

tempted to determine a 2-parameter {x, y} feature displace-

ment from one image to the next. Such approaches are said

to be translation invariant, as such features are matchable

in the presence of {x, y} image translation. It was sub-

sequently observed that the size of the pixel window was

intimately related to the pattern being matched, resulting

in scale-invariant feature detectors that focused on extract-

ing and matching 3-parameter regions {x, y, σ} [15] in the

presence of image scale change σ in addition to translation.

Further work has extended invariance to full 4-parameter

similarity [9, 10] and 5-parameter 1 affine [11] transforma-

tion.

Traditionally, the fundamental matrix is estimated with

a minimum of 8 point-to-point (2-parameter {x, y}) corre-

spondences. Since the FM (i.e. F ) has seven degrees of

freedom and is constrained such that det(F ) = 0, it can

even be estimated with as few as 7 point-to-point corre-

spondences [3]. While these methods are popular and ef-

ficient, correspondences are limited to simple 2-parameter

point translations. When using invariant feature correspon-

dences and subsequently basing FM estimation on only 2-

parameter translations, important high order information

about scene geometry is lost. Special-purpose estimation

techniques have been developed for specific higher-order

correspondence parameterizations (i.e. conics [7]), but have

not become widely used since these methods typically re-

quire the solution of a high order polynomial. In this pa-

per, we wish to exploit additional information provided by

invariant feature correspondences using widely-used point-

based FM estimation techniques. By the transfer of these

invariant parameters discussed in the following section, the

total number of matches required for a stable FM estimate

can be reduced over 2-parameter {x, y} point-to-point cor-

respondences.

3. TIP - Transfer of Invariant Parameters

We propose TIP as a method to incorporate local geome-

try of each invariant feature correspondence in a simple yet

effective manner while still being able to use standard point-

based methods of FM estimation. Although generally ap-

plicable to a variety of invariant correspondence techniques,

we describe TIP in the context of affine-invariant correspon-

dence, where each correspondence represents a 6-parameter

affine transform of a region from one image to the next.

For each correct correspondence, the corresponding co-

ordinate pair is known (i.e. (x, y) ←→ (x′, y′)). By exten-

1The affine transform of [11] is natively a 5 rather than 6-parameter

transform since the affine matrix is symmetric. By examining local image

gradients a 6th parameter can be found in the dominant orientation.

sion, these two matched points share the same affine region.

In the case of [11], this is determined in the second moment

matrix and is represented by a fitted ellipse. Henceforth, we

have knowledge of the elliptical geometric region surround-

ing the interest point in each image. We can therefore state

that not only do we know the translation from one image to

the next, but the transformation of one ellipse to the other

(ξ) ←→ (ξ′). By extension, we can surmise that any sin-

gular point or collection of points in or on the border of

the ellipse are also transformed from one image to another

given the known transform.

Once we are given the affine parameters of the ma-

jor axis, minor axis and elliptical rotation (ℓ1, ℓ2, α) ←→
(ℓ′

1
, ℓ′

2
, α′) as well as a dominant gradient orientation, how

can we embed this additional information into an FM es-

timation algorithm in order to increase its accuracy? The

premise of TIP is that the information contained in the ad-

ditional invariant parameters provided can be transferred

between both images through additional child point corre-

spondences. As a result, TIP (1) reduces the original num-

ber of correspondences required (the parent points) and (2)

increases the robustness of the FM estimate. Although we

consider the affine case, generally the potential information

contained in one invariant feature correspondence is a func-

tion of the number of parameters that the invariant feature

provides, which in turn reduces the minimum number of

correspondences required (refer to Table 1).

Table 1. Invariant feature information
Transform No. Param Parameters Points Req’d

Translation 2 (x, y) 8

Similarity 4 (x, y, σ, θ) 4

Affine 6 (x, y, θ, ℓ1, ℓ2, α) 3

3.1. The affine case

For each correspondence in the affine case, we place

child points along the border of the ellipse bounding the

affine region. Since angles are not preserved in affine trans-

forms, each elliptical affine region must be normalized to

a unit circle. To accomplish this, an ellipse can be decom-

posed into the following components of ξ = Φ S Φ⊤ as

indicated in Figure 1. Hence ξ must undergo a rotation of

Φ−1 and stretch/squeeze of S−1. Points are then placed

in relation to the dominant orientation of the corresponding

ellipse. If the dominant orientation θ of the feature point is

unknown, it can be determined here as a sub-step by assign-

ing an orientation through local gradients as demonstrated

by Lowe [9].

Following the transform, we subsequently add a child

point along the contour of the unit circle at the dominant

orientation. To best represent an affine transform to the FM

estimation algorithm, it would be beneficial to actually in-

clude two child points spaced π/2 radians apart. Ideally this

would fit our requirement and each affine ellipse would be
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Figure 1. Determining child points between corresponding affine regions: (1) elliptical regions are

transformed to unit circle µ (2) child points are selected along µ wrt θ (3) child points are re-projected

to elliptical regions.

characterized by 3 points. However, in the event that an

epipolar line crosses both the parent and child point, the in-

formation potential of that child point is diminished. There-

fore, we suggest adding a sum of 4 child points (canonically

placed π/2r apart from θ) so that each affine correspondence

is characterized by 5 point-to-point matches even though

two are likely be redundant in most circumstances. The

unit circle is then transformed back to an ellipse and the

two matched feature points can now be characterized with

five matched points. The collection of points can then be

added to the normalized 8-point algorithm or some robust

estimator in order to estimate the FM.

4. Experimentation

The goal of experimentation is to demonstrate that TIP

can both (1) add robustness to point-based FM estimates in

the case of sparse correspondence and (2) allow FM estima-

tion for as low as 3 correspondences. Our methodology is to

perform FM estimation between pairs of images of the same

scene taken from different viewpoints. Since the affine in-

variant detector of Mikolajczyk and Schmid [11] performs

best on patterns arising from planar surfaces, we test our

method on a scene of planar surfaces containing a signifi-

cant amount of image texture (see Figure 2 for examples).

Testing proceeds as follows: we sample a set of n affine

correspondences (inliers) between an image pair. For each

correspondence set, two FMs are estimated: F and FTIP .

F is estimated solely based on the sampled (parent) points

for n = {20, . . . , 7} using the 8-point algorithm, except in

the case of n = 7 where the 7-point algorithm must be used.

FTIP is estimated based on TIP parent-child points for n =
{20, . . . , 3} using the 8-point algorithm. Note that F cannot

be estimated for n = {6, . . . , 3}, as a minimum of 7 point

correspondences are required. For each n, 100 randomly

generated sample sets are used. The implementations for

the 7 and 8-point algorithms are those of OpenCV [6].

To compare our FM estimates (F and FTIP ), we evalu-

ate each by projecting a set of pre-determined hand-labeled

ground truth point correspondences which are dispersed

throughout the image pair. Our error measure ε is the resid-

ual error of [5] and is defined as:

ε2 =
1

N

∑

i

d(x′

i
,Fxi)

2 + d(xi,F
⊤xi)

2 (1)

where [xi, x′

i
] are the known ground truth point coordinates

and li = F
⊤xi is the corresponding epipolar line in Image

1, that is projected from point x′

i
in image 2. The distance

from each point to its projected line is hence d(xi, li). It

is squared and added to the error in the second image. So

not to skew our analysis, in the event that ε is far beyond

an expected normal error tolerance (due mostly to sam-

pled degenerate point configurations), we shall count it as

a catastrophic instance.

Figure 2 displays our results based on 3 image pairs

where a single camera moves throughout a rigid scene. For

each pair, the mean error was determined for all correspon-

dences (top plot) and those considered non-catastrophic

(middle plot). Included also is a histogram of catastrophic

instances for each pair (bottom plot). Matches were deter-

mined using the SIFT descriptor and a thresholding tech-

nique similar to [9] and a backwards-forwards constraint. In

order to properly compare the estimates, all remaining out-

lier correspondences were removed by hand. Further, we

chose our catastrophic threshold to apply to those instances

when ε > 25, whereupon by visual inspection ground truth

points and their projected epipolar lines transferred by each

FM estimate were considered extremely inaccurate.

When abundant correspondences exist (i.e. n > 12),

the mean residual error of both methods are similar and

catastrophic instances are virtually non-existent. How-

ever, as the number of correspondences decrease, the ef-

fectiveness of TIP becomes apparent as both the number of

catastrophic instances and residual error are lower.

As is further observed, it is in fact possible to achieve

FM estimates with fewer than 7 point correspondences by

using TIP’s parent-child point correspondences in conjunc-

tion with the 8-point algorithm. Attempting to determine

an accurate FM with fewer correspondences is likely to be

more difficult due to degenerate point configurations and

the nature of the fitted ellipse. Nonetheless, determining

an FM based on fewer correspondences will have impor-

tant implications such as reducing the number of correspon-

dences required in robust sampling and estimation tech-
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Figure 2. The three image pairs tested (top) and results: the mean error of all cases (plot 1); the mean

error of non-catastrophic cases (plot 2) with stdev; and occurrences of catastrophic cases (plot 3).

niques (i.e. RANSAC) which in turn can reduce the number

of trials [16] required.

While an estimate can be improved through TIP, we

have observed circumstances in which estimate accuracy

decreases slightly, mostly when sufficient correspondences

are present. This can be attributed to the uncertainty as-

sociated with the fitted ellipses. While the affine invariant

detector’s ellipses are well suited for matching over affine

transforms, they don’t always fully model the geometric

structure accurately and hence some are slightly off in re-

lation to one another. We suspect that a pre-processing step

of aligning the already matched ellipses would increase ac-

curacy in these circumstances. Although testing involved

planar scenes, application to non-planar scenes would be

limited only by the accuracy of the detector [12].

5. Conclusions

In this paper, we discussed how TIP incorporates the in-

formation encoded within each affine invariant feature cor-

respondence and include that information in fundamental

matrix estimation. We introduced a method that increases

robustness of FM estimates and demonstrated the potential

to estimate the FM with as few as three affine invariant cor-

respondences. In this paper we limited most of our discus-

sion to affine invariant features but the TIP method intro-

duced can be extended to other invariant features that fur-

ther model geometric shape rather than simple {x, y} trans-

lations.
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