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Robust Classification of EEG Signal for
Brain–Computer Interface

Manoj Thulasidas, Member, IEEE, Cuntai Guan, Senior Member, IEEE, and Jiankang Wu

Abstract—We report the implementation of a text input applica-
tion (speller) based on the P300 event related potential. We obtain
high accuracies by using an SVM classifier and a novel feature.
These techniques enable us to maintain fast performance without
sacrificing the accuracy, thus making the speller usable in an on-
line mode. In order to further improve the usability, we perform
various studies on the data with a view to minimizing the training
time required. We present data collected from nine healthy sub-
jects, along with the high accuracies (of the order of 95% or more)
measured online. We show that the training time can be further
reduced by a factor of two from its current value of about 20 min.
High accuracy, fast learning, and online performance make this
P300 speller a potential communication tool for severely disabled
individuals, who have lost all other means of communication and
are otherwise cut off from the world, provided their disability does
not interfere with the performance of the speller.

Index Terms—P300, brain–computer interface, event related po-
tential, speller, support vector machine (SVM).

I. INTRODUCTION

BRAIN–COMPUTER interface (BCI) [1], [2] provides a di-
rect communication channel from the user’s brain to the

external world by reading the electrical signatures of brain’s ac-
tivity and its responses to external stimuli. These responses can
then be translated to computer commands, which can either be
carried out or made known to others, thus providing a communi-
cation link, particularly for people with severe disabilities. The
input to our BCI system described here is the electroencephalo-
gram (EEG) signals. EEG signals, however, suffer from high
noise levels due to the low conductivity of the human skull. In
order to identify patterns from EEG signals for the speller appli-
cation, we use a support vector machine (SVM) [3], [4] as our
classifier. Although SVM classifiers have been used [5]–[7] for
the same purpose before, high online accuracies have not been
reported.

One criterion for judging the usefulness of a BCI system is
whether it can be used in an online scenario. Usability of a BCI
system further depends on several factors, such as its accuracy,
how fast it can be trained, how long it takes to prepare the sub-
ject, and so on. These issues are especially critical, since a typ-
ical subject is physically disadvantaged. This article addresses
these key issues.
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Fig. 1. User display in P300 Speller.

II. METHODOLOGY

A. P300 Speller

The speller system studied in this article is based on the
P300 event-related potential that is elicited by an oddball
paradigm. The P300 potential is created in the central sites of
EEG measurements when an infrequent and anticipated event
occurs. P300 is the signature of the user’s brain registering the
event, and typically occurs around 300 ms after the infrequent
event takes place. This potential is used in our word processor,
dubbed the P300 Speller. The P300 speller is described in [8]
and was originally proposed by Farwell and Donchin [9]. A
modified version of the P300 speller with a reduced frequency
of the anticipated event (which increases the P300 potential,
enhancing the final accuracy) has been presented in [10].

The P300 speller presents the user with a 6 6 matrix of char-
acters (see Fig. 1). The user’s task is to focus his or her atten-
tion on the characters of a predefined phrase, one character at a
time. All the rows and columns of this matrix are successively
and randomly intensified for 100 ms, followed by 75 ms of no
intensification. Two out of the 12 intensifications of the rows or
columns contain the desired character. The responses evoked by
these infrequent stimuli (i.e., the two out of 12 stimuli that con-
tain the desired character) are different from those evoked by the
stimuli that do not contain the desired character. The difference
in the shape of the response, which is exploited by a classifier,
is the working principle behind the P300 speller.

B. Data Acquisition System and Procedure

Our data acquisition system is based on a Neuroscan ampli-
fier called SynAmps2, which has 64 monopolar channels, and
four bipolar channels. The bipolar channels are used to monitor
eye movement or blinking artifacts during the data collection.
The Neuroscan software pipes the data in “server” mode to a
TCP/IP port. The data are read by our own software running on
a different machine. Our software has two parts. The first part
written in C collects, records, and processed the data. The
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second part (implemented in Java) presents the six by six matrix
and the intensification of the desired row or column (the stim-
ulus) to the subjects. The subjects are placed about 3 ft in front
of a 15 in liquid crystal display (LCD) panel, where the stimuli
are presented. When a particular stimulus is presented, our soft-
ware sends a corresponding stimulus code to be embedded in the
data stream in a time-locked fashion. Using the embedded stim-
ulus code, the data are divided into epochs of 500 ms starting
from the time of stimulus presentation.

We have collected data from nine different subjects in sepa-
rate sessions. All the subjects are healthy male volunteers be-
tween 20 and 40 years of age. They consented to participate in
the experiment and received no monetary compensation for their
contribution.

The data collection procedure has three stages: 1) subject
preparation; 2) training data collection; and 3) test data set col-
lection. In total, an experimental session lasts typically about 1 h
and 30 min.

During the subject preparation stage, an electro-cap is at-
tached to the subjects and an electrolyte gel is applied to the
electrodes to reduce the impedance. The subjects are then
briefed on the training and testing procedures. During the
training phase of the data collection, the subjects are given a
sequence of characters to focus on. Each character is indicated
to them by highlighting (intensifying) it on the subjects’ LCD
display for 4 s. There is a preparatory gap of 2.5 s after the
intensification, and the subjects are then shown 10 rounds of 12
visual stimuli. After each round, there is a small pause of half
a second before the next round is started.

Once the training data are collected, our SVM classifier is
trained. The SVM is then used as an online classifier to collect
another round of data. During this test data set collection, the
subjects are verbally asked to focus on the characters of a word
given by the experimenter. The rows and columns are then ran-
domly flashed. After ten rounds, our software shows the rec-
ognized character as a feedback to the subjects. Then there is
rest period of 2.5 s before the program moves to the next char-
acter in the word. Once the data for one word are collected, the
experimenter proceeds to the next word, after ensuring that the
subjects are rested and ready to continue. For both training and
testing, we use the phrase “THE QUICK BROWN FOX JUMPS
OVER LAZY DOG 24 613 8579” for the nine subjects.

C. Signal Processing and Classification

The EEG data are collected at a sampling rate of 250 Hz.
At the preprocessing stage, we perform a low-pass filtering of
the epoched data, using an optimal cutoff frequency [3]. The
data are then down-sampled with a moving-averaging window
in order to reduce the data size, thereby making the online clas-
sification possible. We use 25 channels out of the 64 available.
The manual channel selection is around C3, C4, Cz, CPz, and
FCz, in addition to two distant positions P7 and P8. The same
25 channels are used for all the subjects. (An automatic channel
selection strategy was explored later [11], but not used in the
study reported here.) Subsequent to the manual selection, we

apply a principal component analysis (PCA) to further reduce
the number of channels, transforming the 25 channel data to 20
channels using the 20 largest eigenvalues. The PCA channel se-
lection also whitens the data in different channels.

During the signal processing stage, ocular artifacts are re-
moved [12], [13] from the data by treating the measured EEG

as a linear superposition of the measured EOG signals
and the real EEG

(1)

Here, is the number of sites at which the EOG measurement
is done, two in our setup. Since the dynamic range of is small
in comparison to , we can use least square minimization to
compute the propagation constants . The difference model [(2)
below] removes the inter-sample correlations of the required
EEG signal,

(2)

where . In our experiments, we found that (2) outper-
formed (1) consistently. The artifacts are removed online using
(2) throughout the studies reported here.

SVM [14] is then used for classification. SVM is a powerful
approach for pattern recognition. It provides a very good dis-
criminative solution with good generalization characteristics. It
is suitable for our case, where we normally only have a rela-
tively small amount of training data due to the nontrivial efforts
needed for data collection.

The input to the SVM classifier is a data vector formed by
concatenating vectors from all channels as follows:

(3)

where denotes matrix transpose, and is the number of sam-
ples, and is a -channel vector at time instance

. is a dynamic feature defined as

(4)

where is a normalization constant. is a least square es-
timate of the time derivative of the EEG data. It supplies extra
information to the classification, improving the accuracy [10].

In the case of single trial classification, the decision function
for an SVM classifier is in the form of

(5)

where are the test data, are the
training data support vectors, are the class labels,
and is the kernel function. A Gaussian kernel (reasonable
choice for EEG signal) function is used. Instead of using (5) to
directly classify each epoch, we sum up the SVM margins for
all the data for the same character and then make a decision for
its row and column separately. For example, after a number of
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Fig. 2. Dependence of character accuracy on the number of rounds used in testing. Thick line is the average.

rounds of stimuli are presented, we decide the most probable
column and row by the following decision functions:

(6)

where is the number of columns (or rows) in the alphanu-
meric matrix (both are six in our case), the number of rounds,
and is the test data for columns (or rows). Once a column
index and a row index are determined, a character is recognized.
Hence, we do not average the signal in the data space but in the
classification score space, thus ensuring the trained SVM clas-
sifier can be used online for the P300 speller with an arbitrary
number of rounds.

D. Reducing Learning Time Requirement

In order to make the P300 system easy to use, the learning
(or training) time has to be reduced to a minimum. In our par-
adigm, all the rows and columns of the spelling matrix (Fig. 1)
are randomly flashed once per round; i.e., there are 12 flashes
per round. And the entire round is repeated ten times. Thus,
there are ten rounds per character. Since we use 41 characters
for training, the training phase of the data collection takes about
20 min. Though modest, we would like to make it even smaller
to improve the usability of the system. The training time re-
quired depends directly on the number of characters and number
of rounds used. Since we have the training data with 41 charac-
ters 10 rounds, we can study the dependence of the accuracy

TABLE I
INTER-SUBJECT ACCURACIES. EACH CELL IS THE CHARACTER ACCURACY OF

THE SUBJECT (ROW NUMBER) WHILE TESTED AGAINST THE MODEL OF A

DIFFERENT SUBJECT (COLUMN NUMBER)

with an SVM model created with a subset of the training data.
We perform this study in two modes:

1) as a function of the number of rounds for each character,
while using all 41 characters;

2) as a function of the number of characters used in the
training data set using all ten rounds.

The analysis procedure for both these modes is similar. We re-
train the SVM with a subset of the total available data and create
a model. We then use that model to analyze the testing data. The
results are presented and discussed below.

III. RESULTS

We have characterized the data several different ways. First,
we examined spelling accuracy, for each subject, as a function
of the number of rounds of data collected. Second, we studied
the specificity of the SVM model to each subject as an inter-sub-
ject dependency. Finally, we optimized the amount of training
needed to make a high accuracy word speller system.
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Fig. 3. P300 potential from the nine subjects. P300 is measured at Cz with the reference set to the average of P7 and P8 potentials. Baseline correction from the
first 50 ms is applied. X axis is the time from the stimulus presentation. Each curve is the average of 820 stimulations (41 characters � 10 rounds � 2 on-target
flashes).

A. Word Speller Accuracy

With a view to minimizing the time required to spell a char-
acter, we studied the variation of character accuracy as a func-
tion of the number of rounds. This variation is shown in Fig. 2.
In this figure, the x axis is the number of rounds, and the Y axis
is the accuracy attained if the classification is done using only
as many rounds as in the x axis. The final accuracies reported in
this article correspond to the tenth round (i.e., the points in the
figure at ).

Fig. 2 helps us determine the number of rounds where the ac-
curacy saturates; repeating the data collection beyond this point
serves no purpose. The average accuracy is about 90% by the
seventh round. It then smoothly increases to about 95% by the
tenth round. Thus, a high accuracy word speller system using
this paradigm requires all ten rounds.

B. Inter-Subject Dependence

We studied the variations of P300 signal between different
subjects. We tested the data of each subject against the models
created from the others. The results are shown as a matrix in
Table I. Here, we used all ten rounds. The diagonal elements
are accuracies when a subject is tested against his own model.
The low values of the off-diagonal elements indicate the high
degree of subject specificity in the data. This finding raises the
possibility that the P300 signals may be significantly different
between different subjects. In Fig. 3, we have plotted the P300
potential from the nine subjects. It shows differences in the la-
tency, amplitude, or even the shape of P300 potentials, which
may have their origin in the electrode locations on the scalp in
addition to the inherent subject-to-subject variations.

C. Minimum Training Required

Fig. 4 shows the accuracy as a function of the number of
rounds used in training the SVM. It shows that the average accu-
racy plateaus at the seventh round, immediately suggesting that
we can reduce the duration of the training session by 30%. Note
that during this study, we used all 41 characters in the training
set.

Fig. 5 shows the accuracy as a function of the number of char-
acters used in the training sample. In this study, the training data
set was divided into subsets consisting of one or more words
of the training phrase “THE QUICK BROWN FOX JUMPS
OVER LAZY DOG 24 613 8579”. Thus, we measured the accu-
racy using 3, 8, 13, 16, 21, 25, 29, 32, 37, and 41 characters. The
average accuracy saturates at about 25 characters. Increasing the
training data size beyond 25 characters, therefore, serves no pur-
pose. Using only 25 characters for training results in a 40% re-
duction in the training time required.

These results show that the training time requirement can be
reduced by about 58% if there is no correlation between the
number of rounds and the number of characters used in the
training dataset. Such an assumption of the lack of correlation
is unreasonable, as Table II shows. The effect of reducing both
the number of rounds (by 30%) and the number of characters (by
40%) together is a decrease of about 5% in the average accuracy.

IV. DISCUSSION AND CONCLUSION

We have presented our studies on a word speller system based
on the P300 evoked potential, with an average accuracy of about
95%. The time taken for each character is about 22 s. Although
our training data collection lasted about 20 min, we showed that
it can be reduced to less than 10 min with only about a 5% drop
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Fig. 4. Dependence of character accuracy on the number of rounds used in training. Thick line is the average of the nine accuracies plotted. Due to a technical
difficulty involving the dimensionality of the data matrix, we could not do the training with just one round. Hence, the missing data point for the single round.

Fig. 5. Dependence of character accuracy on the number of characters used in training. Thick line is the average of the individual accuracies.

in the accuracy. We made significant improvements in the
accuracy and speed by employing powerful machine learning
algorithms for classification and developing a new dynamic
feature. These novel approaches decrease the error rate signif-
icantly (by a factor of two or three) over the standard methods
such as P300 peak finding and area methods. This P300 speller
can be used in an online mode. Although our studies were done
on healthy subjects, there is a chance that BCI systems such
as the one presented in this paper may some day provide po-
tentially the only communication channel for severely disabled

TABLE II
ACCURACIES WHEN THE SVM CLASSIFIER IS TRAINED WITH VARIOUS

AMOUNT OF TRAINING DATA. THE PERCENTAGE OF THE TRAINING DATA

USED IS SHOWN IN THE PARENTHESES

people who are otherwise unable to articulate their thoughts
and needs.
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