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Abstract

This paper presents a new approach forrobot notion planningin dynamic environ-
ments, based on the concept of Velocity Obstacle. A velocity obstacle defines the set of
robot velocities that would result in a collision between the robot and an obstacle mov-
ing ata given velocity. The avoidance maneuver at a specific time is thus computed by
selecting robot’s velocities out of that set.T'he set of al avoiding velocities is reduced to
the dynamically feasible maneuvers by considering the robot’s acceleration constraints.
This computation is repeated at regular time intro vals to account for genera] obstacle
trajectories.

The t rajectory from start to goal can be com puted by searching a tree of feasible
avoidance maneuvers computed at discrete time intervals. An exhaustive searchof the

tree yields near-optima] trajectories that either minimize distance or motion time. A




heuristic search of thetree yields trajectories that satisfy a prioritized list of objectives,
such as reaching the goal, maximizing speed, and achieving a desired trajectory structure.

The heuristic approach is computationally eflicient, applicable to on-line planning of
industrial robots, performing assembly tasks cm inoving conveyers, and to intelligent vehi-
cles negotiating freeway traffic. The method is demonstrated for planning the trajectory

of an automated vehicle in an Intelligent Vehicle Highway System scenario.

1. Introduction

This paper addresses the problem of motion planningindynamic environments. Typ-
ical examples of dynamic. environments include inanufacturing tasks in which robot ma-
nipulators track and retrieve parts from moving conveyers, and air, sea, and land traffic,
where aircraft, vessels and vehicles avoid each other while moving towards their destina-
ion.

Motion planning in dynamic environments is considerably more difficult than the
widely studied static problem, since it requires the simultaneous solution of the path
planning and of the velocity planning problems. Path planning involves the computation
of a collision free path from start to goal without considering robot dynamics. Velocity
planning, on the other hand, involves the computation of the velocity profile along a
given path, satisfying system dynamics and act uator constraints. In addition, motion
planning in static environments can be guaranteed to find a solution if one exists at
time t,, whereas motion planning in dynamic environments is essentially intractable, [29],

[7], i.e. the solution al tgmay not mist at a later time because of the evolution of the

environ In ent.




The problem of planning in a time-varying environment hasbeen previously ad-
dressed for obstacles moving at known speeds [28] [9] [18] [15]. Firdmann[9, 10] computed
a collision-free trajectory using a position-time representation of the environment, thus
extending the concept of Configuration Space [22--24], to dynamic motion planning by us-
ing time as an additional dimension. The time axis was disc. retized,and the configuration
space of the robot was computed at successive time intervals.

in [18,1 9], Kant decomposed the planning problem into two steps: first, a path is
selected to avoid the static obstacles; then, the velocity profile along that path is selected
to avoid the moving obstacles. The latter step was carried outon a space-time plane
in which the abscissa was the path arc length, and the ordinate was time. A similar
approach was developed by l.ee, [21], who computed a velocit y profile that reached the
goal within a prescribed time limit. Approximate dynamic constraints were satisfied by
limiting slope, direction and curvature of the traject ory in the space-time plane.

Canny [8] presented analgorithm for computing a minimal-time trajectory of a point
mass among fixed obstacles that satisfied acceleration constraints. Theresult was a poly-
nomial time algorithm computing a trajectory on a llon-linear fixed-timegrid in the phase
space of the point-mass robot. A general method for motion planning is provided by the
roadmap agorithm [6], thatcan consider moving obstacles. in [26},(’)’1){1nlaing presented
an exact algorithm for computing the optimal velocity profile onaone-dimensional path
subject to acceleration bounds.

In [15,16], Fujimura uses dynamic constraints todefine the collision front, i.e. the
locus of collision points between two objects moving on arbitrary paths with piecewise

constant velocities. With this approach, a minimum time trajectory canbe computed




by selecting the maximum feasible speeds at evesy moment, and the dynamic constraints
can be included by limiting the path curvature. However, t he minimum time result is
only guaranteed when robots are faster than the obstacles. Recently, in [13,14], Fujimura
introduced the concept of transient obstacles, such as objects placed and removed by a

manipulator, that could alsobe applicable to dynamic planning.

In [28], Reif presented a solution to the two- dimensional asteroid problem, where a
velocity-limited robot is required to reach its destination while avoiding any number of
moving polygonal obstacles. The computation is carried out inthe configuration space-
time, and it is similar to a visibility graph search. The algorithm computes a tree of
possible motions joining two asteroids, until it reaches the goal,

In [2-5], Cameron modeled solid objects in motion by representing them in afour-
dimensional space, thus reducing the collision detection problem to the test for intersection
among four-dimensional objects. By constructing the four-dimensional representation of
the objects, the computation of a non colliding path is reduced to finding a position
resulting in no intersections among the moving objects.

Hayward []7] recently presented an approach to manage‘,‘to computation burden of
detecting the future collisions of a robot with many moving obstacles. Relative coordinates
were used to compute the time to collision for every pair robot-obstacle, subject to velocity
and acceleration constraints. These times were used as a measure of urgence for ordering
the obstacles, and prioritize the collision avoidance.

On-line planning in dynamic environments has been so far treated mostly as au Al
problem, emphasizing reasoning and decisionmaking, with no concernto robot dynamics.

In [29], Sanborn develop reaction rules for a robot moving in a Traflic World. The moving



robot reacts to the environment by predicting the space-time intervals in which belligerent
and apathetic objects would intersect its specified path. While this approach reasons
from the physical proper ies of the environment, it neglects the physical limitations of the
moving robot.

Although this problem has been extensively addressed in the literature, the current
methods are either computationally too expensive, or domnot consider robot’s dynamics.

In this paper, we develop aneflicient method tocompute the trajectories of a robot
moving in a time-varying environment that considers robot dynamics aud actuator con-
straints. Tt utilizes the concept of Velocity Obstacle (VO), which maps the dynamic
environment into the robot velocity space. The velocity obstacle is the set of robot’s
velocities that would cause a collision with an obstacle if both maintain their current ve-
locities. Thus,a collision avoidance ‘maneuver is commputed by selecting velocities that are
outside of the velocity obstacle,if such velocities exist. 1o ensure that the maneuver is
dynamically feasible, robot dynamics and actuator constiaints are transformed into con-
straints on the robot acceleration which are then mapped into the robot velocity space.
A complete trajectory consists of a sequence of such avoidance maneuvers, selected to
achieve some desired objective.

The avoidance trajectory that minimizes motion time is computed by searching over a
tree of avoidance maneuvers generated at discrete ti meintervals. For on-line applications,
the tree is pruned using a heuristic searchdesigned1 o achieve a prioritized set of objectives,
such as avoiding collisions, reaching the goal, maximizing speed,or computing trajectories
with desirable topology.

The exhaustive search and the heuristic planning have been implemented for an



autonomous vehicle negotiating freeway traflic, moving fromn the fast lane to the exit
ramp.

The advantages of this approach are multi-fold: 7) it permits aneflicient geometric
representation of potential avoidance maneuvers of the moving obstacles, i7) any number
of moving obstacles can be avoided by considering the union of their VO'S, 4i7) it unifies
the avoidance of moving as well as stationary obstacles, and iv) it allows for the simple
consideration of robot dynamics and actuator constraints.

The solutions computed with this method are conservative, since they exclude trajec-
tories that, although feasible, include avoidance maneuvers violating the velocity obstacle.
However, such trajectories may also be considered by excluding obstacles with a long time
to collision, or by optimizing; the trajectory using a dynamic optimization|] I].

This paper is organized as follows, Section2 defines the Velocity Obstacle and its
basic properties. Section 3 define the avoidance velocities, and presents the procedure
for computing; the feasible avoidance maneuvers, Complete trajectories are computed in
Section 4 using both global and heuristic, search methods. Fixamples of a single avoidance

maneuver and of complete trajectories are presented in Section 5.

2. The Velocity Obstacle

The Velocity Obstacle (VO) is an extension of the Configuration Space Obstacle
[24] to a time-varying environment. It consists of the velocities of the robot that will
cause a collision between the robot and the obstacles at some future time. Although this
concept is valid for general robots and obstacles, in this paper we restrict our analysis to

circular robots and obstacles in the plane.
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Figure 1: The robot and a moving obstacle.

The VO is illustrated using the scenario shownin I'igure 1, where two circular objects,
A and 1, are shown at time 2o with velocities V4 and v, [12]. Circle A represents the
robot, andcircle 3y represents the obstacle. The velocities and positions of A and /33
were chosen so that A and By will collide at some time tq, (13> ty), provided that v4 and
vp, do not change. The VO is then used to modify the velocity of A so that the collision
is avoided.

To compute the VO, we first represent, I3yin the Configuration Space of A by reducing
A to the point A, and enlarging /3; by theradius of A to the citcle %1 [22], We then
represent the state of the moving robot and of { he obstacle by attaching their velocity
vectors to the position of A and to the center offf\], respectively. This representation,
called the Velocity Space of the underlying configuration space [1], allows the direct use

of computational geometry tools for computing the avoidance mianeuvers in a dynamic

environ ment.



Figure 2: The Relative Velocity Va,n, and the Collision Cone CCa,n, .
The analysis is further simplified by considering the relative velocity va p,:
Van = VA~ Vp (1)

Assuming that A andJ3; maintain their current velocities, a collision between A and
13, will occur at some future time 4; > 1y if the line Aan,  of the relative velocity Va,n,

intersects J3;,as shown in Figure 2, or:
Mp, N By # 0 )

In fact, any relative velocity that lies between the two tangents to 1Ay and A, will
muse a collision between & and 1?. Therefore, we define the Collision Cone, CCy4 s 8S

the set of colliding relative velocities between A and ﬁ] satisfying equation (2):

CCam = {vanp | Aan (1B # 0} (3)



Figure 3. The velocity obstacle VO.

‘This cone is the planar sector with apex in A, bounded by the two tangents Ay and A,
from A to ]/?\],a,s shown in Figure 2.

Clearly, any relative velocity outside C'Can, is guaranteed to be collision free, pro-
vided that the obstacle ]/3\] retains its current shape and spew]. The collision cone thus
partitions the space of relative velocities into colliding and avoiding; velocities. The rela-
tive velocities, Va,n, ,lying on the boundaries of C'C 4 p, representtangent maneuvers that
would graze the obstacle /31, as discussed later in Section 3.2.

The collision cone is specific to a particular pair of robot/obstacle. To consider
multiple obstacles, it is useful to establish au equivalent partition of the absolute velocities

of A. This is done simply by adding the velocity of 13y, V,,, to each velocity in CCa.n,

ny 1

or, equivalently, by translating the collision cone CCan, by vy, , as shown in Figure 3



Figure 4: Collision cones and velocity obstacles for B; and /3.

[12]. The Velocity Obstacle VO is then defined as:

VO = CCA,BJ & vp, (4)

where @ is the Minkowski vector sum operator.

‘Thus, the VO partitions the absolule velocities of Ainto avoiding and colliding veloc-
ities. Selecting v4 outside of VO would avoid colliding; with J3;, Whereas selecting V4 so
that its tip is inside VO would eventually resultina collision if both A and B; maintain

their current velocities, or

A@R) N B(2) =B if va(ly) € VO(Ly), t > 1o (5)

Velocities on the boundaries of VO would result in A grazing /3;, since the corresponding
relative velocities lie on the boundary of the collision cone C'Ca p,-Note that the VO of

a stationary obstacle is identical to its relative velocity cone,since then vy, =— O.
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To avoid multiple obstacles, the, VO’s of each obstacle are combined into asingle
velocity obstacle:

VO = UL, VO, (6)

where m is the number of obstacles. The avoidance maneuvers, then, consist of those
velocities vg, that are outside the union of the V(’s, as shownin Figure 4. The VO
assumes that the velocity of I3y remains constant. ‘1'0 account for variable velocities, VO
is recomputed at specified time intervals.

The assumption of circular robot and obstacles reduces the dimension of the config-
uration space, and thus greatly simplifies the computation of the VO. It also fixes the
shape of the configuration space obstacles, which are generally functions of their posi-
tions inthe robot's work space. For general manipulators, the VO must be periodically
recomputed to account for the time varying configuration space obstacles [1 O].

The maneuvers generated by velocities outside the velocity obstacle VO are guaran-
teed to avoid collision with the obstacles, independently of tile expected collision times.
This excludes maneuvers that are on a collision course with obstacles with a long time
to collision. Such maneuvers may not necessarily result in collision, since they can be
appropriately modified at a future time. Il owever, this canbe remedied by considering

only obstacles with imminent collision.

3. The Avoidance Mancuvers

In this Section, we first define the reachable avoidance velocities, which are a subset of

all avoidance velocities, satisfying the robot’s dynamic constraints. We thenidentify the
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Set of admissible
accelerations

Figure 5: The Feasible Accelerations

topological properties of the avoidance maneuvers, and present a procedure for computing

the set of reachable avoidance velocities.

3.1. Definition of Avoidance Velocities

The velocities reachable by robot A at a givenstate over a given time interval At
are computed by transforming the dynamic constiaints of the robot into bounds on its

acceleration. The set of feasible accelerations at time to, I A(to), is defined as;
F'A(to) = {)‘&‘)&:- f(x’ ).(711)’ \]CU} (7)

where f(x,X, u) represents the dynamics of the robot, U are the actuator efforts, U is
the set of admissible controls, and x is the position vector defined earlier. Note that the

feasible acceleration range of a two degree-of-freedom system with decoupled actuator

limits is a parallelogram [3(1].
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Figure 6: The reachable avoidance velocities RAV.

The set of reachable velocities, RV(iq + At), over the time interval At is thus defined

I{V(t + Af) = {V| vV -- VA(t(]) DAt - ]"A(f(,)} (8)

Figure 5 shows a schematic construction of thercachable velocity set{or robot A, by
adding the change in velocity (XAt|x € FFA)tothe current velocity of A.
The set of reachable avoidance velocities, RAV, is delined as the difference between

the reachable velocities and the velocity obstacle:

RAV(ty + At) ==RV(ty + At) O VO(iy) 9)

where © denotes the operation of set difference. A maneuver avoiding obstacle 13; is thus
computed by selecting any velocity in RAV.
Iigure 6 shows schematically a RAV set, consisting of two disjoint closed sets, Sy and

S,. For multiple obstacles, the RAV may consist of multiple disoint subsets. The selection
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Figure 7: Grazing arcsinanavoidance maneuver.

of a specific avoidance velocity determines thestructure of the avoidance maneuver, i.e

the side of the obstacle that will be avoided by the robot, as discussed next.

3.2. Structure of the Avoidance Maneuvers

In this section, we first compute the maneuvers tangent to the moving obstacle, and
their corresponding tangency points. These maneuvers are then used to identify the front
and rear avoid ante maneuvers, i.e. those that would pass in front or behind the moving
obstacle.

The front and rear sides of B; are identified by a coordinate frame (X,Y) with its
origin at the center of I3;,and its X axis coinciding with the velocity Vr,. The Y axis then

partitions the boundary of B;,d(B; ), into the front semi-circle, (B ), which intersects
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Figure 8: Trajectory tangent to /3.

the positive X axis, and the rear semi-circle, (131, ), as shownin Figure 7.

As stated earlier, any relative velocity V4 p, that coincides with the boundary of the
Collision Cone CCany, {27, A, }, would result in A grazing 5;. We now show that: )
these relative velocities correspond to absolute velocities gencrating trajectories that are
tangent to ]/?\]at some point P € 9(B1),and i1) that point P’ is different from points 7%
and 7,,at which Ayand), are tangent to ]A)’]

Figure 8 shows obstacle ]/3’\1 at time t; when the velocity obstacle and the avoidance
maneuver arecomputed, and at t, when ]/?\] is tangent to the trajectory generated by
an absolute velocity V4 chosen so that van, coincides withA;. Assuming that I3;does
not rotate during its motion, the tangency point !’ betweenthe trajectory of A and the
obstacle can be found by intersecting the straight line perpendicular to V4 and passing
through the center of Biat time to, as shown inTigure 8. Clearly I’ 7%, since P
depends on the absolute velocities of A and B;.

‘Therefore, to choose au appropriate avoidance maneuver, it is necessary to establish



16

a mapping between the reachable avoidance velocities and the tangency points on 37?.
The following L.emma states that the set of tangent relative velocities consists only of the
semi-infinite lines Ay and A,,and that the tangency points canaoccur only onat most two,

non-overlapping, subsets of 9(D31).

Lemma 1. Robot Acanbe tangent to obstacle B3; at, some poiut I’ € 9(By) iff it follows
a trajectory generated by Vacorresponding to va n, €{Af, X, }. The tangency set in
O(DB; ) consists of the shortest segment connecting Tf=A;N (5 ) to Yy, and of the

shortest segment connecting 7, =X, n §(B;) to Y,. 0

This Lemma is proved in the Appendix.

Figure 7 shows the tangency sets between Aand By, i.e 17Y;€0(Bf) and T,Y, €
d(PB1,). Points YrandY, are defined by the two tangents to]/;’l])ara]]e] to vp, .

The conditions on the relative velocities map int o conditions onthe absolute velocities
of A, recognizing that the boundaries of the collision cone, C'Cy p,, transform to the
boundaries of the velocity obstacle V(. Therefore, the boundary of the velocity obstacle
VO,{8¢,6,}, represents al] absolute velocities generating trajectories tangent to I3;, since
t heir corresponding relative velocity lies on As and A,. Inthe example shown inFigure 6,
the only reachable velocities that would result in A grazing /]\5’1 are represented by the
segments KH and I.M of the reachable avoidance velocity set RAV.

We use the tangent velocities to subdivide the set RAV into subsets, each containing
velocities generating asingle typeof avoidance maneuver, The set RAV in Figure9 is
subdivided into the three subsets Sy, S,, and Sy by the boundary of VO and by the

straight line passing through A and the apex of VOy,. Tachof these subsets corresponds




Figure 9: Genera structure of the reachable avoidance velocities.

to rear, front, or diverging avoidance maneuvers, respectively,as stated in the following

T.emma. A diverging maneuver is one that takes the robot A away from the obstacle 13;.

Lemma 2. The reachable avoidance velocities RAV due to asingle obstacle consists
of at most three non-overlapping subsets Sy,S5,,and Sy, each representing velocities

corresponding to front, rear or diverging maneuvers, respectively. 0

The proof of this Lemma is given in the Appendix.

Lemma 2 states that RAV due to one obstacle may consist of at most three subsets.
Clearly, there can be cases where the RAV consists of fewer sets, one, two or none, as was
shown in Figure 6.

For mauy moving; obstacles, we define the type of the avoidance maneuver according

to the avoidance of each obstacle. We represent each avoidance set by S;;, where the index
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Figure 10: Classification of the reachable avoidance velocities.

1 represents the type of avoidance velocity, i.e. (i= f,r,d), aud j is the index of the obstacle.
For example, the set Sy shown in Figurel0 includes velocities generating maneuvers that
avoid both obstacles /31and B2 with a front maneuver. The set Sy, corresponds to the
front avoidance of B; and rear avoidance of /32, respectively.

The properties of the RAV generated by multiple obstacles are summarized in the

following Theorem, whose proof is given in the Appendix.

Thecorem 1: Given a robot A and m moving obstacles 5,(j: 1,.., m), the reachable
avoid anceset RAV consists of at most 3m subsets, each including velocities corresponding

to a unique type of avoidance maneuver. m

The Theorem states that it is possibleto subdivide the avoid ance velocities RAV
into subsets, each corresponding to a specific avoidance maneuver, This alows 1lsto

select avoidance maneuvers with a desired structure. For example, acar avoiding @ big
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truck may choose a rear avoidance maneuver, even though afront maneuver might also
be feasible, to avoid a potential collision, due to uncertainties inthe measurement of the

truck’s velocity.

3.3. Gencerating the Set of Avoidance Velocities

‘This section describes the procedure used for generating the Set of Reachable Avoid-
ance Velocity, S;, for robot A. ‘The procedure is illust rated in Figure 11, using the set of
reachable velocities RV, the velocity obstacle V Oy, and the linelss passing through A
and the apex of VOp,.

Since the RV set is a polygon, and the open set VOy, is represented with a planar
triangle, it is convenient to represent each set by anordered list of their vertices. A
typical vertex V; is specified by its positionandby the supporting lines intersected at
that vertex: V;=={(zi, %), (li—1, ii)}. The vertices are ordered counter-clockwise so that
the interior of the polygon is on the left of its boundary. T'his representation facilitates
the set operations needed to compute RAV.

The first step of the procedure is to intersect RV with the line {,, to form the set of
diverging velocities, 54, and the set of non-dliverging velocities, 5,4, as shown in Figure11-
a. In this case, the set S, is represented by vertices (5, 2, 3, 6), and S, 4 is represented by
(1, 5,6, 4).By construction, the set S, is not aflected by the velocity obstacle VOp,,
whereas S, 4 is, generally, subdivided by VOp, into su bsets of colliding and avoiding
velocities, as shown in Figure 1 1-1).

‘The computation of these subsets is carried out as illustrated, for one obstacle, in
Figure 1 I-c.. First, the intersections between S, ; and the velocity obstacle VOp, are

computed. For the case shown, these are points (7, 8,9) that are inserted in the proper
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Figure 11: The computation of the Reachable Avoidance \,y,uities RAV

order in the list of S,4. The new list of S, , consists of points (1,5.8,6,4,9,7). This

list is then scanned starting from the first vertex that is external to VOp, , in this case
vertex 1. The subsets of avoidance velocities are created by subtracting VOp, from S, 4
marching counter-clock wise along the boundary of S, ;and clockwise along'the boundary
of VOp,, as shown schematically in Figure 1 I-c. This corresponds to assigning a positive
value to S, and a negative value 10 VOp, . The sct whose boundary includes a segment
of the rear boundary of VOp, Ay, is the set of rear avoidance velocities S,,and the set

whose boundary includes asegment of the front boundary A, isthe set of front, avoidance

velocities Sy. in this case, set S; is represented by (9,8,6,4) and S, by(1,58, 7). Finally,
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Figure 11-d, shows the reachable avoidance velocities RAV = RV © VOp, consisting of
the three subsets, Sf, S,, and S,, corresponding to front, rear aud diverging velocities,
respectively.

To consider multiple obstacles, this procedure is applied recursively to each subset of
RAV, generating smaller subsets S;;, where the index 1 represents the type of avoidance
velocity, i.e. (i—f,r,d), and j is the index of the obstacle. I'or example, three obstacles
might generate up to 27 avoidance velocity sets, suchas Sy,4representing a front avoidance
maneuver of the first obstacle, a rear avoidance of the second, and a diverging maneuver
from the third obstacle.

The upper boundon the number of sets S;; is 3™, wherem is the number of obstacles
in the environment, However, the actual number is much smaller, because the lines {,,
from A to the apex of each V(O do not intersect each other. Also, many of the potential
subsets S;; may be covered by some of the VOp,. Generally, we observed that the higher
the number of obstacles, the fewer the sets S;; remaining to be computed. ‘To ensure
that the set RAV is not empty, it might be useful to consider only obstacles with a short
expected collision time. For example, the m obstacles 13;(j==1,....m),canbe sorted
according to their expected collision timest?;[1 7],;md only those with time to collision
(t; -to< ts), with 2, a suitable horizon, canbe included in the computation of RAV at

to.

4. Computing the avoidance trajectories

This section presents a method for computing complete trajectories that, avoid static,

and moving obstacles, reach the goal, and satisfy therobot’s dynamic constraints. A
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trajectory canbe computed as a sequence of elementary avoidance maueuvers, selected
by a global search over the t ree of al feasible maneuvers at specified time intervals. Alter-
natively, the global searchmay be reduced to a heuristic search for on-line applications,
where the trajectories of the moving obstaclesare not known a-priori, but are rather

acquired in real-time. These two approaches are discussed next.

4.1. Global Search

To facilitate an efficient global search, we represent the state space of the robot by a
tree of avoidance maneuvers at discrete time intervals. The nodeson this tree correspond
to the positions of the robot at discrete times ;. The operators expanding a node at time
t; into its successors at time {;,;=—1; + 7' are the velocities in the reachable avoidance
velocity set RAV. The edges correspond to the avoidance maneuvers at those positions

[27,25]. The search tree is then defined as follows:

ni; = Xy = (25(8), ¥;(8), Vi = (v.(8:), vy,(1))} : (10)
0i41 = {V] | v € RA\G(L)} (]])
ek = (Mg nip1n) | nagp = nag o+ (0050 At)} (12)

where n, ; if tile jth node attimet,, RAV,(t;) is tile reachable velocity set computed for
node n; j,o; ;s is the Ilth operator on node jattimet;, and e;; is the edge between node
n; at time {;, and node n; at time %;,;.

The tree of all feasible avoidance maneuvers is constructed by the following opera-
tions. At time t;,1he avoidance set RAV, corresponding to node n, j, is discretized by a

grid. Then, the velocities corresponding to each nodeonthegrid are used to compute
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I'igure 12: ‘Tree representation for the global search.

the edges emanating from node n;;, i.e. the avoidance maneuvers from the position corre-
sponding to node n;; over the interval 7. The positions reached by the robot at the end
of each maneuver are the successors of node n; ;. A node n; ; is completely expanded when
al the operators o, ,; have been applied and all tile edges emanating from n; ; have been
examined. The resulting tree has a constant time interval between nodes, and a variable
branch number that is a function of the shape of each RAV.T'his tree is searched for the
trajectory that maximizes any objective function. such as as motion time, distance trav-
eled or energy, using standard search techniques [27,25]. Figure12 shows schematically a
subtree of some avoidance maneuvers.

Since the avoidance maneuvers are selected based onthe velocity obstacles VO, they
are never ona collision course with any of the considered obstacles, as discussed earlier.
‘This excludes trajectories that might, part of thetime, beon a collision course with
some of the obstacles. Tlowever, such trajectories may be generated by either considering

only obstacles with imminent collisions, or by optimizing the trajectory using dynamic,
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Figure13: a TG strategy. b: MV strategy. ¢:ST' strategy.

optimization [1 1].

4.2. Heuristic Search

The search for an avoidance trajectory can be reduced to a heuristic search for on-
line applications, or when only incomplete information about the environment is avail-
able. The heuristics canbe chosen to satisfy a prioritized series of goals, with survival of
the robot being the primary goal, and other goals including reaching the desired target,
minimizing a performance index, andimplementing a desired trajectory structure. The
survival of the robot can be guaranteed by selecting the avoidance velocities RAV; the
target can be reached by selecting velocities that point towards the destination; the mo-
tion time can be minimized by choosing the highest velocity available; and the desired
trgjectory structure can be selected by choosing an appropriate sequence of front and rear
avoid ante maneuvers.

We thus propose the following basic heuristics:

(a) Choose the highest avoidance velocity along the line to the goal, as shown in Figure 13-
a, so that thetrajectory takes the robot towards its target. This strategy is denoted in
the following by TG (to goal).

(b) Select the maximum avoidance velocity within some specified angle a from the line to




2s

the goal, as shown inT'igure 13-b, SO that the robot moves at high speed, even if does not
aim directly at the goal. This strategy is henceforth called MV (maximum velocity).
(c)Select the velocity that avoids the obstacles according to their perceived risk. This
strategy is called ST (structure). In Figure 13-c the chosen velocity is the highest among
the rear avoidance velocities.

Other heuristics may combine some or al of the above strategies. For example, the
avoidance velocity could be chosen as the fastest velocity pointing towards the target and
generating a rear avoidance maneuver. Furthermore, it might be advantageous to switch

between heuristics, in order to yield trajectories | hat better satisfy the prioritized goals.

5. Examples

5.1. A Single Avoidance Mancuver

This example demonstrates a single avoidance maneuver computed using the velocity
obstacle method, as shownin Figure 14. The environment cont sins five circles, represent-
ing a robot and four moving obstacles. T'he velocities are represented by bars attached
to the centers of the robot and of the obstacles. ‘1 'he position and velocity of each object
are as follows:
robot: (z = 5.0, y=¥5.0),(v,= 80, v, -— 5.0), r= 5.0,
obstacle 1: (2= 90, y= 40), (v, = --12,0, v,== - 1.0), - 5.0,
obstacle 2: (z= 60, y = -5), (v, = -5.0, v, = 5.5), r= 5.0,
obstacle 3: (= —30, y=—= —20), (v, =- 5.0, v,— 3,0), r=- 5.0,
obstacle 4: (z= —10, y= 40), (v,= 4.0, v,== — 1 .0), == 5.0. These velocities result in

the trajectory shown inFigure 15. ‘he trajectories are represented by circles displayed
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Figure 14: Initial configuration of the robot aud the obstacles.

every one second. Obstacle 2 ison a collision course with the robot with which it collides
approximately at #=- 5.$, as shown by the grey circle in I'igure 15.

Computing a single avoidance maneuver resultedinthe trgjectory shown inFigurel6,
where therobot avoids obstacle 4 with afront maneuver, obstacle 2 with a rear maneuver,

and obstacle 3 with aright maneuver
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Figure15: Simulation Withthe initial velocities

. obstaclé 1

Figure 16: Simulation of an avoidance maneuver.
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Figure 17 Example of trajectory problem.
5.2. Complete Avoidance Trajectories

In this example, the computation of a complete trajectory is demonstrated for the
Intelligent Tlighway scenario shown in Figure 17. The goal of the robotic vehicle in the
leftmost lane is to reach the exit to theright without colliding with the other two vehicles.
‘The initial velocity of the robot and of vehicle 2 is (v.= 30.0 '2/5,v,= 0.0 m/s),and the
initial velocity of vehicle 1 is (v, = 23 m/s,v,=0.0m/s). The velocities are represented
as bars attached to the center of each circle.

For the global search used in the example of Figure 17,the time interval T between
nodes is chosen arbitrarily as 7' = 1s.

The trajectory shown in Figure 18 is computed using the Depth First Iterative Deep-
ening algorithm [20]. ‘This algorithm ret urns the fastest path to the target, the first time
it reaches the target. In the example, the RAV sets have been discretized by considering

four points on each side of the boundary, and the maximum feasible velocity in the di-
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robot
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vehicle 1

Figure 18: Trajectory compuied by global search.

rection to the goal. The search has been expanded to 4.5 sand a depth of 5 levels. The
total motion time of this solution is of 3.5 s.

Using the T'G strategy resulted in the trajectory shown in Figure 19. Along this
trajectory, the robotslows down and lets vehicle 2 pass, and then speeds up towards the
exit, behind vehicle 1. ‘he total motion time fos this trajectory is 6.07 s.

Using the MV heuristics resulted inthe trajectory showninFigure 20. Along this
trajectory, therobot speeds up and passes infiont of both vehicles 1 and 2. The total

motion time along this trgectory is 3.56 s.
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Figure 20: Trajectory computed with MV strategy.

30



Figure 21:Trajectory computed with both TGand MV strat egies.

vehicle 2
vehicle 1 -7/

CRO00000080 06

Figure 22: Tailed trajectory computed with the MV heuristics,
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In the case of Figure 20, the MV heuristics managed to reach the goal. The trajectory
computed using both MV and TG strategies is show n in Figure 21. Along this trajectory,
the robot first speeds up to pass vehicle 2, then slows down to let vehicle 1 pass on, and
then speeds up again towards the goal. The motion time for this trajectory is 5.31 s.
This trajectory was computed by using the MV heuristics for O <t< 2.0 s and the TG
heuristics afterwards.

Figure 22 shows a trajectory computed with the MV straiegy that missed the exit
target because of a small increase in the velocity of vehicle 1to(v,=33m/s, vy =
0.0 m/s). Nevertheless, the trajectory is collision free.

These examples show that both global and h:uristic search strategies perform well
in computing the complete trajectories. 7The motion time of the MV solution compares
well with that of the global search. Although this result cannot be generalized, it shows

the potential of the heuristic strategies for on-line applications.

6. Conclusion

A new method for planning the motion of a robot moving in a time-varying envi-
ronment, the Velocity obstacle approach, has been presented. It is significantly different
from currently available planning algorithms, since it simultaneously computes the path
and velocity profile that avoid all static and moving obstacles and satisfy the robot’s
dynamic constraints.

The method consists of computing, for every obstacle, its corresponding velocity
obstacle, which is the set of colliding velocities betweenthe obstacle and the robot. Then,

by subtracting it from the! reachable velocities of 1 he robot, the set of reachable avoidance



33

velocities is formed, which consists of all the velocities that avoid the obstacles and satisfy
the robot’s dynamic, constraints. A search space isthenformed by representing the state
space of the robot by a tree of avoidance maneuvers. A global search over the tree
yields trajectories that minimize aselected performance index, such as motion time or
traveled distance. For on-line applications, the tree is pruned rising one of severa heuristic
strategies, aimed at satis{ying a prioritized list of goals,such as the survival of the robot,
reaching the target, and minimize motion time. ‘Tile method is demonstrated for planning
the trajectory of an automated vehicle in an Intelligent Vehicle ITighway System scenario.

The main advantages of the velocity obstacle approach include the efficient geometric
representation of maneuvers avoiding any number of moving and static obstacles, and the
simple consideration of robot dynamics and actuator constraints. The solutions computed
with this method are conservative, since each maneuver avoids all obstacles, irrespectively
of their expected collision time, andthey may exclude trajectories that, although feasible,

violate the velocity obstacle in some interval.
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Appendix

Proof of Lemma 1:
The proof is carried out for ]/3\1 since there is a one-to-one correspondence between }/?\]
and 13;. Furthermore, only the front side of ]/3], (‘)(Blf ), is analyzed, since the rear side,
0(By,), is completely analogous. First, the necessary aud suflicient conditions of the
lemma are proven by contradiction. Thena geometric construction is used to define the
map between the tangent velocities and the corresponding J>oints on 8(J3;¢).

To prove the necessary condition, let us assume that there existsa velocity v4 tangent
to obstacle ﬁl such that its corresponding relative velocity, v4 ;, is not onthe boundary

of the collisioncone CC 4.p,+ oOr:
Jvy, tangent to By | Vap, = (Va—vn) €A

Then va.n, would be either inside or out Side C'Ca,p,. In the first case, by definition
of CCy, p,, it would correspond to a collision maneuver, whereas in the second case, it
would correspond to an avoidance maneuver, thus contradicting the hypothesis that v4
is tangent to I3;.

‘The sufficient condition can be proved similarly, assuming; that there exists a relative
velocity Va.p, on the boundary of the collision cone CCy4 n,, that does not generate a

maneuver tangent io B3y, or:
Avan € A such that vy = (vap — vp, ) not tangent to 3

Then, V4 would be either colliding or avoiding, and thus it will be either inside or outside

the velocity obstacle VO.This would contradict the definition of VO, which is computed
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Iligure 23: Contact points of tangent trajectories.

by translating the collision cone C'Ca ;, by the velocity of By, vp,. In particular, all
velocities on Ay become velocities with the tip on é5.

To prove the second part of the l.emma, we compute the tangency points that corre-
spond to each tangent velocity Va4 p, € As. The tangent relative velocities are represented
by the semi-infinite ]ine{/?,)\f},with minimum and maximum relative velocities given by
IVan | — O, and [Va n,|— oo, respectively. ‘The former velocity corresponds to the limit
point Y;,when A and 3; move on parallel trajectories. The latter velocity corresponds
to the limit point 7.

T'he correspondence between any other velocity O < Vam < cm, and a tangency
point I>€(T%,Ys) is established by using the orthogonality between a tangent trajectory

t, due tova=(vap — VII), and the line 1 thiough i he center of f)’\] and the tangency
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point,. Theright angle between ¢t and 1 can be embedded into the. circle C of diameter
(K,]/?\] ), as shown inFigure 23. Thus, given a desired tangency point P € 9(By5), circle C
maps it into the directionof the corresponding tangency trajectory t, represented by the
line through Aand QQ,as shown in Figure 23. Similarly, given a desired tangency direction
t, circle C maps it into point P, represented by the intersection of 8(53;¢) with the line
through the center of B and Q.

The magnitude of the velocity V4 tangent 10]/3\1311 P is found using the velocity
obstacle VO, whose boundary &y represents all front tangent velocities. Then, the inter-
section R of the trajectory line t with 47 gives the magnitude of vA.  The magnitude Of
the corresponding relative velocity follows from the definition v4 p,=va—vp, .

Note that the magnitude of the velocity Va tangent to 73;in P'€ d(By,) is simply

given by the intersection S oft and 6,.

Proof of Lemma 2:
The subsets SyandS, of the reachable avoidance velocities RAV,include in their bound-
ary a segment of the boundary of the velocity obstacle VOnp,, d(VOp, ). Subset Sy,
instead, does not include in its boundary anysegment fromthe boundary of VOp, . From
Lemma 1, velocities with tip on these segments generate trajectories grazing F3;, and
therefore only subsets Sy and S, include tangent velocities.

Tangent velocities separate collision velocities from avoidance velocities, and there-
fore, a velocity Va4 € {Sy, S, }, whose tip is away from the boundary 0(VOp, ) will generate
a trajectory passing at a certain distance from/3;, on the same side of the tangent tra-

jectory.
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Similarly, trajectories generated by velocities va€S; cannot be tangent to 53, in

a finite time, since the boundary of S; is the velocity parallel to vy, . Therefore, if this

subset exists in RAV, it contains all the velocities diverging from /3.

Proof of Thcorem 1:
From L.emma 2, each velocity obstacle V Op, divides the setofl reachable avoidance ve-
locities RAV into three non-overlapping subsets. Then,m obstacles, B; (7= 1., m),
generate 3 subsets, that are partially overlapping. l.et us assume that RAV is divided
into 1 non-overlapping subsets RAV;1=1,.... 1

The boundary of each subset, d(RAV;), may include segments from the boundaries
of some velocity obstacles VOp,,d(VOp, ). FromLemma 2, all velocities in the same
subset R AV; will generate the same type of avoidance maneuver. Then, if the boundary
of a RAV, 8(RAV;), includes segments from the boundary of n different velocity obstacles
VOnp, (7=1,...,nm n<m),all velocities v4 € RAV; will generate trajectories avoiding
each of the nobstacles B;(5=1,....n;n<m) with the maneuver determined by
the portion of 3(V Oy, ) included in 6(RAV;). Then, each subset ItAV; corresponds to a
specific maneuver type, represented by indices i/, where the index i represents the type

of avoidance velocity, i.e. (i=-f,r,d), and j,(j=1,....m)is the index of the obstacle.



