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Abstract

!llis paper presents a new approach for rot)ot  ]notion  planning  in dynamic environ-

ments, based on the concept of Velocity Obstacle. ,4 velocity obstacle defines the set of

robot velocities that would result in a collision between tlie  robot and  an obstacle mov-

ing at a given velocity. The avoidance maneuver  a{ a specific time is thus computed by

selecting  robot’s velocities out of that set.  ~’lle set [If all avoid inp, velocities is redllced  to

the dynamica]]y  fcasib]e  maneuvers by considering the robot’s acceleration constraints.

This computation is re])eatecl  at regular time intro vals to account for genera] obstacle

trajectories.

The t rajtxtory  from start to goal  can be com ])uted  by searching a tree of feasible

avoidance maneuvers C.olnputecl at discrete time ini ervals. An exhaustive search  of the

tree yields near-optima] trajectories that either minimize distance or motion time. A
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heuristic search of t}le tree yields trajectories that satisfy a l)rioritized  list of objectives,

such as reaching t}~e goal, maximizing speed, and achieving a desired trajectory structure.

The heuristic approach is computational]y  ctlicientl  a])plic.al)le  to on-line planning of

industrial robots, performing assembly tasks cm lnoving  conveyers, and to intelligent vehi-

cles  negotiating freeway traffic. The method is demonstrated for planning the trajectory

of an automated vehicle in an Intelligent Vehicle Highway System scenario.

1 .  I n t r o d u c t i o n

This paper addresses the problem of motion ]dauning  in clynamic  environments. Typ-

ical  examples of dynamic. environments include lnanufacturing  tasks in which robot ma-

nipulators track and retrieve parts from movipg  conveyers, and  air, sea,, and land traffic,

where aircraft, vessels and vehicles avoid each  other while  lnoving  towards their destinat-

i o n .

Motion planning in dynamic environments is considerably more difficult than the

widely studied static problem, since it requires the simultaneous solution of the path

planning and of the velocity planning problems. l’ath plannilip; involves the computation

of a collision free path fronl  start to goal without collsiderins;  robot dynamics. Velocity

planning, on the other hand, involves the computation of the velocity profile along a

given path,

planning in

satisfying system dynamics and act Ila,tor  constraints. ITI addition, motion

static environments can be guaranteed to find a solution

time to, whereas motion planning in dynamic environments is essentially

[7], i.e. the solution alto may not mist at a later time because of the

environ In ent.

if one exists at

intractable, [29],

evolution of the
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The problem of planning iu a time-varying ellvironlneul has Leeu previously ad-

dressed for obstacles moving at known speeds [28] [9] [18] [1 5]. Ilrdma  nn [!3, 10] computed

I a collision-free trajectory using;  a position-time representation of the environment, thus

I extending the concept of (bnfip;uration  Space [22--24], to dynamic motion planning by us-

1 ing  time as an additional dimension. q’he time axis was disc. retized, aud  the configuration

I space of the robot was computed at successive time intervals.

I in [18,1 9], Kaut decomposed the planning problem into two steps: first, a path is

I selected to avoid the static obstacles; then, the velocity prc)file  along  that path is selected

to avoid  the moving obstacles. ‘l%e latter step was carried out 011 a space-time plane

in which the abscissa was the path arc length, and the ordinat,e  was time. A similar

approach was  developed by Im, [21], who computed a vclocit  y profile that reached the

goal within a prescribed time limit. Approximate dynamic constraints were satisfied by

limiting slope, direction and curvature of the trajecl ory in the sl)ace-time plane.

Canny [8] presented an al?;orithm  for computin~,  a minimal-time trajectory of a point

mass among fixed obstacles that satisfied acceleration constraints. The result was a poly-

nomial time algorithm computing a trajectc)ry on a IIon-linear fixrd-time  grid  in the phase

space of the point-mass robot. A general method  for motion ~)lanning is provided by the

roadmap  algorithm [6], that can  consider moving;  obstacles. in [26], (’)’I)tinlaing  presented

an exact algorithm for computing the optinla] velocity profile on a cjl~e-dil~lel~siollal  path

subject to acceleration bounds.

In [15,16], Fujimura  uses dynamic constraints to define  tlt( collision front, i.e. the

1 0CUS of collision points between two objects moving  on arbitrary paths with piecxnvise

constant velocities. With this approach, a miuimum  time trajectory can  be computed



by selecting the maximum feasible speeds at eve Jy moment, and the dynamic constraints

can be included by limiting the path c,urvatllre. However, t lle minimum time result is

only guaranteed when robots are faster than the obstacles. Recently, in [13,14], Fujimura

introduced the concept of transient obstacles, such  as objects placed and removecl by a

manipulator, that could alsc) be applicable to dyllanlic  l)lanning.

]n [28], lleif presented a solution to the two- dimensional asteroid  problem, where a

velocity-limited robot is required to reach its destination while avoiding any number of

movinfg polygonal obstacles. The computation is carried out ill tile  configuration spac,e-

time, and it is similar to a visibility graph search. q%e algorithm computes a tree of

possible motions joining two asteroids, until it reaches the goal,

In [2–5], Cameron modeled solid objects in nlotion  by representing them in a four-

dimensioual  space, thus reducing the collision detection problem to the test for intersection

among four-dimensional objects. Ry constructing the follr-dil~lcllsiollal  representation of

the objects, the computation of a no]] colliding path is reduced to finding a position

resulting in no intersections among the moving objects.

Hayward [17] recently presented an a,l~p~oa,ch to manapyi  to computation burden of

detecting the future collisions of a, robot with many lnoving  obstacles. R,elative  coordiua,tes

were used to compute the time to collision for every l)air robot-obstacle, subject to velocity

and acceleration c.oustraiuts.  These times were  USCX1  as a ]neasure of urgynce  for ordering

the obstacles, and prioritize the collision avoidance.

On-line  planning in dynamic environments has been so far ireaied  mostly as au AI

problem, emphasizing reasoning and decisiol) makin{t, with no collcerll  to robot dynamics.

in [29], Sanborn  develop reaction rules for a robot moving in a Traflic  World. The moving
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robot reacts to the environment by predicting the Sp;lc.e-time intervals in which belligerent

and apathetic objects would intersect its specified path. While this approach reasons

from the physical

moving robot.

proper ies of the environme.ut,  it neglects the physic. al limitations of the

Although this problem has been extensively addressed in the literature, the current

methods are either computational]y  too expensive, or do IIot consider robot’s dynamics.

In this paper, we develop au eflicient  method to compu~e  the trajectories of a robot

moving in a time-varying environment tha~ considers robot dynamics aud actuator c.on-

st ra,ints. It utilizes the collc.cpt of Velocity Obstacle (VO), which maps the dynamic

environment into the robot velocity space. The \eloc.ity  obstacle is the set of robot’s

velocities that would cause a collision with an obstacle if bot]l  maintain their current ve-

locities. ‘l%us, a C.ollisioli  avoidance ‘maneuver is colnputed  by selecting velocities that are

outside of the velocity c)bstacle,  if suc}l velocities exist. ‘Jb ensure  that the maneuver is

dynamically feasible, robot dynamic,s  and actuator const] aints are transformed into con-

straints on the robot  acceleration which are then lnapped  into the robot velocity space.

A complete trajectory consists of a sequence of such avoidance maueuvcrs,  selected to

achieve some desired objective.

‘1’he avoidance trajectory that minimizes motion time is con!puted  by searching over a

tree of avoidance maneuvers generated at discrete i i me iutervals.  For on-line applications,

the tree is pruned using; a heuristic search  designed  i o achieve a prioritized set of objectives,

such as avoiding collisions, reaching  the goal,  maxilnizillg  speed, or computing trajectories

with desirable topology.

T}le exhaustive search and the heuristic ]Jilllllil)g have lbeen implemented for an



6

autonomous vehicle negotiating freeway traflic,, moving  fro)[l the fast lane to the exit

ramp.

!t’he advantages of this approach are multi-fold: i) it ~jermit,s  an eficient geometric

representation of potential avoidance mal~euvers  of the movinp;  obstacles, ii) any number

of moving  obstacles can  be avoided by considering the llnion of their VO’S, iii) it unifies

the avoidance of moving as well as stationary obstacles, and iv) it allows for the simple

consideration of robot  dynamics and  actuator col(straints.

The solutions computed with this method are conservative , since they exclude trajec-

tories that, although feasible, include avoidance maneuvers violating the velocity obstacle.

However, such trajectories may also b,e considered by excludin?;  obstacles with a long time

to collision, or by optimizing; the trajmtc)ry using  a dynamic ol)timization  [1 I].

This paper is organized as follows, Section  2 d e f i n e s  t h e  V e l o c i t y  O b s t a c l e  a n d  i t s

basic properties. Section 3 define the avoidance velocities, and  presents the procedure

for computing; the feasible avoidance maneuvers, Comp]ete trajectories are computed in

Section 4 using both global and heuristic, search methods. Exalnp]es  of a single avoidance

maneuver and of complete trajectories arc presented in Section 5.

2 .  T h e  Vdocity  Obstac,lc

~’he Velocity Obstacle (VO) is an extension of tile  Configuration Space  Obstacle

[24] to a, time-varying environment. It consists of the velocities of the robot that will

cause a, collision between the robot and the obstacles at some fllture time. A]though  this

concept is valid for general rcjbots  and obstacles, in this paper wc restrict our analysis to

circular robots and obstacles in the plane.
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Figure  1: Thembot  and all~ovil~goljstacle.

The VO is illustrated using the scenario shown  in Figure  1, where two circular objects,

A  a n d  B1, a r e  s h o w n  at time to wit]] vel~~ities  VA al~d  VD, [~ ~]. ~~ircle A rel~resel~~s  tl~e

robot, and circle  111 represents the obstacle. Tht velocities al]d positions of A and III

were chosen so that A and  111 will collide  at some lime tl, (/.l > iO), provided that vA and

Vn, do not  change. The W3 is then used to modify tile  velocity  of ~ so tl~at t}le ~ollisi~ll

is avoided.

g’o compute the VO, we first represent, Bl in tile  Cc171&u7YJi20n ,$’pace of A by reducing

A to the point  ~, and  en la rg ing  ml by the radills of A to the circle 1~1 [22], We then

represent  the state of the moving  robot and  of I he obstacle ljy attac}~ing  their velocity

vectors to the position of X and to i,he center of J~l, rrspcci  ively. This representation,

called the Velocity  Space  of the underlying c.onfi[:uration  sj)acc [1], allows  tlIe  direct use

of computational gecmetry tools for computing the avoidance lrianeuvers in a dynamic

environ ment.
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Figure 2: The Relative velocity  vA,r], and the (;o]]ision  ~;one CCA,~, .

The anajysis is further simplified by considering the relative velocity vA,nl:

~A,l?l FVA-VD1 (1)

Assuming that A and 111 maintain their current velocities, a collision between ~ and

~, Wi~] OCCUr at SOlllC flltllre  time ~1 >  to i f  th(! ]il~e ~A,n, of the relative velocity VA,D1

intersects III, as shown in Figure 2, or:

(2)

in fact, any  relative velocity that lies between the two tangcllts  to fil ~f and ~~ will

m u s e  a collision  between  a? and l?].  Therefore,  we define  tile  {Jdkszo?t  Cone,  ~~C”A, D1, as

the set of colliding relative velocities between ~ and fll satisfying equation (2):



Fip;ure 3: The velocity obstacle V().

‘This cone is the planar sector with apex in ~, bollnded  by the two tau,gents Aj and  ),,

from ~ to ~, as shown in Figure  2.

~~lear]y,  any K!]atk velocity outside ~C*,~Il is guaranteed to ~Je collision  free, pro-

vided that the obstacle fil retains its curm~t  shape and spew]. ~1’he collisiol] cone thus

partitions the space of relative velocities inl o colliding and avoiding; velocities. The rela,-

tive velocities, vA,n, , lying  on the boundaries of CC,~,D,  repmwmt  tangent  maueuvers  that

would graze the obstacle 1)1, as discussed later in Section 3.2.

The collision cone is specific to a paltic,ular pair of rol)ot/olx+tacle.  q’o consider

multiple obstacles, it is useful to establish au equivalmt  partition of the absolute  velocities

of A. This is clone simply by adding the velocity of 111, Vn, , t o  (!ach ve]ocity  ill (?~A,n,

o r ,  equivale])t]y,  by traus]atiug  the co]lisioll col~e ~~C;A,nl  by v~~, , as show]) ill Figllre 3



Figure 4: Collision cones and velocity obstacles for l?] and 112.

[12]. The Velocity  Obstacle VO is theu defined as:

where 6) is the Minkowski  vector sum operator.

‘Thus, the VO partitions the absolute  velocities of A intc) avoiding and colliding veloc-

ities. Selectiug  vA outside of VO would avoid colliding; with ~~1, whereas se]ec.ti~lg  vA so

that its tip is inside VO would eventually resull  in a collisiou  if both A and 131 maintain

their current velocities, or

Velocities on the l.)oundaries  of VO would result in A grazing lJ1, since the corresponding

relative velocities lie on the boundary clf the collision cone  ~“~~A,  I?,. hTote that the VO of

a stationary obstacle is identical to its relative velocity cone,  siuce  then VDI = O.
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To avoid multiple obstacles, the, VO’S of each obstacle are combined into  a single

velocity obstacle:

VO u u~:,v~t (6)

where m is the number of obstacles. The avoidance maueuvers,  then, consist of those

veloci t ies  VA, that are outside the union of the VO’S, as S})OWD in Figure  4. The VO

assumes that the velocity of 111 remains constant. ‘1’0 account for variable velocities, VO

is recomputed at specified time intervals.

The assumption of circular robot  and obstacles reduces the dimension of the config-

uration space, and thus greatly simplifies the comj)uta,tion  of the VO. It also fixes the

shape of the configuration space obstacles, which are generally functions of t}]eir  posi-

tions in the robot’s work space. For general maniplllators,  the 1~0 must be periodically

recomputed to account for the time varying configuration space obstacles [1 O].

The maneuvers generated by velocities outside the velocity obstacle VO are guaran-

teed to avoid  collision with the obstacles, independently of tile expected  collision times.

This excludes maneuvers that are on a collision cc)urse with ol)stacles  with a long  time

to collision. Such maneuvers may not necessarily

appropriately modified at a future time. H owe~~er,

only obstacles with imminent  collision.

3 .  Thc Avoi&mce  Mancuvms

result in collision, since they can be

this can  be remedied by considering

In this Section, wc first define  the reachable avoidance vclc)cit  im, which are a sul)set  of

all avoidance velocities, satisfying the robot’s dyna]nic constraints. We then ident,  ify the
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Figure  5: The Feasible Accelerations

topological properties of the avoidance maneuvers, and present a procedure for computing

the set of reac+able avoidance velocities.

3.1.  Dcfhition  of Avoiclancc  Veloc i t i e s

‘1’he velocities reachable by robot A at a given state over a given time interval At

are computed by transforming the dynamic C.cmst]  aints of the robot  into bounds on its

acceleration. ‘I1he set of Jeaszhle mceleration.s  at tillle  to, l“A(~o), is defil~ed as;

FA(t~) =- {X1X - f(x, i,u), u c u} (7)

where j(x, i, u) represel~ts  the dynamics of the robot, u are the actuator efforts, IJ is

the set of admissible controls, and x is the position vector defiIIMI earlier. Note that the

feasible acceleration range of a two degree-of-freedom system with decoupled actuator

limits is a parallelogram [3(1].
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The set of reachable velocities, RV(tO + At), mer the time interval At is thus defined

as:

RV(t + At) = {V I v -- VA(tO)  a] At. FA(t.t,)} (8)

Figure 5 shows a schematic construction of tile  rt!achab]e  velocity set for robot A, by

adding the change in velocity (xAt / x & FA) tcl tile current velocity of A.

q’he set of reachable  avoidance velocities, RAV, is definwl  as tltc  difference between

tile reachable velocities and the velocity ohstaclc!:

RAV(tO + At) :- RV(tO + At.) c) VO(if)) (9)

w}lere o denotes tile operation of set difference. A nlaneuver  avc)icling  obstacle 11] is thus

computed by selecting any velocity in RAV.

Figure  6 shows schematically a RAV set, consisti  n,g of two disjoint closed sets, Si and

S’7. For multiple obstacles, the ltAV may consist of mllltip]e  disjoint subsets. ‘1’he selectiol)
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Figure  7: Grazing arcs in an a~’oidancw  maneuver.

of a specific  avoidance velocity determines the stlucture of the avoidance maneuverl  i.e.

the side of the obstacle that will be avoided by the robot, as discussed next.

3.2. S t r u c t u r e  o f

in this section,

their corresponding

and rear avoid  ante

obstacle.

The front and

tile Avoickmce  M a n e u v e r s

we first compute the maneuvers tangent to the moving  obstacle, and

tangency points. Thew maneuvers are then used to identify the f7-07tt

ma,neuvcrs,  i.e. those that would pass in front or behind the moving

rear sides of El are identifie(l  by a coordinate frame (X,Y) with its

origin at the center of t]],  al~d its X axis coinciding with the velocity VD, . The Y axis then

partitions the boundary of Jll, 8(}11 ), into the f707tt  selni-circ]e, tl(l?lf ), which intersects
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Figure 8: Trajectory tangent tc) 1~1.

the positive X axis, and the rem semi-circ]c,  8(1117), as s}lown  in Figure  7.

As stated earlier, any  re]ative velocity vA,D, that coincides wilh the boundary of the

c;ol]ision  Co]le c“CA,nl,  {~f, ~,}, would result in ,! grazing ~~1. We now show that :  ‘i)

these relative velocities correspond to absolute velocities gpmating  trajectories that are

tangent  to  E at some  point F’ E 8(}11), and  ii) that poiut 1’ is different from poiuts  Tj

and T., at which Af and ~. are tau.gent  to 1~1.

Figure  8 shows obstacle fil at time tO when tile  velocity obstacle and  the avoidance

maneuver  are c.ompllted,  and at t], when E is tangent to the trajectory generated by

an a,bSO]Ute  Ve]OCity  vA dlOSell so that vA,~]l coincides With ~j. Assuming that  ~] dOeS

not rotate during its motion, t}~e tangency point 1’ hetwcen the trajectory of A and the

obstac]e  ~a]l be  feud by i])tersecti~)g t h e  straighi  ]i]le })er~)(!]]dicll]ar  to  vA al~d Passi]~g

t h r o u g h  the center  of  1~ at time tO, as  shown ill Figure 8.  Clearly J} # 7’i, since  P

depends on the absolute velocities of A and Jll.

‘Therefore, to choose  au appropriate avoidanc(:  maneuver, it is necessary to establish
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a mapping between the reachable avoidance velocities and  the tangency points on 3?1.

The following I,emma states that the set of tangenl relative velocities  consists only of the

semi-infinite lines ~f and }r, an d that the tangency points call OCC1]T only on at most two,

non-overlapping, subsets of 8(DI ).

I.,emma 1: Robot A can be tangent to obstacle Ii’l at, some poi Ilt 1’ & 8(BI ) iflit  follows

a trajectory generated by vA C.orrespondillg  to vA, n, E {~j, ~,}. The tangency set  in

~(~1 ) consists of the shortest  segment connecting Tf D ~f (l flo;l  ) to Yf, and of the

shortest segment connecting Y; == }, n 8(B1 ) to Y.. ❑

This I,emma,  is proved in the Appendix.

Figure  7 shows the tangency sets between A and R], i.e. 7jYf ~ d(l?lf) and T.~. E

O(J?IT). Points Yt and Y, are defined by the two tangents to 1~1 ljarallel  to Vnl .

The conditions on the relative velocities map inl o conditions on the absolute velocities

of A, r ecogn iz ing  that  the boundaries of tlie co]]ision cone, C~~~A,Dl, transforlll  to the

boundaries of the velocity obstacle VO.  Therefore, the boundary of the velocjty obstacle

V(), {Af, 67}, represents al] absolute velc)cities generating trajectc)rim  tangent to ~, since

t }leir corresponding relative velocity lies on Af and ~,,. in the example shown in Figure  6,

the only reachable velocities that would result in .4 grazing 111 are represented by the
,..

segments KI1 and I,M of the reachable avoidance vr]ocity  set RAV.

We use the tangent veloc.ilies  to subdivide the set RAV into subsets, e.ac.h containing

velocities generating a single  type of avoidance maneuver, The set, RAV in l“i.gure 9 is

subdivided into the t}lree subsets Sf , S’7, and  S’d by the Imun(lary  of VO a n d  by t h e

. .
straight line passing through A and the apex of VO1l,. Each  oft IIese subsets corresponds
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Figure  9: General structure of the reachable avoidance velocities.

to rear, J7w7~t, or diverging  avoidance maneuvers, wspective]y,  as stated in the following

I,emma. A diverging maneuver is one that takes the robot A away from the obstacle II].

Lemma 2: The reachable avoidance velocities RjlV due to a single  obstacle consists

of at most three non-overlapping subsets S’f, ,$~, and  Sd, each  representing velocities

corresponding to front, rear or diverging maneuvers, respectively. D

Tbe proof of this I,emma is given in the Appendix.

I,cmma 2 states that ItAV  due to c)ne obstacle  may consist of (Li most t]]ree  subsets.

Clearly, there can be cases where the RAV consists of fewer  sets, one} two or none, as was

shown  in Figure 6.

For  mauy moving; obstacles, we define  the type of the avoidance maneuver  according

to the avoidance of each obstacle. We represent each avoidance set  by Si,, where the index

I
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Figure 10: Classification of the reachable avoidance velocities.

i represents the type of avoidance velocity, i.e. (i= f,r,d), aud j is the index of the obstacle.

For example, the set Sff shown in Figure  10 includes velocities generating maneuvers that

avoid both obstacles l?l and  }12 with a front maueuver. The set Sfr corresponds to the

frout avoidance of T]l and rear avoidance of 1;2, respectively.

T}~e properties of the RAV generated by multip]e obstacles are summarized ill the

following Theorem, whose proof is given in the Allpeudix.

‘J’hcxmcm  1:

avoid anc.e set

Given a robot A and m moviug  obstacles IIj (j ~ 1,..., m), the reachable

RAV consists of at most 3m subsets, each iuc]udillg  velocities C.orrespondingj

to a unique type of avoidance maueuver.

The Theorem states that it is possil)le  to subdivide the avoid auce. velocities

into subsets, each corresponding to a specific avoidance maueuver. This allows

select avoidance maneuvers with a desired structure. For example, a car avoiding

m

RAV

11s to

a big
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truck may choose a rear avoidance maneuver, even though a frc]nt maneuver might also

be feasible, to avoid a potential collision, duc  to uncertainties ill the measurement of the

truck’s velocity.

3.3. Gcmmating the Set of Avoidance  V e l o c i t i e s

‘This section describes the procedure used for generating the Set of Reachable Avoid-

ance Velocity, Si, for rc)bot  A. ‘The procedure is il]ust  rated in Figure

reachable velocities RV, the velocity obstacle VOI~, and  the Iille Lo

and the apex of VOrll.

11, using  the set

passing through

of

A

Since the RV set is a polygon, and the open set VOII1 is represented with a planar

triangle, it is convenient to represent each set by an oldercd  list of their vertices. A

typical vertex K is specified by its position  and  l)y the supporting lines intersected at

that vertex: K =- {(xi, yi), (li_l,  ii)}. The vertices are ordered counter-clockwise so that

the interior of the polygon is on the left of its boundary. q’liis representation facilitates

the set operations needed to compute

The first step of the procedure is

RAV.

to i~ltersect  RV with the line 10fl to form the set of

diverging velocities, S’d, and the set of non-( livergin~;  velocities, S,,~, as shown in Figure  11-

a. In this case, the set Sd is represented by vertices (5, 2, 3, 6), and S,, ~ is represented by

(1, 5,6, 4), 13y construction, the set S’d is not  afl’ected  by the veloci ty obstacle VOD1,

whereas S,, d is, generally, subdivided by VODl into su bscts of colliding aud  avoiding

velocities, as shown in I’igurf! 1 1-1).

‘The computation of these subsets is carried ollt as illustrated, for one obstacle, in

Figure 1 l-c.. First, the intersections between S,, ~ and the velocity obstacle VOIJ, arc

computed. For the case shown, these are points (7, 8,9) that,  are inserted in the proper
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Figure  11: The computatio~l  of the Reachable Avoidance

order in the list of S,,,f. The new list of S,, ~ consists c]f points

Velocities RAV.

(1 ,5 ,8 ,6 ,4 ,9 ,7 ) .  ThiS

list is then scanned sta,rting from the first vertex that is external to V(2D, , in this case

vertex 1. The subsets of avoidance velocities are created by su bt ractillg  VOn,  from S’,, d

marc}lil~g  coui~ter-clc)ck wise along the boul~dary  of S,,J and  clockwise along’tl]e  boundary

of VOD1, as shown schematically in Figure 1 l-c. This corresl)onds  to assigning a positive

value to S,,~ and a negative value to VOD, . The s(:t whose bolindary  includes a segment

of the rear boundary of VOII1 Af, is the set of rear avoidance velocities S,, and the set

whose boundary includes a, segmel~t of the front boundary ~r is the set of front, avoid a,rlce

velocities .$’f. in this case, set Sf is represented by (9,8,6,4) and  ,!, hy(]  ,5,8, 7). Finally,
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Figure  11-d, shows the reachable avoidance velocities RAV = RV <) V(2D, consisting of

the t}lree  subsets, Sf, S~, and Sd, corresponding to front, rear aud diverging velocities,

respectively.

To consider multiple obstacles, this procedure is applied rc!c-ursively  to each subset of

RAV, generating smaller subsets Sij,  where the index i represents the type of avoidance

velocity, i.e. (i~-f,r,d),  and j is the index of the c,bstac,lc. For example, three obstacles

might generate up to 27 avoidance velocity sets, sucli as Sf,~ rep~csenting  a front avoidance

maneuver of the first obstacle, a rear avoidance of the second, and a diverging maueuver

from the third obstacle.

The upper bound  on the number of sets Sii is 3~’, w}lere m is the number of obstacles

in the environment, However, the actual lmmber is much smaller, because the lines 100

from A to the apex of each VO  do not intersect each other. Also, many of the potential

subsets S’zj may be covmed  by some of the VOnj. Generally, we observed that the hig}ler

the number of obstacles, the fewer tile  sets S2, relnaininp;  tc) I)c computed. ‘To ensure

that the set RAV is not empty, it might be useful t{] consider only obstacles with a short

expected collision time. For example, the m obstacles Ilj (j - 1, . . . . m), call be sorted

according to their expected collision times t.j [1 7], ill~d only t]lose  with time to collision

(tj -to< t~.), with t}, a suitable horizon, can  be included in the computation of RAV at

to.

4 .  C o m p u t i n g  the avoic]ancc  t r a j e c t o r i e s

q’his section presents a method for coml)uting  complete trajectories that, avoid static,

moving obstacles, reach the goal, and satisfy f he rollot,’s  dynamic constraints. A

I
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trajectory can  be computed as a sequence of elementary avoidaure  maueuvers, selected

by a global  search over the t rce of all feasible manellvers at specified time intervals. Alter-

natively, the global search may  be reduced to a h(’uristic  search for on-line applications,

where the trajectories of  the moving  obsl ac.les  ale not known  a-priori, L)ut are rather

acquired in real-time. ‘1’hese  two approaches are discussed nexi.

4 .1 .  Globa l  Search

To facilitate an efficient p;lobal search, we reprment the state space of the robot by a

tree of avoidance maneuvers at discrete time intervals. The nodes  on this tree correspond

to the positions of the robot at discrete times ii. g’he operators expanding a node at time

ta into its successors at time I.z+l == ti + T are the velocities in the reachable avoidauce

velocity set RAV. The edges correspond to the avoidauce maneuvers  at those positions

[27,25]. The search tree is then defined as follows:

where lli,j if tile ~tll node at time ti, RAVj(ti)  is tile reachable velocity set computed for

node ni, j, oi,j,l is the lth operator on node .? at time ti, and ej,~ is the edge between node

?Zj at time ti, and node Ttk at time ti.+l.

The tree of all feasible avoidance ma~leuvers  is constructed by the following opera-

tions.  At time ti, the avoidance set RAV, corresponding  to ])odc ni,j, is discretized  by a

grid.  Then, the velocities corresponding to each IIode on t}le p;rid are used to compute
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Figure  12: ‘Tree representation for the global  search.

the edges  emanating from node nij, i.e. the avoidance maneuvers from the position corre-

sponding to node ni,j  over the interval T. The positions reached hy t}le robot at the end

of each maneuver are the successors of node ~ti,j. A node n,, j is completely expanded when

all the operators oi,j,~ have been applied and all tile edges eluanating  from nt, j have been

examined. ‘Tile

branch  number

trajectory that

resulting tree has a constant time interval between nodes, and a variable

that is a function of the shape of each  R.4V. ‘1’his  tree is searched for the

maximizes any objective function. such as as nlotion  time, distance trav-

eled or energy, using sl,andard search techniques [27,25]. Figu  rc 12 shows sc.hem atic..ally  a

subtree  of some avoidance maneuvers.

Since the avoidance  maneuvers are selected based on the velocity obstacles VO, they

are never on a collision course with any c]f the considered obstacles, as discussed earlier.

‘This excludes trajectories that might, part of tl)e time, he on a collision course with

some of the obstacles. }Iowevcr,  such trajectories may he generated  by either considering

oIIly obstacles with i]nmille]lt  collisions, or by o])timizing  fhe trajectory l]sing dynamic,
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optimization [1 1].

4 .2 .  Hcurist.ic  S e a r c h

line

The  search for an moidancetrajectory  can  lx: reduced to

applications, or when only incomplete infc)rmation  about

a heuristic search for on-

the environment is avail-

able. The heuristics call be chosen to satisfy a prioritized series  of goals, with survival of

the robot being the primary goal, and other goals including reaching the desired target,

minimizing a performance index, and  implcmenti)lg  a desired trajectory structure. The

survival of the robot  can be guaranteed by selecting the avoidance velocities RAV; the

target can be reached by selecting velocities that point towards the destination; the mo-

tion time can be minimized by choosing the highest velocity available; and the desired

trajectory structure call be selected by choosing an appropriate sequence of front and rear

avoid ante maneuvers.

We thus propose the following I)asic heuristics:

(a) Choose the hig}lest  avoidance velocity along the line to the p)oal,  as shown in Figure 13-

a, so that the trajectc)ry  takes

the following by ‘TG (to gc)al).

the robot towards its target. ‘I)his strategy is denoted in

(b) Select the maximum avoidance velocity within some specified angle fl from the line to
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the goal, as shown in Figure  13-b, so that the robot moves at high speed, even if does not

aim directly at the goal.  This strat,egy  is henceforth called

(c) Select  the velocity that avoids the obstacles according

strategy is called ST (structure). In Figure 13-c the chosen

NIV (maximum velocity).

to their  perceived risk. T}lis

vc]ocity  is the highest among

the rear avoidance velocities.

Other heuristics may combine some  or all c)f the above  strategies. For example, the

avoidance velocity could lM chosen as the fastest velocity pointiup;  towards the target and

generating a rear avoidance maneuver. Furthermore, it mip;ht be advantageous to switch

between heuristics, in order to yield trajectories I hat better satisfy the prioritized goals.

5. E x a m p l e s

5.1. A Single A v o i d a n c e  Mancuvcw

This example demonstrates a single  avoidance maneuver  computed using  the velocity

obstacle method, as showII in Figure 14, The environment COIII sins five circles, represent-

il~g a robot and four moving obstacles. Me velocities are represented by bars attached

to the centers of the robot and of the obstacles. ‘1 ‘he position and  velocity of each object

are as follows:

robot:  (z =-- 5.0, y =-- 5.0),  (~),, == 8.0, v!, -– 5.0), r = 5.0,

obstacle 1:  (x =– 90, y =- 40), (v,. =- --12,0, v?, =- - 1.0), r = 5.(),

obstacle 2: (z = 60, y :-- –5), (v,. u –5.0, v!, T- 5.5), r = 5.0,

obstacle 3: (x n —30, y u –-20), (v,,, =- 5.0, v?, = 3,0), r :- 5.0,

obstacle 4: (x = —10, y v 40), (v,? =- 4.0, v,, =- – 1 .0), r :-- 5.0. ‘.l’hese  velocities result in

the trajectory shown ill  Figure  15. ‘he trajectories are represented by circles disj>layed
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Figure 14: lniiial  configuration of the robot aud the obstacles.

every one second. Obstacle 2 js OJ] a collision col]rse  with the robot with which  it collides

approximately at i =- 5.$, as shown by tbe grey  circle in Figure 15.

Computing a single avojdance  maneuver reslllted  jn t}le trajectory shown in Figure 16,

where tbe robot  a~~oids obstacle 4 with

and obstacle 3 wjth a right maneuver

a front, maneuver, obstacle 2 with a rear maneuver,
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Figure  17: Example  of

5 . 2 .  Complete Avoiclanm  Trajcctorics

trajectory problem.

IN this example, the computation of a com]kte  trajectory is demonstrated for the

Intelligent Highway scenario shown in Fig;ure 17. The goal of the robotic vehicle in the

leftmost lane is to reach the exit to the riF;ht  without colliding with the other two vehicles.

‘The initial velocity of the rc]bot and of vehicle 2 is (% ~ 30.0 T?~/.$, l)!, = 0.0 nl/s),  and the

initial velocity of vehicle 1 is (w,r == 23 nt/s,  v!, = O.O 1~~/s).  g’l~e velocities are represented

as bars attached to the center of each circle.

For the global  search used in the! example of Figure 17, 1 he time interval T between

nodes is chosen arbitrarily as T’ =- 1s.

The trajectory shown in Figure 18 is computecJ  using the JIcpth  First Iterative Deep-

ening algorithm [20]. ‘This algorithm rel urns tht! fastest path to the target, the first time

it reac}lcs the target. In the example, ihe ItAV  sets have been  disc.  retized  by considering

four points cm each side of the boundary, aud  the maximum feasil)le  velocity in the di-
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Figure  18: Trajectory compuled  by g;lobalsearch.

rection to the goal. The search has been  expanded to 4.5 s and  a depth of 5 levels . The

total motion time of this solution is of 3.5 s.

IJsing  the TG strategy resulted in the trajectory shown in Figure 19. Along this

trajectory, the robot  slows down and lets vehicle 2 pass, and then speeds up  towards the

exit, behind vehicle 1. ‘he total motion time fol this trajectory is 6.07 s.

IJsing  the MV }Ieuristics  resulted in the trajectory shown  in Figure  20. Along this

trajectory, the roboi  speeds up arlcl passes in flont of both vehicles 1 and 2. The total

motion time along this trajectory is 3.56 s.
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Figure  22: Failed  trajectory computed with the MV heuristics,
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In the case of Figure  20, the MV heuristics

computed using bot}l MV and TG strategies is

32

managed to reach  the goal.  The trajectory

shov n in Figure 21. Along  this trajectory,

the robot first speeds up to pass vehicle 2, then slows down to let ve}licle 1 pass on, and

then speeds up again towards the goal. q’he motion time for t}lis  trajectory is 5.31 s.

‘l%is trajectory was computed by using the MV heuristics for O < t <2.0 s and the TC~

heuristics afterwards.

Figure 22 shows a trajectory computed with the MV strateg;y  that missed the exit

target because of a small increase in the velocity of vehicle 1 to (v,, ~ 33 ~/s, U, ~

0.0 m/s). Nevertheless, the trajectory is collision free.

These examples show that both global and lwuristic search strategies perform well

in computing the complete trajectories. ‘1’he motion time of the NIV solution compares

well with that of the global  search. Although this result cannot  be generalized, it shows

the potential of the heuristic strategies for on-line applications.

6. C o n c l u s i o n

A new method for planning the motion of a robot moving  in a time-varying envi-

ronment, the Velocity obstacle approach, has been  presented. It is significantly different

from currently available planning algorithms, sin(e it sinlultaneolls]y  computes the path

and velocity profile that avoid all static and In(w;ng  obstacles and satisfy the robot’s

dynamic constraints.

The method consists of computing;,  for evrry obstacle, its corresponding velocity

obstacle, which is the set of colliding velocities bciween the obstacle and  the robot.  Then,

by subtracting it from the! reachable velocities of 1 he robot, the set of reachable avoidance
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velocities is formed, which consists of all the velocitit:s  that avoid the obstacles and satisfy

the robot’s dynamic, constraints. A search space is then formed  by representing the state

space of the robot,  by a tree of avoidance maneuvers. A global  search over the tree

yields trajectories that minimize a selecte<l  performance index , such  as motion time or

traveled distance. For on-line applications, the tree is pruned  rising one of several heuristic

strategies, aimed at sa,tisfyins; a prioritized list of p,oals, such  as the survival of the robot,

reaching the target, and minimize motion lime. ‘Tile method is demonstrated for planning

the trajectory of an automated vehicle in m Intelligent Vehiclr IIig;hway System scenario.

The main advantages of the velocity c)bstaclc approach include the efficient geometric

representation of maneuvers avoiding any number of moving and static obstacles, and  the

simple consideration of robot dynamics and actuator constraints. The solutions computed

with this method are consmvative,  since each ma]leuver avoids all obstacles, irrespectively

of their expected collision time, and  t}ley may ex{.]ude trajectories that, although feasible,

violate the velocity obstacle in some intlcrvaj.
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Appcmdix

Proof of Lemma 1:

The proof is carriecl  out for =] since th{!re is a one-to-one correspondence between El

and I?l.  Furthermore, only the front side of fi~, il(l?lf  ), is analyzed, since the rear side,

d(h’~, ), is completely analogous. First, the necessary aud suficienf conditions of t}le

lemma are proven by contradiction. The]l  a geonietric  construction is used to

map between the tangent velocities and the corresponding I Joints on O(l?l}).

define the

To prove the necessary condition, let  us assunie that thel’e f>xists  a velocity vA tangent

to obstacle fil such that its corresponding relative velocity, v~,I~, is not OD tile boundary

of the ~o]]isiol]  ~on~ ~~C”A, D,, or:

Theu VA,DI would be either inside or OUt Side CCA,DI. in the first case, by definition

of CCA, DI, it would correspond to a collision maneuver, whereas iu the second case, it

would correspond to an avoidance maneuver, thl]s  contradicting the hypot}lesis  that vA

is tangent to L’].

‘The sufficient condition can be proved similarly, assuming; that there exists a relative

ve]ocity  vA,D, oll the bou]ldary  of the dlisi{)l]  {’.ol~e C~~A, n,, that does not generate a

-----
maneuver tangent to l?l, or:

Thenl vA would  be either colliding or avc)iding, and  thus it wil] be either inside  or outside

the velocity obstacle VO. ~’his wolJld  contradict the defiuitio]l  of VO, which  is computed
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by translating the

Figure  23: Contact )joints  of tangent  trajectories.

velocities on ~f become  velocities with the lip on 6f.

To prove the second part of the I,emma,  u’e compute the tangency  points  that corre-

s~ond to each tangent  velocity VA,rI1 ~ ~f. The Iallgent,  relat;vf!  velocities are re~resel~ted

by the semi-infinite line {~, At},  with minimum and maximum relative velocities given by

lvA~, I + O, and lvA,D, ] -~ cm, respectively.  ‘The former velocity corresponds to the limit

point Y-f, w})en A and 1?1 move on parallel trajectories. g’he latter velocity corresponds

to the limit point T~i

‘] ’he correspondence between any other velocity O < l’A,JI,  < cm, and a tangency

point 1’ E (T~, Yf) is established by using the orthogonality  between a tangent trajectory

t, d u e  tO VA ~ (vA,~I, – VII,), and the lil~e 1 thl ough  i he center of fi~ and the tangency



.
b,’~

9,9

point , .  T}ie right,

(A, E), as shown
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angle between t and 1 can be enlbedded  into the. circle  C of diameter

in Figure  23. Thus, given a desired tangency  poil~t ~ c f~(~l~)j  ~ir~le C

map it into the directiou  of the corresponding tangency trajectory t, represented by the

line through ~and Q, as shown in Fi[~ure  23. Similarly, given a desired tangency direction

t, circle C maps it into point  P, represented by tile intersection of O(l?l f) with the line

through the center of ~~ and Q.

The magn i tude  of the velocity  VA tangent  10 ~1 in J) is f o u n d  using  the velocity

obstacle VO, whose boundary 6f represe)lts all front tangent velocities. Then, the inter-

section R of the trajectory line t with 6f gives tile  lIlagllitlld~  of V A. ~lle mawjtude  Of

the corresponding relative velocity follows from the definition VA,rJl == VA – VD, .

Note that,  the magnitude of the velocity vA tangent to fi~ in ~’ ~ fi(~l~)  is simply

given by the intersection S oft and 6..

■

Proof of Lmmla 2:

?’he subsets Sf and S’r o f the reachable avoidance velocities llAV, inc]ude in their bound-

ary a segment of the boundary of the velocit.v obstacle VOD, , 8(VOD,  ). Subset  Sij,

instead, does not include in its boundary any S+yllent  frol~l tile  ~)Olllldary  of Von, . Frol~l

I,emma 1, velocities with tip on these segments  generate Irajcctories  grazing  Jll, and

t}lerefore  only subsets S’j and S. include tangent  velocities.

Tangent velc)cities  separate collision velocities from avoidance velocities, and there-

fc)re, a, velocity VA ~ {Si, S,}, WhOse ti]) is awa~’  frOlll the bolllldary  8(VOD, ) Will gellera,te

a trajectory passing at a certain distance fronl  JJ’j, on the same side of the tangent  tra-

ject ory.



40

Sinli]ar]y,  trajectories generated by velocities vA C S’d cannot be tangent to 111 in

a finite time, since the boundary c)f S’d is the velocity parallel to VDI. Therefore, if this

subset exists in RAV, it contains all the velocities diverging from lJ1.

m

Proof of  Theorem 1:

From l,emma 2, each velocity obstacle VOD, divides the set of reachable avoidance ve-

locities RAV into three non-overlapping subsets. ‘Then, m obstacles, L’j (j n 1,..., m),

generate 3m subsets, that are partially overlapping. I,et  us assume that RAV is divided

into 1 non-overlappill.g  subsets RAVZ i = 1, . . . . 1.

‘1’he boundary of each subset, d(RAVz),  may include segments from the boundaries

of some velocity obstacles VO~i, d(VOni ). Frol[l  Ijemma 2, all velocities in the same

subset  Ii?AVi  will generate the same type of avoidance maneuver. Then, if the boundary

of a RAV1  i3(RAVi),  includes segments frolll the bollndary  of n different velocity obstacles

Voni (j+,..., n; ‘n < m), a]l velocities vA < R/iVi will  generate  trajectories  avoiding

each of the n obstac]es  ~]j (.1 D 1, . . . . n; n ~ T7~) with the maneuver  de te rmined  by

the portion of d(VOni ) inc]ucled in d(RAV,). Then, each subset l-iAVi corresponds to a

specific maneuver type, represented by indices i~, v’here  the index  i represents t}le  type

of avoidance velocity, i.e. (i=-- f,r,cl), and j , (j == 1, . . . . m) is the index  of the obstacle.

■


