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Abstract— The problem of designing reliable low-cost com-
munications systems to support decentralized algorithms is
a major research challenge in self-reconfiguring modular
robotics. In this paper we evaluate a communication system
based on ZigBee, a wireless ad-hoc mesh networking standard.
We present a 15-node system prototype and results from an
experiment of 300 trials that measures system performance on
a benchmark task. The benchmark we chose is the connectivity
problem – how to maintain connectivity in the module graph
during the disconnections and reconnections that occur during
reconfiguration. We also provide full implementation details
in pseudocode for our connectivity algorithm. Our results
show that, despite its inherent scalability limitations, a ZigBee
wireless system is feasible as a simple, low-cost communication
system for self-reconfiguring modular robots.

I. INTRODUCTION

Self-reconfiguring (SR) modular robots rely on robust
communication. Decentralized planning and control algo-
rithms are typically implemented using a message-passing
model, and a fast, reliable communication infrastructure is
critical to their proper performance. To conform to the overall
design goals of SR robots [1], communications systems must
also be low-cost.

Hardware implementations of SR robots typically build
communication components into module faces or the con-
nector mechanism itself using infrared (IR) technology or
a physical (essentially wired) link. IR-based systems are
notoriously difficult to implement reliably, mainly due to
problems with crosstalk [2], [3]. Wired links are fast but
complicate the connector design problem.

A communication system based on a wireless mesh net-
work is appealing because it is simple and reliable, and
can be easily integrated into existing or new module hard-
ware designs because it does not require components to be
embedded within module faces or connection mechanisms.
Commercial implementations of wireless mesh systems are
inexpensive and readily available. Bluetooth and Zigbee [4]
are the two main protocol standards. We chose to investigate
Zigbee because, unlike BlueTooth, it can operate without a
central controller, is self-healing, and does not place tight
constraints on network size. Bluetooth is limited to small
networks and requires the presence of a central controlling
node.

The fundamental disadvantage of a wireless mesh system
is that modules cannot communicate in parallel. This limi-

Fig. 1: Our 15-node ZigBee-based communication system.

tation implies that decentralized algorithms will not scale to
large numbers (thousands or millions) of modules. However,
this might not be a problem in certain applications. For ex-
ample, we are interested in building a fieldable modular robot
with significant sensing capabilities [5]. In this application,
separate groups of modules work together to perform an
imaging task. Each group could be small enough to work
within scalability constraints, and utilize multiple channels to
avoid contention. Also, a multi-radio, multi-channel scheme
could potentially be used to increase the maximum group
size [6].

In this paper, we are interested in quantifying the real-
time performance of a ZigBee-based system for small-scale
SR robots (tens of modules) under a typical communication
load. We present a 15-node prototype, shown in Fig. 1, and
results from experiments that evaluate the performance of
this system on a benchmark decentralized planning task. We
chose our recent parallel connectivity check algorithm [7]
as a benchmark since it solves a problem common to all SR
robots and is strenuous – every module communicates within
its local neighborhood in parallel and as fast as possible. Our
implementation assumes that modules have globally unique
IDs and all modules know the identities of their neighbors.
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We fully describe the decentralized implementation of the
algorithm, including pseudocode. Our results demonstrate
that, although scalability issues are readily observable, the
system is feasible for small groups of modules and is
low-cost, low-complexity, and is a convenient platform for
implementing decentralized algorithms.

Our paper is organized as follows. We discuss related work
and a comparison with Bluetooth in Sec. II. In Sec. III-
B, we present our hardware prototype, and in Sec. IV we
present implementation details of the connectivity algorithm.
We then describe our experiments and results in Sec. V and
conclude in Sec. VI.

II. RELATED WORK

Our work builds on a rich history of research in commu-
nications systems and decentralized algorithms for modular
robots. See the recent paper by Yim et al. [1] for a survey of
decentralized planning and control schemes in the literature.

Two major issues in communications research are: 1) the
tradeoff between local and global communication, and 2)
choice of technologies to implement the physical layer. The
local vs. global question has been well-studied; for a nice
discussion see Garcia, Stoy, and Lyder [8], who propose a
novel hybrid system.

The majority of SR robots use either an IR link [9],
[10], [3], [11] or a wired link using a physical connection
[12] as the primary communication medium for planning
and control. Unless much care is taken in designing proper
shielding, IR-based systems are prone to the major problem
of crosstalk [2], [9]. Physical connections must be built into
the inter-module connection system and add complexity to
this already-difficult design problem. Avoiding both issues
is a major motivation for us in investigating wireless RF
systems such as ZigBee.

A small number of more recent systems have utilized
Bluetooth, the closest alternative to ZigBee. Most use Blue-
tooth in an auxiliary capacity [11], [12], [13], although
the YaMor robot has implemented a significant Bluetooth
scheme with great success by designing a custom protocol
to increase the allowable network size [14]. The ZigBee
standard is designed to implement large networks, albeit at
the cost of a lower data rate. We discuss this issue further
in Sec. III-B.

The recently presented Em-Cube robot [15] utilizes Zig-
Bee, but to the best of our knowledge this paper is the first
extensive performance evaluation of a ZigBee system for SR
robots applications.

III. HARDWARE DESIGN

We constructed a system of 15 ZigBee modules for
experimental purposes. This section discusses advantages
and disadvantages of the ZigBee standard, and presents our
hardware design.

A. ZigBee

ZigBee is a standard developed by an industrial alliance
for wireless radio networks in monitoring and control ap-
plications [4]. This standard builds on the IEEE 802.15.4

S
e
ria

l

+3.3V
Power

microcontroller
S
e
ria

l

Zigbee
Module

Serial Terminal

2.4GHz
Radio

CPU

RAM

Xtal

FLASH

LCD

J TAG

Fig. 2: Block diagram of our system. Components shown
with dashed lines were not used for experiments in this paper.

Fig. 3: Single module, with and without optional processor
board.

physical/datalink layer providing flexible network topologies,
intelligent message routing and better communications secu-
rity. ZigBee operates in the unlicensed radio frequency (RF)
bands – 868, 915 and 2400 MHz. These three bands provide
a total of 27 channels with RF data rates of 20, 40 and 250
kbps, respectively [16]. The 2.4 GHz band is widely used
because it is unlicensed worldwide, has the highest data rate
with more channel options, and consumes the lowest power.
A standard ZigBee device (with around 0 dBm output power)
is purported to achieve transmission range of 30 m indoors
and over 200 m in open space.

Star, tree and mesh network topologies can be realized
with ZigBee. A network comprises a coordinator, routers
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Fig. 4: Sample execution of connectivity algorithm on a 4-node network. Dark arrows indicate message-passing. Text labels
indicate message type.

and end devices. The coordinator plays a role only when
the network starts and is not required after all nodes have
joined. Messages in a ZigBee network can be point-to-point,
broadcast or multicast. However, point-to-point messages
cannot be sent in parallel since the network uses a single
RF channel. ZigBee is designed to be tolerant to RF inter-
ference and employs a few mechanisms to provide robust
communications. These techniques include Carrier Sense,
Multiple Access with Collision Avoidance (CSMA-CA),
message acknowledgements, and alternative routes [16].

The closest competitor to ZigBee in terms of wireless
communication technology is Bluetooth. Although Bluetooth
claims a much faster data rate (1 Mbps vs. 250 kbps),
ZigBee specifies a longer transmission range and is specif-
ically designed for low power consumption [17]. The big
disadvantage of Bluetooth in modular robotics applications
is that it requires a central coordinator and is limited to
small networks. ZigBee does not have this limitation. As
discussed in Sec. II, one research group has developed a
custom Scatternet protocol that permits Bluetooth use in
larger networks, but the simplicity of an off-the-shelf, low-
cost (around $20 USD in 2008) implementation lead us to
investigate ZigBee.

B. Hardware Implementation

Hardware implementation of the ZigBee standard is avail-
able in a number of forms. We chose the JN5139 model
produced by Jennic. This module has a 32-bit CPU, 96 kB of
RAM, 192 kB of flash memory, and an antenna mounted on a
small printed circuit board. This on-board processing allows
simple applications to be run on the ZigBee module itself,

Algorithm 1 Connectivity algorithm summary
Search for connecting cycles (search is depth-limited)
if all pairs of neighbors connected then

lock connecting cycles
return true

else
repeat search with increased depth limit

end if

if received search message with higher priority then
terminate search
return false

end if

TABLE I: Message types used in connectivity algorithm.

Message Data Description

START - sent to begin algorithm

SEARCH rootID, color, outgoing search message

parent, depth

FOUND CONN color1, color2 sent to announce connecting cycle

SEARCH RETURN rootID, color incoming search message

CLEAR LABEL rootID clears color label

LOCK - locks a module

without an external processor. Because we are interested in
building a system with significant signal-processing capabil-
ity, we included the facility to add a separate processor (not
used in the experiments in this paper). The block diagram in
Fig. 2 shows our current system design, and also features to
be incorporated in the next version. These features include an
LCD display to be used in debugging application code. Fig. 3
shows an example with and without the optional external
processing.

IV. IMPLEMENTATION OF CONNECTIVITY ALGORITHM

Before any reconfiguration step can be performed in an
SR robot, the system must ensure that module disconnection
does not result in a disconnection of the module connectivity
graph. This is known as the connectivity problem. When
moving modules serially, this problem can easily be solved
with basic graph algorithms. However, finding a set of
mobile modules is more difficult. We previously presented a
parallel decentralized algorithm that finds a maximal set of
mobile modules [7]. Here we present detailed pseudocode
for implementing this algorithm in a hardware system such
as our ZigBee network.

The algorithm is summarized in Algorithm 1 for conve-
nience. As search proceeds through module network, mod-
ules are labeled as they are visited by the search. The
initiating module chooses a unique label for each neighbor.
When the search visits a module already labeled (with a label
different from its own), this signifies that a path has been
found connecting a pair of neighbors. This path is called a
connecting cycle. The module is mobile when all neighbors
are connected by a connecting cycle and modules along this
path are successfully locked. While locked, a module must
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Algorithm 2 Decentralized implementation of connectivity
algorithm

State:
ID, unique identifier of this module
neighbors, list of neighbor IDs
colors, list of current labels
parents, list of parent-pointers associated with colors
ds, disjoint set data structure
locks, number of modules currently locking me
depthLimit, current limit of search depth (in hops)

Message Handlers:
procedure HANDLE START

send SEARCH to all neighbors, with unique color labels
end procedure

procedure HANDLE SEARCH(rootID, label, parent, d)
if executing search and rootID has lower priority or

depth limit exceeded then
send SEARCH RETURN to parent and return

else
store label in colors and fromID in parents
increment depth d and forward SEARCH message
to neighbors

end if
end procedure

procedure HANDLE FOUNDCONN(color1, color2)
store color pair color1, color2 in ds
if ds has all neighbors in one set, send LOCK message

end procedure

procedure HANDLE SEARCHRETURN(rootID, color)
forward message to neighbor stored in parents

end procedure

procedure HANDLE CLEARLABEL(rootID)
remove color label from colors for rootID

end procedure

procedure HANDLE LOCK
increment locks variable

end procedure

not perform a disconnection operation. All modules execute
this algorithm in parallel; in order to avoid deadlock, if a
module is visited by a search message from a module with
higher priority, the module terminates its own search and
allows itself to be locked if required. A module terminates
its search by clearing the labels of all modules visited, and
may restart its own search when all labels and locks are
cleared.

It can be difficult to visualize the execution pattern of
asynchronous algorithms, so we illustrate a simple example
in Fig. 4. Messages are drawn in a synchronized manner, but

in hardware these messages are transmitted asynchronously.
This example shows a small network, but execution in a
larger network can be imagined by extending the “reach” of
messages at each step.

To implement this algorithm in hardware, we define a set
of message types and associated code. Code executed upon
receipt of a message is known as a message handler. The
set of message types used in our implementation is listed in
Table I and message handlers are listed in Algorithm 2. We
also list the state variables required (stored in local memory).
This pseudocode roughly follows the style of Lynch [18]. The
data structure used to manage pairs of connected neighbors
is a disjoint set [19].

Memory requirements for this algorithm scale with the
number of simultaneous searches in which a given module
can expect to participate. For example, in a small network
such as that shown in Fig. 4 each module will receive a
search message from all nodes in the network and the mem-
ory requirements would be O(n), where n is the number of
nodes. However, in a million-module network each module
will most likely only receive search messages from a local
neighborhood of some fixed size. Specific implementations
can thus optimize memory use accordingly. In our 15-node
network, we allocate colors and parents data structures
sufficient to hold data for the full network.

V. EXPERIMENTS AND RESULTS

To evaluate the feasibility of our system in its intended
application, we performed a number of experiments. First,
we conducted basic tests to quantify message delays and
the maximum available throughput. We then executed Algo-
rithm 2 multiple times while varying search depth and robot
size to assess the real-time performance of the system on a
benchmark task. All experiments were performed in a WiFi-
dense environment (the ACFR field lab). Our application
code executed directly on the ZigBee modules with no exter-
nal processing or memory resources. Results are presented
in this section.

A. Basic Tests

To measure message latency for small messages, we
performed a “ping” test. In this test, an 8-byte message
was sent along a network of 4 nodes connected in a ring
topology. We chose 8-bytes because this is the message size

TABLE II: Measured time-of-flight per message and cor-
responding data rate. Each trial consists of sending 13,312
80-byte messages between two nodes.

Trial Mean (ms) Min (ms) Max (ms) Data rate (kbps)

1 11 8 70 54.3

2 11 8 54 54.2

3 11 8 76 54.1

4 11 8 62 54.0

5 11 8 45 54.3
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TABLE III: Observed message counts for execution of connectivity algorithm in simulation and hardware with varying
network size and search depth. Averages are taken over 20 trials.

Message count, depth 2 Message count, depth 4 Message count, depth 8

Modules Simulation Hardware Simulation Hardware Simulation Hardware

4 43.2 56.4 46.4 57.2 - -

5 48.9 87.9 54.3 107.0 55.4 99.6

6 95.9 104.7 119.3 123.9 116.0 117.6

9 165.1 234.7 279.8 348.5 309.9 322.1

12 235.1 275.4 379.8 529.9 500.3 531.8

15 307.3 539.2 - - - -

used later in our benchmark implementation. We measured
time-of-flight between a message leaving and returning to
an originating node. For 1000 trials, we observed average,
minimum, and maximum time-of-flight values of 28 ms, 23
ms, and 50 ms respectively. With 4 hops this gives us an
average of 28/4 = 7 ms per hop. These observations confirm
other measurements reported in the literature [20].

Next we performed a bandwidth test to determine the
maximum data rate the system can achieve. We measured
bandwidth by transmitting an arbitrarily large amount (1
MB) of random data between two nodes in messages of
maximum size allowed by ZigBee (80-bytes), waiting for
an acknowledgement from the destination node after each
transmission. Table II lists results for five trials of this test.

Finally, we measured power consumption for one node
during the tests above. We observed power use of 0.6 W (76
mA) at 8 V while the radio was active, and 0.56 W (70 mA)
at 8 V while idle.

B. Connectivity Algorithm

To assess the real-time performance of the system, we im-
plemented Algorithm 2 as a benchmark task.We performed a
total of 300 trials with different combinations of network size
(ranging from 4 to 15 modules) and algorithm parameters
(search depths of 2, 4, and 8) with 20 trials per combination.
Our experimental setup was as follows. The hardware was
arranged on a flat surface as shown earlier in Fig. 1. Radio
antennas were separated by approximately 10 cm. No effort
was made to suppress interference from nearby WiFi sources.
One module was fitted with a button and was connected to a
desktop computer via a serial link. This allowed the special
module to display data on the desktop monitor. A separate
ZigBee “sniffer” was connected to the desktop computer to
record network traffic (but was not part of the network).

The algorithm was implemented in the C language and
ran directly on the ZigBee module, sharing processing and
memory resources with the ZigBee stack. Each message
was handled on arrival, but outgoing messages were queued
in our application code and only sent after acknowledge-
ment of the previous sent message. We observed that the
ZigBee stack resends unacknowledged messages after 16
ms, but sometimes terminates retransmission without explicit

notification. We therefore implemented a second layer of
retransmission from our outgoing queue at 1000-ms intervals.

Each trial was manually initiated by pressing the button
on the special module, which broadcast a START message to
all nodes. Mobile modules signalled success by communi-
cating execution time to the special module. Network traffic
was measured using the sniffer system. The algorithm was
configured to use a fixed search depth throughout execution.
Search depth and network size were varied across trials. We
also implemented the algorithm in simulation, using nearly
identical C code, for comparison. Each simulated node was
permitted to process a random number of messages, and
nodes were chosen for execution at random.

Resulting message counts are listed in Table III. We see
increased messages for increasing values of both network
size and search depth as expected. The discrepancy in
message counts between hardware and simulation arose due
to message retries – the sniffer counted all message traffic in
the network. Because we observed frequent out-of-memory
exceptions from the ZigBee stack, we attribute this retry rate
to memory limitations in our hardware. Our application code
used memory otherwise available to the stack.

The high message retry rate is also visible in the real-
time data, plotted in Fig. 5. This figure plots average ex-
ecution time versus the number of modules in the system.
Time increases with network size due to increased message
counts, and also because of the algorithm’s prioritization
scheme. The highest priority module will temporarily prevent
neighbors from executing their own search until it completes.
Lower priority modules then restart their search. Increasing
search depth worsens this effect, although at the highest
depth the time decreases because the long connecting cycles
permanently lock more modules. Even though search is
in breadth-first order, asynchronous message-passing means
that short paths are not guaranteed.

VI. CONCLUSIONS AND FUTURE WORK

The main conclusion we draw from our results is that a
ZigBee system is simple, low-cost, low-power, and robust,
at the expense of data rate and scalability. We have shown
experimentally that an off-the-shelf ZigBee system is a good
alternative to IR for small robots with tens of modules. This
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modules versus network size. Time was measured between
the start of a trial and algorithm success. Execution time
for non-mobile (locked) modules was not measured. The
algorithm was executed with fixed search depths of 2, 4, and
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Mean values are taken over 20 trials.

type of system can be useful in certain applications, such as
multiple disconnected groups of modules working in parallel.

The high message latency shown in our results is largely
due to memory limitations in our choice of hardware. The
ZigBee stack had to compete with our application code for
memory, resulting in message loss with increased network
traffic. The application then was forced to resend messages,
which was the major source of delay. Use of an external
processor will remove this memory contention and we expect
real-time performance to improve.

Scalability is a more significant problem. We plan to
investigate the idea of a multi-radio, multi-channel system
to improve maximum network size while retaining the other
advantages we have discussed. This approach will still only
scale linearly with increased available bandwidth, but never-
theless should comfortably support our target system scale.

Other relevant issues not addressed in this paper that
require experimental validation include transmission range
(can modules communicate over a distance) and potential
interference from mechanical elements in module hardware.
We plan to investigate these questions in future work by
performing experiments with real SR robots.

The problem of dynamic neighbor discovery was not ad-
dressed in this work. This is an issue we plan to investigate in
future work by studying module self-localization. A module
can discover the identity of a neighbor by sending a query
that includes the neighbor’s expected location.

One lesson learned from our experiments is that algo-
rithms must be immune to multiple message delivery. Even
without application-level retries, the ZigBee protocol will

sometimes successfully deliver a message multiple times.
An unexpected lesson we learned was the value of a packet
sniffer in developing and debugging code. This tool was
invaluable in implementing the asynchronous connectivity
algorithm quickly and successfully.
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