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Abstract— This paper presents an algorithm for real-time
sensor-based motion planning under kinodynamic constraints,
in unknown environments. The objective of the trajectory-
generation algorithm is to optimise a cost function out to
a limited time horizon. The space of control trajectories is
searched by expanding a tree using randomised sampling, in
a manner similar to an RRT. The algorithm is improved by
seeding the tree using the best control trajectory from the
previous iteration, and by pruning branches based on a bound
to the cost function and the best trajectory found so far.
Performance of the algorithm is analysed in simulation. In

addition, the algorithm has been implemented on two kinds
of vehicles: the Segway RMP and a four-wheel-drive. The
algorithm has been used to drive autonomously for a combined
total on the order of hundreds of hours.

I. INTRODUCTION

A fundamental competency for an autonomous mobile

robot is the ability to plan and execute collision-free paths

through unknown environments in real-time. Historically,

research on obstacle avoidance has focussed on indoor robots

whose small sizes and low speeds allow momentum to be

ignored with negligible consequences. However, as robotics

moves out of laboratories, it becomes necessary to consider

kinodynamic constraints: a controller cannot change the

pose of a robot directly, but rather applies controls (e.g.

accelerations) which modify the pose through some process

model.

The approach taken in this paper is to apply model-based

receding horizon control, using sampling-based methods to

produce trajectories. Figure 1 provides an overview of the

controller. The planning module is provided with a priori

models of the dynamics of the vehicle and the dynamics of

the environment. At each iteration, the planner uses sensor

information to update estimates of the position and velocity

of the vehicle, and of obstacles in the world. Using these

estimates, plus a set of goals provided externally, a trajectory

generator plans a feasible collision-free path over the next

few seconds. The first step of this plan is executed, then

the entire process is repeated. Replanning at every iteration

allows the controller to adjust its plan in response to errors

in its predictions.

This paper focusses on the trajectory generation step.

The problem is challenging: the time allowed for a single

iteration of online planning is tightly constrained, however
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Fig. 1. Overview of the planning loop.

the space of possible command sequences over a period of

several seconds is enormous. Randomised sampling-based

methods, particularly RRTs [9], have proven extremely suc-

cessful at tackling path-planning problems in continuous

high-dimensional spaces. Relative to classical methods such

as A* [8], sampling-based methods avoid the state explosion

associated with discretisation of the state space. The ability

to deal with high-dimensional state spaces is particularly

important when dealing with differential constraints, because

the addition of velocities to the state space increases the

dimension of the state.

Relative to the existing literature on RRT-based motion

planning, this paper focusses on kinodynamic problems using

local information only. The lack of global information means

that the planner cannot in general compute a plan all the way

to a goal location, since the goal may be outside sensor range

and the robot’s view of areas of the configuration space may

be occluded by obstacles. Instead, the planner’s task is to

optimise a cost function over a limited time-horizon which

will safely bring it closer to the goal. We will show that by

bounding this cost function, existing parts of the search tree

can be pruned and unexplored parts of the state-space can be

ignored. This can lead to substantial improvements in terms

of performance and computation time.

Kinodynamic planning involves non-holonomic vehicles

and differential constraints [3]. While several papers have

shown how re-use of plans from previous iterations can

dramatically improve performance [2][13][4], this strategy
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is complicated in kinodynamic problems by the fact that it

is non-trivial to compute the controls required to connect two

arbitrary points in state-space. In particular, it is non-trivial

to connect the current state (which will not exactly match

any of the previous plan’s predicted states, due to control

errors), to any state from the previous plan.

Instead, we propose the computation of subtrees consisting

of states similar to the states from the previous planning

iteration, by remembering the controls which were used

to generate those subtrees. A reasonable plan can usually

be produced by predicting forwards from the current state

according to the best control trajectory from the previous

iteration. While the trajectory through state-space will not

be identical, the plan will be good as long as the goal

is relatively stable and sensors do not detect any drastic

changes in obstacles. We will show that seeding the search

tree with the best plan from the previous iteration can be of

particular benefit in that it provides a tight initial bound on

the cost function, allowing large areas of the state-space to

be ignored.

The algorithm has been applied to both a team of Seg-

way RMPs navigating in an urban environment, and the

Sydney-Berkeley team’s DARPA Grand Challenge vehicle.

Collectively, the Segways have accumulated on the order of

hundreds of vehicle-hours of autonomous driving using the

algorithm described in this paper.

The remainder of this paper proceeds as follows. Sec-

tion II discusses related work. Section III then formulates

the problem and presents the trajectory generation algorithm.

Section IV describes the experimental setup, and Section V

presents the results. Section VI concludes.

II. RELATED WORK

Motion-planning problems can be divided into global

problems based on a priori information, and local problems

based on sensory information [10]. A solution to a global

problem is generally a complete collision-free path from a

start configuration to a goal configuration, whereas local

problems require the planner to continuously produce a

control input under strict time constraints, with incomplete

and possibly uncertain information.

For a review of global motion-planning techniques, see [9].

For kinodynamic problems, RRTs in particular have recently

become enormously successful. While the pass/fail criteria

for a path in a global problem is usually binary (based on

whether or not it reaches the goal), there has also been

work on incorporating continuous cost functions to coerce

RRT algorithms into producing higher-quality paths [12][5].

Another common approach is to use an RRT to generate an

admissable path in the absence of cost considerations, then

subsequently optimise using a different algorithm to improve

path quality [9].

A great deal of work in local mobile-robot obstacle avoid-

ance has focussed on reactive methods, in which explicit

models are not required (e.g. [11][10]). Instead, motion

commands are generated directly from sensor data. While

these methods have been successful (particularly in indoor

scenarios), and are fast and easy to apply, they are more

difficult to apply to problems with dynamic constraints.

Furthermore, they suffer from a lack of lookahead, which

can lead to highly suboptimal paths and problems with

oscillation.

Model-predictive methods improve on reactive methods by

allowing some degree of lookahead. A common approach is

to search the control-space deterministically by projecting

the vehicle forward along a fixed set of elemental paths

such as lines, circles, and clothoids (e.g. [7][6]). Benefits of

randomised sampling include reduced chances of becoming

trapped in systematic “worst-case” scenarios [1], and the

ability to focus computation on promising areas of the state-

space, for example using the pruning strategy proposed in

this paper.

III. TRAJECTORY GENERATION

A. Problem Formulation

The problem can be posed as follows. Let x(t) ∈ X and

o(t) ∈ O denote the state of the vehicle and of obstacles,

respectively, at time t. X will generally consist of the

vehicle’s pose in configuration-space plus its velocity. The

behaviour of obstacles is assumed known and independent

of the vehicle’s motion. At time t the controller applies a

control input u(t) ∈ U(x(t)). Planning occurs over a fixed

horizon of h seconds.

Without loss of generality, we assume that planning always

begins at t = 0. The dynamics of the vehicle are specified

by a state transition equation ẋ = f(x,u), such that the

vehicle’s state can be predicted using

x(t) = x(0) +

∫ ∆t

0

f(x(t),u(t))dt (1)

Let ũt1:t2 denote a control trajectory for the time interval

[t1, t2]. The planner must produce a complete control trajec-

tory ũ0:h for the time interval t ∈ [0, h]. Let c(x(0), ũ0:h)
denote a cost function which assigns a scalar cost to any con-

trol trajectory and initial vehicle state, given the behaviour of

obstacles. The trajectory generator’s task is to compute the

control trajectory ũ
∗

0:h such that c(x(0), ũ∗

0:h) is minimised.

B. Basic Trajectory Generation Algorithm

The core of the planning algorithm is similar to an RRT.

We maintain a tree T in which each node q consists of the

tuple < xq, tq,uq >: a point in state-space, a time, and the

control input required to reach that node (or the null control

input u0 at the root node). The algorithm iteratively expands

the tree by selecting an existing node q and a control input

u, then adding new nodes by integrating u forwards in time

from q. This process is repeated N times, where N is a free

parameter.

Let cT (qf ) denote a function which computes the cost of

the control trajectory ũ0:h from the root node to a final leaf

node qf at t = h. During tree expansion, we keep track of

the lowest-cost final node qbest. The best control trajectory

is the one required to traverse the tree from root to qbest.
The entire procedure is shown in Algorithm 1.
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Algorithm 1 Basic trajectory generation.

1 initialise: T ← qroot = < x(0), 0,u0 >, cmin ←∞
2 for i = 1 . . .N
3 q ← SELECT NODE(T )
4 u← SELECT CONTROL(T, q)
5 t← tq , x← xq

6 while t < h
7 ∆t← SELECT DT(x,u, t)

8 x← x +
∫ t+∆t

t
f(x(t),u)dt

9 t← t+ ∆t
10 if IS INFEASIBLE(x) then break

11 add qnew =< x, t,u > to T
12 if t = h then

13 cq ← cT (qnew)
14 if cq < cmin then

15 cmin ← cq, qbest ← qnew
16 end if

17 end if

18 end while

19 end for

Algorithm 1 requires a number of subroutines. The

usual RRT implementations of SELECT NODE and

SELECT CONTROL sample a point in state-space,

select the nearest node, then select the control which grows

the tree from the node towards the sampled point [9]. The sit-

uation is complicated in this case, however. Firstly, the state-

space is unbounded, so it is unclear how to sample a state.

Secondly, computation of the nearest neighbour requires

a distance metric which considers both vehicle pose and

velocity. Thirdly, it is non-trivial to compute a control which

moves from one state to another. Our current implementa-

tions of SELECT NODE and SELECT CONTROL

avoid these issues by simply sampling both from a uniform

distribution. Our implementation of SELECT DT adjusts

the time-step dynamically, selecting a time-step which en-

sures that collisions will not be missed and that the time-

horizon will not be exceeded. IS INFEASIBLE checks

for infinite-cost states (e.g. collisions with obstacles).

C. Trajectory Generation with Pruning

Expansion can occur in a more directed manner if a bound

can be placed on the cost attainable from a partial control

trajectory. Let coT (q) denote a function which returns a lower

bound on the cost of any control trajectory which includes

the node q. In other words, coT (q) is an optimistic estimate

of the cost attainable from q for the entire time horizon.

If, during expansion, the optimistic cost for a node q is

greater than the best cost found so far, cmin, then q cannot

possibly contribute to a better control trajectory than the

best one already found. Therefore, q should not be added

to the tree. If it is already part of the tree, then q and

all of its children can be pruned. Since coT (q) is strictly a

lower bound, pruning in this way only eliminates trajectories

which are provably worse, and therefore does not break any

probabilistic completeness guarantees.

Rather than searching the entire tree for prunable nodes

whenever cmin improves, we take a lazy approach to pruning.

When a node q is selected as a candidate for expansion, it is

either expanded or pruned depending on coT (q). Algorithm 2

specifies the procedure.

Algorithm 2 Trajectory generation with pruning. The prun-

ing step (line 11) is highlighted.

1 initialise: T ← qroot = < x(0), 0,u0 >, cmin ←∞
2 for i = 1 . . .N
3 q ← SELECT NODE(T )
3 if coT (q) > cmin then

3 PRUNE(T, q); continue

3 end if

4 u← SELECT CONTROL(T, q)
5 t← tq , x← xq

6 while t < h
7 ∆t← SELECT DT(x,u, t)

8 x← x +
∫ t+∆t

t
f(x(t),u)dt

9 t← t+ ∆t
10 if IS INFEASIBLE(x) then break

11 if coT (q) > cmin then break

12 add qnew =< x, t,u > to T
13 if t = h then

14 cq ← cT (qnew)
15 if cq < cmin then

16 cmin ← cq, qbest ← qnew
17 end if

18 end if

19 end while

20 end for

D. Heuristics for Finding Good Trajectories

The pruning strategy described in the previous section

allows potentially large areas of the state-space to be ignored

if a provably-better trajectory has already been found. During

the tree expansion process, the earlier a good trajectory can

be found, the less time will be wasted exploring branches

which will subsequently be pruned. This motivates strategies

for finding reasonable trajectories quickly.

One strategy is to identify heuristics which are likely to

produce reasonable trajectories, and to apply these heuristics

to the root node prior to random expansion of the tree. An

obvious heuristic is the plan from the previous iteration,

assuming that the world remains relatively static. This plan

can be re-generated in state-space by applying the control

trajectory from the previous iteration, shifted back in time

by the interval since the last plan was generated. Section V

shows that using the previous control trajectory in this way

is extremely effective for improving plan quality.

Another interesting alternative might be to use a simple

and fast planner, such as Nearness Diagram [10], to generate

an initial solution. This idea is left for future work.
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Fig. 2. An example simulated world used for algorithm evaluation. Black
squares are 1m×1m obstacles, open red circles are waypoints (the filled
sector indicates the required heading), and the filled red circle indicates the
vehicle. The positions of obstacles and waypoints are random. The size of
the world is 40m×40m.

IV. EXPERIMENTS

Experiments were conducted using a simulated

differential-drive robot, navigating in randomly generated

two-dimensional 40m×40m worlds such as the one shown

in Figure 2. The vehicle state-space X is 5-dimensional,

consisting of the the pose of the robot (x,y,θ) plus its linear

and rotational velocities (v,ω). The control-space U consists

of linear and rotational accelerations, v̇ and ω̇.

The robot can sense obstacles using a simulated 2D

laser scanner, with 80m range and a 180◦ field of view.

Its task is to navigate from the origin through a series of

10 randomly-generated waypoints scattered throughout the

world. Algorithms are assessed based on the wall-clock time

taken to negotiate each course, and the CPU time required

to select control inputs.

A. Cost Function

The planner needs a cost function with which to compare

potential trajectories. The following weighted sum was used:

c(x(0), ũ0:h) =wo max
t

[

co
(

x(t)
)]

+

wa min
t

[

ca
(

x(t)
)]

+

wr min
t

[

cr
(

x(t)
)]

+

wm min
t

[

cm
(

x(t)
)]

, t ∈ [0, h]

where wo, wa, wr , and wm are weights which sum to one.

The terms are as follows:

• co is a velocity-dependent term which penalises proxim-

ity to obstacles (the vehicle must allow more clearance

when moving faster):

co(x(t)) =

{

1− sgm
[

ψ−ψmin

ψmin

]

if ψ > ψmin
∞ if ψ ≤ ψmin

where sgm denotes the sigmoid function, ψ denotes the

clearance from the nearest obstacle, and ψmin denotes

the minimum clearance.

• ca rewards approaching goals. The planner maintains a

goal-horizon of G goals. The cost for the first goal is

calculated using

ca,0(x(t)) =

{

gl(x(t))/gl(x(0)) if gl(x(t)) > τl
0 if gl(x(t)) ≤ τl

where gl(x(t)) is the linear distance from the vehicle

to the centre of the goal, and τl is the linear tolerance

used when assessing whether the goal has been reached

(i.e. the radius of the goal). The cost for the nth

goal, ca,n(x(t)), is assessed similarly, but with gl(x(0))
replaced by the distance from the (n− 1)th goal. ca is

a weighted sum over all G goals, with the cost for any

goal set to 1 unless the trajectory has reached previous

goals.

• cr rewards reaching goals in both position and orienta-

tion. For the nth goal:

cr,n(x(t)) =

{

1 if g(x(t)) > τ
0 if g(x(t)) ≤ τ

where g(x(t)) and τ denote a distance and tolerance,

respectively, which account for both linear position and

heading. Again, reaching subsequent goals only lowers

the cost if previous goals have been reached.

• cm rewards motion, helping the planner escape local

minima:

cm(x(t)) = 1− sgm [d(x(t),x0) − 0.1]

where d denotes cartesian distance.

The weights are free parameters which determine how ag-

gressively or conservatively the vehicle behaves. For the

experiments in this section, they were set to wo = 0.37,

wa = 0.36, wr = 0.26, and wm = 0.01. A goal horizon of

G = 2 was used. Compared to a heuristic algorithm such

as VFH [11], the process of parameter selection is relatively

simple because each paramater has a clear physical meaning

with obvious consequences.

In order to predict the proximity of points along a given

trajectory to obstacles, the planner maintains a local map of

the environment, built up over a series of scans. This allows

the use of information about obstacles behind the vehicle

which are not presently visible. This local map is kept small

by forgetting about obstacles which the vehicle cannot reach

in the time horizon.

Since the cost function consists of min and max operators,

it is simple to construct the function coT (q) which provides

an optimistic cost estimate. For a node q at time tq < h, co
can only increase, and ca, cr, and cm can be bounded using

the maximum straight-line distance the vehicle could move

in h− tq seconds in the absence of obstacles.

V. RESULTS

Results were obtained in 50 randomly generated worlds,

using a time horizon of 7 seconds. In each world, experi-

ments were conducted with varying amounts of time spent
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generating plans. This was controlled by varying N , the

number of expansions made to the tree. All variations of the

algorithm were able to navigate through all worlds without

collisions.

Figure 3 shows the effects of seeding the tree with the

trajectory from the previous planning iteration. This clearly

leads to a significant reduction in path completion time.

Figure 4 illustrates an example of pruning. Without pruning,

the planner wastes considerable time exploring parts of the

state-space which cannot lead to better trajectories than the

one already computed. The effects are analysed in Figure 5.

For a given number of expansions, pruning results in a

non-trivial improvement in plan quality and an approximate

halving of the time required for planning. If the planning time

were held constant instead of the number of expansions, plan

quality could be further improved.

Fig. 3. Mean wall-clock time taken to complete each test course, with
pruning enabled, both with and without seeding the planner with the
trajectory from the previous planning iteration.

The algorithm has been implemented on the vehicles

and in the environments shown in Figure 6. Firstly, the

algorithm has been implemented on a team of Segway RMPs,

using the cost function described in Section IV. The RMPs

operate in an urban environment, requiring them to navigate

at speeds up to 3.5m/s in large open spaces, in buildings,

and through doorways. The cost function has been extended

to consider the plans of nearby Segways, represented as

dynamic obstacles. The Segways have driven autonomously

for a combined total on the order of hundreds of hours

using this algorithm. Secondly, the algorithm was used on the

Sydney-Berkeley team’s DARPA Grand Challenge vehicle,

with a modified cost function which accounted for proximity

to the centre-lines of road lanes.

VI. CONCLUSION

This paper presented an algorithm for real-time sensor-

based motion-planning under kinodynamic constraints, in

environments for which there is no a priori information. The

approach explores the space of possible control trajectories

by iteratively expanding a tree using randomised sampling.

Performance can be dramatically improved by (1) seeding

(a) Planning With Pruning

(b) Planning Without Pruning

Fig. 4. Trajectory generation with and without pruning. The trajectory tree
is displayed using blue dots: each dot corresponds to a possible future state.
Without pruning, considerable effort is wasted exploring areas of the state-
space which cannot lead to better trajectories. The images were generated
using N=1600 expansions. At the time of planning, the vehicle is moving
forwards and turning to the right.

the planning tree using the best control trajectory from the

previous iteration, and (2) pruning branches based on a bound

to the cost function and the best cost found so far. The

algorithm was implemented on two kinds of vehicles, and

has been used for autonomous driving for a combined time

on the order of hundreds of hours.
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