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Abstract 

This paper presents a deadlock-free cooperation protocol 
for an object-sorting task in a multi-agent system. First, the 
object-sorting task in a distributed robotic system is intro- 
duced and a cooperation protocol for the task along with 
the agent architecture is proposed. The agents are based 
on a homogeneous agent architecture that consists of 
search, motion, and communication modules coordinated 
through a global state. Second, the deadlock problem for 
the object-sorting task is addressed and several deadlock- 
handling strategies are provided to guarantee the coopera- 
tion protocol is deadlock-free. 

1. Introduction 

A multi-agent robotic system uses multiple robots to solve 
problems by having them work in parallel. Space 
exploration, undersea construction, nuclear waste man- 
agement, explosives detection and many other situations 
often require a multi-agent system that can achieve a 
common task by coordinating their behaviors. 

Much research on multi-agent robotic system has begun 
to emerge. Fukuda's CEBOT system171 demonstrated the 
self-organizing behavior of a group of heterogeneous ro- 
botic agents. Beni and Hackwood's research on swarm ro- 
botics demonstrated large scale cooperation in simula- 
tionC83. Brooks et all51 developed the lunar base construc- 
tion robots by using a set of reactive rules and based on the 
subsumption architecture[61. The work by Mataric[lOl ad- 
dresses the problem of distributing a task over a collection 
of homogeneous mobile robots. The task performed by the 
robots is collective homing (moving toward a specified 
region). By using simple rules the robots can minimize 
interference caused from the collection of robots. Arkin has 
demonstrated that cooperation between robotic agents is 
possible even in the absence of communication[21. It sim- 
plifies the design of an agent because there is no communi- 

cation between agents. On the other hand, it may be ineffi- 
cient due to the lack of communication. Arkin et al.[3,41 
assessed the impact on performance of a society of robots in 
a foraging and retrieval task when simple communication 
was introduced. 

In a multi-agent robotic system, some tasks can be 
achieved by a single agent, e.g. cleaning up a region, 
searching for a target in an area, etc. System performance 
of these tasks can be improved if a task can be partitioned 
into many subtasks which can be done in parallel. Some 
tasks can only be done by a single agent, e.g. moving an 
object to cross a single-plank bridge on which only one 
agent is allowed at a time. Many other tasks in multi-agent 
system require cooperation among the agents and cannot be 
done by one agent alone, e.g. moving a large object which 
is not movable by any single agent alone. These tasks are 
multi-agent tasks. In a distributed environment, it is 
necessary to have a cooperation protocol that allows 
multiple agents to help each other in the problem solving 
process for multi-agent tasks. Furthermore, multi-agent 
tasks can be blocked if all the agents need and wait for help. 
This is so called deadlock. This paper addresses the 
cooperation and deadlock-handling for multi-agent tasks in 
multi-agent robotic systems. 

Section 2 defines an object-sorting task which is a multi- 
agent task. The proposed system architecture and coopera- 
tion protocol for the task are summarized in Section 3. 
Deadlock problem is discussed in Section 4. Finally, 
Section 5 presents the simulation results. 

2. The object-sorting task 

This section formally defines the object-sorting task. Let 
O={ol, ..., O M ]  be a set of stationary objects that is 
randomly distributed in a bounded area A. Every object, 
oi=(li,di,ni), is associated with an initial location Zi, a 
destination location di. and the number ni of agents for 
moving it. An object oi can be moved only if there are at 
least ni agents available to move it. Let R = { r l ,  ... r N }  be the 
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set of agents and nm, be the maximal number of agents to 
move any single object, an object-sorting task can be 
completed only if N is not less than nmu. When, all the 
objects have been moved to their destinations, the. task is 
finished. 

For load-balancing consideration, this paper uses a 
uniform distribution model with a cooperation protocol. 
The bounded area is partitioned into disjoint subareas and 
each agent is assigned to a unique subarea. 

This paper further assumes the following: The agents are 
homogeneous mobile robots with the basic capabilities for 
navigation, obstacle avoidance, object identification and 
object handling. The agents have no prior knowledge about 
the environment, nor the other agents. So, the agents must 
search for the objects in their subareas. Finally, the agents 
communicate with the others by a broadcast or a point-to- 
point channel. 

3. Agent architecture and cooperation protocol 

An agent architecture and cooperation protocol for the 
object-sorting task was proposed in [91, which is 
summarized in this section. 

I start 

w -  
Fig. 1: State transition diagrams 

The architecture of an agent contains search, motion and 
communication modules which are finite state automata 
and coordinated through a global state. The search module 
searches for the objects, identifies their destinations and 
required number of agents. The motion module performs 
the function of moving an object alone or with other agents 
to its goal. The communication module communicates with 
the other agents in order to cooperate with them. Fig. 1 
shows the global state transition diagram. Each circle is a 
state and a thread represents the state transition driven by 
the event on the thread. For example, the search module 
searches for an object in the SEARCHZNG state and 
changes the state to MOVING if a small object is found, or 
to WAITZNG and broadcasts a help message if it finds a 
large object; the motion module changes the state from 

WAITING to MOVING and moves the object to its 
destination if there are enciugh agents to move the object; 
the communication module replies a will-help message 
when receiving a help message in SEARCHING, and 
changes its state to S-REPLY. An agent comes into SUB- 
FINISH state and broadcasts a sub-fin message after it has 
done its subtask, and enters IDLE state when receives busy 
from any agent whose subtask isn't f ~ s h e d .  The prefix I- is 
used to indicate an agent in a I -  state has finished its 
subtask. 

An object is a small object if it can be moved by an agent 
alone, An object is a large object if it requires more than 
one agents to move. An agent broadcasting a help message 
when it finds a large object is called requiring-help agent. 
The other agents willing to help and replying to the 
requiring-help agent are called will-help agent. 

Multi-agent cooperation1 requires a communication 
architecture that allows an agent to communicate with the 
other agents in order to request for help or to offer help. 
Additionally, several strategies need to be considered as 
follows. In particular the strategies used for the object- 
sorting task are described. 
1) A when-help strategy determines when to help the other 

agents. An agent accepts a help message only when it is 
in SEARCHING, (I-)h!ETURNING or IDLE states, 
otherwise the message is queued for later processing. 

2) A select-help strategy enables an agent to decide which 
requiring-help agent has; the most urgent need for help 
when there are many requiring-help agents. An agent 
selects the nearest to offer help. 

3) A select-partner strateg:y let an requiring-help agent ri 
choose the suitable agents if there are more will-help 
agents. The selected partners are called helping agents, 
and ri is called helped agent. An agent chooses the 
nearest will-help agents (3s its partners. 

4) A load-balancing strategy balances the system load 
among all the agents. It is considered in two parts. One 
part is the equal partition of the area and the uniform 
distribution of the agents. Another part is embedded in 
the select-partner strategy. When an agent needs help 
from n agents, there miky be m will-help agents such 
that m is greater than n. The load-balancing strategy 
enables the agent to select the first n nearest agents, who 
will receive an accept message. The other will-help 
agents will be rejected by reject messages. 

5) A deadlock,free strategy handles the deadlock, in which 
all the agents are in WAITING or I-WAITING state. 
First, the agents in (I-)WAITING state detect the 
deadlocked situation (which will be discussed in detail 
in Section 5), then they broadcast blocked messages to 
exchange their state information and break down the 
blocked situation by comparing their priorities. The 
lower priority agents willl help the highest priority agent. 
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4. Deadlock propose three schemes to handle deadlocks for the object- 
sorting task. 

Here is a deadlock situation using the above cooperation 
protocol. There are 4 agents R= {r1,r2,r3, r4} and two 
objects 01,02 with nI=nz=3. If r1 finds object 01 and r2 
finds object o2 at the same time, r3 and r4 will receive help 
message from both r1 and r2. If r3 chooses to help rI and r4 
chooses to help r2 according to the select-help strategy, all 
the agents will enter the WAITING state. A deadlock occws. 
We say { o1 ,02} causes the system coming into a deadlock. 
Here is a fact coming from the strategies used. 

Fact 1. 
If a set of objects will cause the system coming into a 
deadlock, they are large objects and found at the same 
time. 

Explanation: 
Assume there is a set of object K={oiloiE 0, riER, oi 
was found by ri at time t i }  such that the system comes 
into a deadlock. Because a small object requires only a 
single agent to move, it will not cause a deadlock. So oi 
is a large object if oiE K. For any oi,OjEK, i#j, 
case 1: ti e tj. 

Because rj was in SEARCHING before tj according 
to the state diagram. r .  must have been a will-help 
agent to ri and rejected by ri according to the when- 
help strategy and the state diagram. So ri had 
enough partners to move oi. The result is that oj 
should not be in L. So this case is impossible. 

Similar to case 1, it is impossible also. 
case 2: ti > t .  J' 

So ti = 5. That is, the large objects causing system 
blocked are found at the same time. 

Because the small objects will not cause a deadlock, we 
focus on the large objects. Let L~{oiloiE 0, rjER, s.t. oi 
was found by 9 at time t } ,  ILJ=k, be a set of large objects, 
and rt(oi) denote the agent r .  such that oi E Lt and oi was 
found by rj at time t .  G~d&oi) loif  Lt}. Remember oi= 
(Zi,dj,ni), and ni is the required number of agent to move oi. 
Let FF{rlrER,r$Gt} be the set of agents which don't find 
large object at time t. Because the objects causing a 
deadlock must be found at the same time, the following 
discussion uses a fixed t. Lt is referred to as L, 'poi) is 
referred to as r(oi), and Gt is referred to as G. We assume N 
2 nmax. If kl, the other agents can help the agent in G 
and the system will not come into a deadlock. So a deadlock 
may occur if k > 1. It is obvious that a deadlock will occur 
iffor all oi E L,, ni > IFI+1. 

There are three approaches for handling deadlocks: 
deadlock prevention, deadlock avoidance, and deadlock 
detection. Which deadlock-handling approach is suitable 
greatly depends on the application. Based on the strategies 
provided in previous section and a little modification, we 

4.1 Deadlock detection 

In what follows, we will present the analysis for any agent 
in (I-)WAITING state to detect the deadlock situation. 
Lemma 1 shows that a deadlock can be detected by 
checking the number of objects causing agents to stay in the 
(I-)WAITING states if global knowledge about the agent 
state is available. In a distributed environment, Theorem 1 
allows each agent to identlfy a deadlock based only on local 
information. 

Let Mirir be the maximum travel time between any two 
locations in the bounded area, and Wt ,=Io1 o E Lt, some 
agent is in WAITING or I-WAITING st& at time t+u due to 
o}, so Wt,O=Lt. Wt,u is referred to as Wu in the following 
discussion. 

Lemma 1. 
Given IW,,I>O, the system is deadlocked iff 

llfu+2&f,z-=$-= IWJ. 
(That is, the system is not deadlocked iff 

lWu+2&f,z-=$ IWJJ 

Prooj 
The only if part is trivial and obvious. Next we consider 
the if part: given IWu+2&=IW,I. The agents are 
partitioned into the following sets according to their 
current states, except the FINISH state which means the 
task is finished: 

MOVE={rER, r's state is MOVING or I-MOVING} 
HELP={r€R, r's state is HELPING or I-HELPING} 
WAlT={rER, r's state is WAITING or I-WAITING} 
AVAIL={rER, r's state is SEARCHING or 

RETURNING or I-RETURNING or IDLE} 
TEh@={rER, r's state is S-REPLY or R-REPLY or 

I-REPLY or SUB-FINISH} 
Each state in TEMP is a transit state and can be ignored. 
Given IW,I>O, i.e. WAIT set is not empty, if the system 
was not deadlocked at time t+u, the agents in AVAIL can 
offer help immediately and the agents in MOVE or HELP 
may offer help in the future. If they can help to move an 
object at time t+u+v other than enter WAIT, then 
lWu+JclWJ. We consider the case in each set starting 
from the time t+u: 
1)HELP set: 

When an agent in HELP set reaches the object, either it 
enters MOVE set if there are enough agent to move the 
object or enters WAIT set. Because an agent stays in 
HELP state no more than a MIT. So the maximum time 
for these agents to reach and move an object in W ,  is a 
MTT. 

2)AVAIL set: 

2582 - 



Every agent in the set is a will-help agent. If t h e  agents 
in AVAIL are accepted by the requiring-help agents, 
they enter HELP set. So the maximum time for these 
agents to reach and move an object in Wu is a MTT. 

Because an agent stays in MOVE and enters AVAIL set 
no more than a MTT. After that, they enter HELP set 
immediately if there is any requiring-help agent. So the 
maximum time for these agents to reach and move an 
object in W ,  is 2 M U .  

So the maximum time for the agents not in WAIT to 
reach and move an object in Wu is 2 M T .  On the other 
hand, they all enter WAIT set if they cannot move any 
object in Wu in 2 M P .  That is, the system is deadlocked if 

3)MOvE set: 

IWU+2& = IWJ. 

Theorem 1. 
When any agent stays in WAITING or I-WAITING state 
for 2(N-1)kLT,  the system is deadlocked. 

Proof: 
The system is deadlocked if all the agents find large 
objects at the same time, i.e. IWol= N. If it is not the case, 
i.e. IWol < N. From Lemma 1 ,  the system is not 
deadlocked at t+2M7T if IW2& < IWoI. In the worst 
case: IWoI=N-1, IW2N-1 M d = 0  if the system is not 
deadlocked at t+Z(N-I )dT .  That is, all the objects in L 
have been moved, and there is no agent in WAlTING or I -  
WAITING due to the objects. 

So if an agent stays in (I-)WAITING state for 2(N-l) 
MTT, all the agents must be in (I-)WAITING stak and the 
system is deadlocked. 

This scheme is very simple and effective. However, it may 
be inefficient because the deadlock detection time is 
proportional to the number of agents. The system 
performance will degrade when the number of agents 
increases. To avoid unnecessary waiting, let an agent r 
broadcasts an is-blocked message every 2 MrlT;T when 
staying in (I-)WAITING, and the other agents not in 
(I-)WAITING reply with not-blocked message. If r receives 
any not-blocked, it keeps waiting, otherwise, it has detected 
a deadlock situation. This improvement can detect a 
deadlock quickly once a deadlock murs .  But, it introduces 
redundant message transmission. 

4.2 Object priority 

This scheme prevents deadlocks by the following parts: 
It assigns a unique priority to each object. 
Select-help strategy is modified. An agent selects the 
agent having found the highest priority object. 
Select-partner strategy is modified. An agemb selects 
its partners by f is t  considering their states are not in 
(I-)WAITING, then shorter distance. 

When-help strategy is modified. An agent in 
(I-)WAITING state also can offer help if it is not the 
agent having found the highest priority object. 

An object has a higher priority if it is nearer to its destina- 
tion. In our two-dimensional experimental environment, for 
example, the priority of an object is determined by compar- 
ing the following order: 

1. the distance between the object and its 

2. x-coordinate of the object, 
3. y-coordinate of the object. 

destination, 

Because there is no more than one object having the same 
(x,y) coordinates, different object has different priority. The 
scheme guarantees deadloclk prevention when an agent can 
offer an help. The last part is for the situation when ni > 
FI+1 for all oi E L. 

This scheme is very simlple and easy for implementation. 
Nevertheless, many redundant messages are transferred for 
replying to the help coming from higher priority agents, or 
rejecting the will-help agents which are more than required. 

4.3 Feasible sequence 

This scheme utilizes the wncept of feasible sequence and 
associated algorithms in order to guarantee that selecting 
an agent to offer help doesii't cause a deadlock. Meanwhile, 
it has additional advantages;: 

It eliminates the redundant messages transferred. 
It is load-balancing. 
It can improve the syslem performance. 

Definition: feasible sequence. 
A feasible sequence is a permutation sequence 
SI ,..., si ,..., sk of L, si €: L, 1s i 5 k, such that SI is 
moved to its destination by the agents in F and r(sl), 
then s2 is moved to its destination by the agents in F ,  
r(sl), and r(s2), ... , imd finally sk is moved to its 
destination by all agents. 

For example, assuming R:={r1,r2,r3,r4}, L= {ol,02}, G= 
{r1,r2},  n1=3, n2=2, a feasible sequence may be 01.02 or 
02.01. If n1=3, n 2 4 ,  the feasible sequence is 01.02 only. 

Theorem 2. 
Any deadlock may be caused by L can be avoided if 
there is a feasible sequence in L. 

Fact 1 states that L may cause a deadlock. However, 
there is a feasible sequence in L. Assume sI, ..., Sk is the 
feasible sequence, we can let SI be moved to its 
destination first, then s2 , ... , and let sk be moved to its 
destination at last. Because all the elements in L are 
moved to their destinations, the deadlock caused by the 
set L is avoided. 

Proof: 
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If there is a feasible sequence in L, the agents can moved 
these objects according to the sequence. Furthermore, they 
can distribute themselves to different objects such that more 
than one objects can be moved simultaneous and increase 
the performance. In fact, the proposed protocol includes the 
effect. An agent can reply to the agents in G according to 
the sequence r(sl), ..., r(sk). If it is rejected by r(sl), try 
&I), etc. However, there are redundant messages 
transferred. Algorithm load-balancing can eliminate the 
redundant messages. 

If there is no feasible sequence in L, the select-help 
strategy must be modified to avoid coming into a deadlock. 
In addition, the agents in G may need to exit WAITING 
state to help each other. For example, assume R= 
('1 ,r2,r3,'4 1,  L={ol,02 1,  G={ ,r2 1, r(oI)=rI, r(o2)=r2, 
n1=4, n2=4, and the sorted sequence of L is o1 ,02. Though 
there is no feasible sequence, both 1-3 and r4 can select rI as 
the helped agent. Besides, r2 must exit WAITING state and 
go to help r1 to avoid a deadlock. After o1 having been 
moved to its destination, the agents can continue to move 
02. In order to implement the scheme, the select-help 
strategy is modified to the following: 
Step 1. If k = 1, the agent in G is the selected agent. 

Otherwise, continue the next step. 
Step 2. Use algorithm find-feasible-sequence to check if 

there exist a feasible sequence in L. 
Step 3. If there is a feasible sequence in L, use algorithm 

load-balancing to select the helped agent. 
Otherwise, select the agent according to the order 
of the sequence SI, ..., sk sorted in algorithm find- 
feasible-sequence. That is, if will-help r(sl) is 
rejected, try r(s2), etc. 

Let I(oi)=i be an index function for oi E L. Algorithm 
find-feasible-sequence will fiid a feasible sequence in L if 
there is a feasible sequence in L. 

Algorithm Find-feasible-sequence. 
Step 1. Sort L by keys ni and agent priority to an sequence 

SI, ..., sk. First sort by key ni with non-decreasing 
order. If ni = nj , compare the agent priorities of 
r(oi) and r(oj> to determine their order. 

f o r l s  i 5 k d o  
Step2. C = N -  k 

j=I(si); 
i fC+  1 2  njthen 

C = C + 1  
else 

mark si+], ..., sk as the unsatisfied sequence, 
the result is no feasible sequence, 
exit. 

step 3. The sequence SI,. . . ,sk is a feasible sequence. 

Algorithm Load-balancing. 
Step 1. Initialize the current number of agent, Ci , for all oi 

E L to 1. 
Step2.forIS i l ;  Ndo 

i f r i  E F then 
for 12 j <  k do 

l=I(,sj); 
if Cl < nl then 

if i is equal to my id. then r1 is the 
selected agent, 
exit; 

else c/=c1+ 1. 

The agents in F also need some modFfication for their 
behavior when they stay in ([--)WAITING state. If there is a 
feasible sequence, they can stay (I--)WNTING state and wait 
for help. While there is no feasible sequence, the agents in 
G must exit (I-)WAlTlNG state to help each other in order 
to avoid a deadlock. 
Step 1. Use algorithm find-feasible-sequence to check if 

there is a feasible sequence in L. 
Step 2. If there is no feasible sequence in L, and the object 

found by itself is in the marked unsatisfied objects 
si+], ..., Sk, select the helped agent according to 
the order of the sequence s i+ l ,  ..., Sk. That is, if 
will-help r(si+l) is rejected, try next one in the 
sequence, etc. 

The sorted sequence is kept by all agents and is referred 
when they can help the others till all objects in L are moved. 

5. Simulation 

The object-sorting task was simulated in a multi-strategy 
simulator which is a testbed for testing different strategies 
of the cooperation protocol on the object-sorting task. 
Detailed simulation environment and preliminary results 
are described in [91. 

The experiment was carried out by varying the number 
of agents N ,  and the number of objects M. At each time step, 
each agent executes its search, motion and communication 
modules. The performance was evaluated with the number 
of time steps. Test cases were randomly generated, with less 
than one tenth of the cases producing deadlocks. Deadlocks 
are more possible in the test cases with few agents and lots 
of objects. 

Fig. 2 shows a typical preliminary result, excluding 
deadlock cases, about the execution time for different 
number of agents and objects. When the number of objects 
increases, the execution time increases linearly with it for 
all N .  It shows the cooperation protocol is very stable under 
different workloads. The execution time decreases with the 

- 2584 - 



increasing number of agents. It shows that the protocol can 
effectively utilize the increased agent-power. 
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Fig. 2: Execution time for N=10,20,30,40 and 50 
The deadlock cases have been tested with deadlock 

detection scheme and object priority scheme, which use 
cooperation strategies described in Section 3 and 4.2, 
respectively. In the cases with no deadlocks, deadlcck 
detection spends less time on 56% of the cases with 0-3% 
faster. On the other hand, in the deadlock cases, object 
priority is a little bit better than deadlock scheme with 
1-4% faster on 72% of the deadlock cases. The results 
indicate that choosing the nearest partners is better for 
general cases. However, the strategy does not prevent 
deadlocks, and therefore must pay for the overhead of 
deadlock detection, e.g. 2 KT. Selecting a highest priority 
object can prevent deadlock but it loses the gwmetric 
advantages, e.g. shorter distance. In summary, none of the 
two sets of strategies is better for all cases. 

Deadlock detection scheme requires that an agent in 
waiting issues an is-blocked message to detect a deadlock 
every 2 MIT. So overhead from the scheme is proportional 
to the number of deadlocks and the number of objects 
causing them, i.e. ILI. Furthermore, 2 M7T is i i  small 
amount in contrast to the total time unit for accomplishing 
the overall task if there are many objects. Because these 
deadlock cases include a large number of objects (30, ... , 
200) and deadlock occurs once or twice in these cases, 
experimental results showed that deadlock detection 
scheme doesn't cause much overhead in contrast to the 
general test cases. Neither does the object priority scheme 
because it doesn't need to detect deadlocks. 

6. Conclusion 

This paper focuses on the problem of cooperation and 
deadlock-handling for an object-sorting task in a multi- 
agent robotic system. The agent architecture, cooperation 
strategies and deadlock-handling schemes are proposed for 
the task. 

The experimental results showed that the cooperation 
protocol has stable and reliable behavior under different 
workloads. Increasing the number of agents will decrease 

the waiting time of agents and speedup the execution time. 
Three deadlock-handling schemes were proposed and ana- 
lyzed to guarantee a deadlock-free cooperation. Preliminary 
results with two of the schemes were presented and more 
experiments are under way. 

By using the simulatlor, further development and 
experiments will be conducted in order to develop and 
analyze the effects of different cooperation strategies and 
deadlock-handling schemes.. 
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