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Abstract 
 

With the ever increasing role of computerized machines in society, Human 
Computer Interaction (HCI) system has become an increasingly important part of our daily 
lives. HCI determines the effective utilization of the available information flow of the 
computing, communication, and display technologies. In recent years, there has been a 
tremendous interest in introducing intuitive interfaces that can recognize the user's body 
movements and translate them into machine commands. For the neural linkage with 
computers, various biomedical signals (biosignals) can be used, which can be acquired 
from a specialized tissue, organ, or cell system like the nervous system. Examples include 
Electro-Encephalogram (EEG), Electrooculogram (EOG), and Electromyogram (EMG). 
Such approaches are extremely valuable to physically disabled persons. Many attempts 
have been made to use EMG signal from gesture for developing HCI. EMG signal 
processing and controller work is currently proceeding in various direction including the 
development of continuous EMG signal classification for graphical controller, that enables 
the physically disabled to use word processing programs and other personal computer 
software, internet. It also enable manipulation of robotic devices, prosthesis limb, I/O for 
virtual reality games, physical exercise equipments etc. Most of the developmental area is 
based on pattern recognition using neural networks. The EMG controller can be 
programmed to perform gesture recognition based on signal analysis of groups of muscles 
action potential. This review paper is to discuss the various methodologies and algorithms 
used for EMG signal classification for the purpose of interpreting the EMG signal into 
computer command. 
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1.  Introduction 
Recently, a significant amount of effort has been dedicated in the field of HCI in the field of HCI for 
the development of user-friendly interfaces employing voice, vision, gesture, and other innovative I/O 
channels. In the past decade, studies have been widely pursued, aimed at overcoming the limitations of 
the conventional HCI tools such as keyboard, mouse, joystick, etc. One of the most challenging 
approaches in this research field is to link a human's neural signals with computers by exploiting the 
electrical nature of the human nervous system. More recently, there has been increasing interest in 
exploiting bioelectric signals such as EMGs, EEGs and EOGs for the purpose of devising new types of 
HCI. As the silver generation has been exponentially increasing, the social demands for the quality of 
life (QOL) also have been increasing proportionally. To improve the QOL of the disabled and the 
elderly, robotic researchers have been trying to combine the robotic techniques into the rehabilitation 
systems. However, since the robotic system needs to guarantee both the safety and reliability, many 
recent studies proposed the human-in-the-loop control system for considering user’s intention. Since 
the human’s information system is different from the machinery system, HCI is regarded as one of key 
technologies in the human-in-the loop control system (Moon et. al., 2004). To implement an HCI, the 
acquired and processed signals need to classify which is the difficult part of the system. The choice of 
classification methodology depends on the application field. In the field of HCI, the studies found that 
most of the classifiers are neural network based. This is because it has been used by many researchers 
in the past very widely as well as it has numerous advantages in the processing and classification of 
biosignals. 

This paper first discussed about several types of non biosignal based devices/systems, their 
applications along with some advantages and weak points. Then the paper proceeds with different kind 
of methodologies used for EMG signal classifications in the field of HCI. Finally a summary table 
presented with brief properties of the classifier discussed in this paper. 
 
 
2.  Techniques used in HCI 
2.1. Non-biosignal Approach 

Several attempts have been done beside the use of biomedical signals to implement a convenient 
solution of HCI for the disabled persons. These devices are based on motor skills and still available to 
use. The “Tonguepoint” based on IBM Trackpoint, a pressure sensitive isometric joystick operated by 
user’s tongue. The joystick provides cursor-control, while two switches (a bite switch and a manual 
switch located outside of the mouth) allow the user to consider left and right button selections (Salem 
et. al., 1997). Another commercially available device “Headmouse” (Website: 
http://orion.com/access/headmouse/index.htm), a pointing device, that that transforms head movement 
into cursor movement on the screen. This device device uses infrared distance measurement to measure 
the head motion. The wireless sensing technology employs infrared light to track a small disposable 
target (reflective accessory) that is placed on the user's forehead or glasses. The mouse pointer 
movement on the screen is then proportional to the user’s head movement, which are used to trigger a 
switch through which the user can control various system functions. A specific problem with head 
mouse systems is the required motor skills. The mentioned approaches have potential disadvantages for 
some categories of users. For example, a user with cerebral palsy may not have the fine motor abilities 
in the tongue to operate the Tonguepoint device. Similarly, a user with spinal vertebrae fusion may not 
be able to turn his or her head, so the Headmouse would be of little benefit (Barreto et. al., 2000). 
Patients with severe multiple sclerosis and SCI have reduced range of neck motion causing difficulties 
during computer use through these type of devices (LoPresti et. al., 2003). Subjects with disabilities 
were also found to have longer reaction time, and spend more time trying to make fine adjustments to 
cursor position. Filtering and gain adjustment options in some of head-control systems might improve 
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usability for some people with neck movement impairments. However, limitations of these systems 
have been demonstrated by practical experiments. It was also found that more adaptive techniques 
required to allow head control for automatic adjustment to the needs and abilities of a particular user. 
However, limitation of these systems have been demonstrated by practical experiments. It was also 
found that more adaptive techniques required to allow head control for automatic adjustment to the 
needs and abilities of a particular user. More severe problems with head control were mentioned in 
(Ortega R. et. al., 2004). A Head mouse system operates on the principle of a single switch. This 
allows the user to give single commands at the appropriate time and reduce the amount of user’s head 
movements. However, a critical issue with this approach is its exact timing requirement, which often 
leads to increase head movement and spasticity; especially when the user is trying to work relative fast. 
Head movements indeed require considerable muscles and ligaments efforts and their overuse can 
cause injuries to the users (Surdilovic et. al., 2005). 

Other more complex approaches have attempted to provide computer interface functionality 
requiring even fewer abilities from the potential users. A prominent example is the eye-gaze tracking 
interface approach. This principle patented by Mason K. A., (1969) is based on the observation that 
reflected light produces a bright spot (glint) on the cornea, which position can vary according to the 
change of eye-gaze direction. In the most common types of these systems, an infrared illuminator and 
video camera are used to obtain continuous images of the subject's eye. Application of digital image 
processing techniques allows the real-time isolation of two landmark reflections from the subject's eye: 
the reflection from its pupil and the smaller and brighter reflection from its cornea. Real-time 
determination of the centers of these reflections and their relative positions in the image captured by 
the camera is used to define the instantaneous orientation of the eye's line of gaze. The clicking 
operation in these systems has been attempted by assigning a "dwell latency" and executing a click 
whenever the cursor remains within a so-called "dwell neighborhood" for at least that amount of time. 
This clicking procedure, however, may result in false clicks if a user is simply staring attentively at a 
small area of the screen, a dilemma referred to as the "Midas Touch" problem (Jacob, 1991). Given 
their complexity and computational requirements, eye-gaze-tracking systems are comparatively 
expensive and require great attention and effort to achieve proper cursor control (Foulds et al., 1997). 

The research using eye-gaze to create a usable HCI is active (Wang et. al., 2006), e.g., eye 
mouse. However, there is still no efficient interface being built up due to the inaccuracy of the eye-
tracking technique and the Midas Touch problem. In (Bates et. al. 2002), a zooming-in interface has to 
be designed to compensate for the positional tolerance of eye tracking. Problem is the target size 
significantly affects the system performance. Despite some difficulties, an effort is made in this 
technology to make eye-gaze-tracking systems more portable (e .g. head-mounted version) (Barreto et. 
al., 1999). Although they provide the subject with the ability to quickly displace the cursor across the 
screen, is not easy to execute fine, small cursor movements in these systems. Furthermore, the stability 
of the cursor in a single screen position is limited. If the user changes position with respect to the plane 
of the screen during the use of the device, the calibration is lost and cursor position errors develop. 
Another weak point is, if the subject moves enough to shift his/her eye out of the field of vision of the 
camera, the operation of the system is disrupted. A comparative studies carried out by Barreto et. al., 
(1999), clearly indicates that the eye-gaze approach requires more strenuous and stringent control 
abilities for finer cursor movements. At present, some eye-gaze systems do attempt to compensate for 
the movement of the subject by using a pan-tilt camera, and adding a magnetic head tracking device to 
feed head position information and command compensatory movements to the camera, in real time. 
Results are improved with this addition, but unfortunately at the expense of added complexity and cost. 

In recent years, vision-based hand gesture recognition has become a very active research theme 
because of its potential use in HCI. Vision-based gesture recognition is achieved by using video 
cameras, image processing and visual tracking algorithms. Advanced mouse emulators named Camera 
Mouse (Betke et. al., 2002) track users’ movements with a camera focusing on various body features as 
target, such as tip of the user’s nose, eyes, lips or fingers. Sophisticated pattern recognition software 
algorithms recognize the target pattern, determine motion parameters, and translate this information 
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into motion of the mouse pointer on the screen. Initial experiments with the Camera Mouse have given 
encouraging results for subjects with relatively good muscle control abilities. It has proven to be user 
friendly because it requires no calibration or body attachments before and during its use. It is easily 
adaptable to serve specific needs of various disabilities, and it is especially suitable for children (e.g. 
with cerebral palsy). However, several problems were also observed during its experiments, such as 
drifts, loss of communication, slow communication rates etc (Betke et. al., 2002). People with 
insufficient muscles control, the Camera Mouse become quite ineffective. Nakanishi et. al. (1999) 
proposed a powered wheelchair controlled by the face directional gestures. But the gesture recognition 
required a high-speed image processing hardware and overall cost of system become very high. 
However vision based techniques require restricted backgrounds and camera positions and are suitable 
for a small set of gestures per formed with only one hand (Pavlovic et. al., 1997). 
 
2.2. Biosignal Based Approach 

2.2.1. EOG Signal Approach 
Some biosignals have also been shown to be suited for the creation of a new communication interface 
between humans and computers. In this area the use of biosignals offer brand new possibilities when 
compared to the conventional, mostly audio-visually based HCI. Eye movements are arguably the most 
frequent of all human movements (Jonghwa Kim et al., 2008). In terms of our primary senses, the eye 
is one of the main subsystems of the body. The position of the eye directly relates with the visual 
information of interest. It is possible to provide very intuitive assistive device by using the position of 
the eye. It is possible to provide very intuitive assistive device by using the position of the eye. Position 
of the eye can be measured optically, mechanically, and electrically. The electrical method of 
measurement, the EOG, is the least invasive method of determining the eye position (Doyle et. al. 
2006). 

Eye movement research is of great interest in the study of neuroscience and psychiatry, as well 
as ergonomics, advertising and design. Since eye movements can be controlled volitionally, to some 
degree, and tracked by modern technology with great speed and precision, they can now be used as a 
powerful input device, and have many practical applications in HCI. EOG is one of the very few 
methods for recording eye movements that does not require a direct attachment to the eye itself 
(Qiuping Ding et. al., 2005). The ability of humans to visually follow the path of an object with the 
help of dynamic corrections is for the majority an easy task. The EOG is the electrical recording 
corresponding to the direction of the eye and makes the use of EOG for applications such as Man 
Machine Interface (MMI) that is very attractive. As most of the machines that need to be operated are 
computer controlled. MMI is synonymous to HCI (Kumar et. al., 2002). 
 

Figure 1: Basic Block Component Diagram of HCI System based on EOG 
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There are many ways used to measure the eye movement, some are more accurate than EOG, 
but most of them are far more expensive and bring much inconvenience and uncomfortable feeling to 
users. The EOG method is noninvasive, low-cost and easy to use. A study on the group of persons with 
severe disabilities shows that many of them have the ability to control their eye movements, which 
could be used to develop new HCI systems to help them communicate with other persons or control 
some special instruments. Furthermore, this application of EOG-based HCI could be extended to the 
group of normal persons for game or other entertainments. Compared with the EEG, EOG signals have 
the characteristics as follows: the amplitude is relatively high, the relationship between EOG and eye 
movements is linear, and the waveform is easy to detect (Zhao et. al., 2008). 

To determine the applications of EOG based HCI, it is important to realize the limitations and 
the potential errors in the system. There may be several main sources of error that affect the accuracy 
of the HCI using EOG signals. There are several problems related to head and muscle movement 
interface, signal drift and channel crosstalk. Whether the user makes a choice or sits idle, there are 
always some unavoidable minor head movements (Kaufman et. al., 1993). It is, however, difficult to 
differentiate the gaze vector from EOG signals because the EOG signal is affected easily by a noise 
due to head movement (Kuno et. al., 1998). Some other factors that may affect HCI performance are 
angular displacement between head and torso, physiological defects, an individual perception of gaze 
point, and movement of the individual relative to a known reference point. The HCI using the EOG 
signal proposed by Krueger et al (2007) can be used for nearly every person except for totally locked-
in patients. The reaction time of the cursor is very fast and the users made themselves familiar with the 
interface very easily. In a limited time the user was forced to increase the accuracy very fast. 
Furthermore, the game-like trial environment can create stressful situation on user and can measure 
user performance at certain time is an additional advantage. However good results could not be 
reproduced for every user and the learning curve can vary widely (Krueger et. al., 2007). The artificial 
stress situation blocked sometimes the performance of the system. The stability of the signal may 
increase significantly if the user allowed to do a free training. On the other hand a defined testing 
environment is needed for the HCI to characterize it and be comparable with other approaches 
(Birbaumer et. al., 2004). When maximum performance is desired it is discussable if an EOG system is 
still adequate. The user might also search for an eye tracking system which provides higher accuracy 
than EOG system. Yet the advantage of a simple system vanishes and either the hardware or the 
software computing power is a magnitude higher (Hiley et. al., 2006). 
 
2.2.2. EEG Signal Approach 
Numerous studies have shown that individuals with severe neuromuscular disabilities can learn to use a 
Brain Computer Interface (BCI), by modulating various features in their EEG (Wolpaw et. al., 2002). 
The BCI is an emergent multidisciplinary technology that allows a brain to control a computer directly, 
without relying on normal neuromuscular pathways (Dornhege et. al., 2007). 
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Figure 2: Structural components of a BCI System 
 

 
 

The most important applications of the technology for the paralyzed people who are suffering 
from severe neuromuscular disorders, as BCI potentially provides them with communication, control, 
or rehabilitation tools to help compensate for or restore their lost abilities. Among various brain signal 
acquisition methods, the EEG is of particular interest to the BCI community (Wolpaw, 2002; Curran et. 
al., 2003; Vaughan et. al., 2003; Ebrabimi et. al., 2003). The EEG records the electrical brain signal 
from the scalp, where the signal originates from postsynaptic potentials, aggregates at the cortex, and 
transfers through the skull to the scalp (Fisch et. al., 1999). EEG based device that requires extracting 
raw EEG data from the brain and converting it to device control commands through suitable signal 
processing techniques. The cerebral electrical activities of the brain are recorded via the EEG using 
electrodes that are attached to the surface of the skull. These signals measured by the electrodes are 
amplified, filtered and digitized for processing in a computer where feature extraction is performed, 
classification is done and a suitable control command is generated (Gopi et. al., 2006). 

EEG based BCI technology has seen much development in recent years. Specifically, EEG 
based BCI technologies that do not depend on peripheral nerves and muscles have received much 
attention as possible modes of communication for the disabled (Palaniappan, 2005).Various EEG 
phenomena, such as slow cortical potentials, P300 potentials, and mu and beta rhythm control can 
provide opportunities for severely disabled individuals to further interact with their environment . One 
of the popular phenomena utilized for BCI control is the modulation of mu (8-12 Hz) and beta (18-25 
Hz) rhythms via motor imagery. Actual or imagined motor movements result in a de-synchronization 
(decrease in amplitude) of these rhythms over the sensorimotor cortex. Users are thus directly able to 
control a BCI by modulating the magnitude of these rhythms by switching between motor imagery 
tasks (Rasmussen et. al., 2006). 
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The EEG bears merits as it is noninvasive, technically less demanding, and widely available at 
relatively low cost. On the other hand, it also brings great challenges to signal processing and pattern 
recognition, since it has relatively poor signal-to-noise ratio and limited topographical resolution and 
frequency range (Wolpaw et. al., 2006). However non-invasive data acquisition makes automated 
feature extraction challenging. It is because the signals of interest are 'hidden' in a highly noisy 
environment. It was demonstrated that the spatial filtering operations improve the signal-to-noise ratio 
(Bufalari et. al., 2006). Unfortunately, the intensive training time (several months) involved for a user 
to gain a high degree of control (>80% accuracy) may be a deterrent for practical applications of BCIs 
such as prosthetic control and daily computer use for disabled individuals (Guger et. al., 2003). 
 
2.2.3. EMG Signal Approach and Importance 
Among these bioelectric signals, EMGs are considered to be the source of a new means of HCI, i.e. an 
alternative input mechanism. In fact, an input device developed using EMGs is a natural means of HCI 
because the electrical activity induced by the human's arm muscle movements can be interpreted and 
transformed into computer's control commands. Furthermore, EMGs can be easily acquired on the 
surface of human skin through conveniently attachable electrodes. 

Compared to optical systems, EOG based systems provide favored possibilities for mouse 
pointer control, and are practical and valuable for people with SCI. However, their complex learning 
and calibration procedures present the main limitations and require further development (Surdilovic, 
2005). On the other hand, one of the major limitations of BCI systems is the high potential for EMG 
contamination. EEG signals originate in the neurons of the brain and have to propagate through the 
skull and the pericranial muscles in order to reach the surface electrodes. Because the EEG signals are 
small in amplitude (5–300 μV), the EEG biopotential amplifiers are designed to incorporate high 
amplification (Taberner et. al., 1998). Thus, any muscle movement on the head or neck can produce a 
large noise contamination from the corresponding EMG signal. From an application standpoint, this is 
a big inconvenience to a user, especially if the user has a condition such as cerebral palsy. Most BCI 
researchers have tried their best to eliminate any EMG artifacts, especially eye blinks and neck 
movements (Wolpaw et. al., 1994; Pfurtscheller et. al., 1996). 

The EEG is a noninvasive monitoring method of recording brain activities on the scalp (Millan 
et. al., 2004). However, signals acquired via this method represent the massed activities of many 
cortical neurons; they also provide a low spatial resolution and a low signal-to-noise ratio (SNR). 
Invasive monitoring methods, on the other hand, capture the activities of individual cortical neurons in 
the brain (Wessberg et. al., 2000). However, many fundamental neurobiological questions and 
technical difficulties need to be solved (Nicolelis, 2001), and extensive training is required for interface 
methods based on brain activities (Cheng et. al., 2002). Signals generated because of body motion at 
the level of peripheral nervous system can be detected by an ENG (Cavallaro et. al., 2003) and an 
EMG (Chu et. al., 2006). However, ENG-based interfaces have limitations with respect to the SNR, 
dimensions, and drifts: that is, damage to the neural tissue (Bossi et. al., 2006) and continued 
differential motion of the electrode within the fascicle cause a reduction in the SNR and a gradual drift 
in the recorded nerve fiber population (Lawrence et. al., 2004). Whereas, EMG signals can be 
measured more conveniently and safely than other neural signals. Furthermore, this noninvasive 
monitoring method produces a good SNR. Hence, an EMG-based HCI is the most practical with 
current technology. 

EMG measures electrical currents that are generated in a muscle during its contraction and 
represent neuromuscular activities. EMG signals can be used for a variety of applications including 
clinical applications, HCI and interactive computer gaming. Moreover, EMG can be used to sense 
isometric muscular activity which does not translate into movement (Park et. al., website: 
http://melab.snu.ac.kr/Research/melab/doc/HCI/muscleman_paper.pdf). This makes it possible to 
classify subtle motionless gestures and to control interfaces without being noticed and without 
disrupting the surrounding environment. On the other hand, one of the main difficulties in analyzing 
the EMG signal is due to its noisy characteristics. Compared to other biosignals, EMG contains 
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complicated types of noise that are caused by, for example, inherent equipment noise, electromagnetic 
radiation, motion artifacts, and the interaction of different tissues. Hence, preprocessing is needed to 
filter out the unwanted noises in EMG. This difficulty becomes more critical when resolving a 
multiclass classifying problem. In most previous works, therefore, multi-channel EMG sensors are 
used at the same time to detect relevant EMG patterns by a combined signal analysis. In this case, 
however, users suffer from the inconvenience of carrying many cabled electrodes (Jonghwa et. al., 
2008). 

In human-centered solutions such as a gesture-based interface, the system customarily 
compensates for individual differences between users to produce a consistent pattern-recognition rate 
no matter who is using the system. However, in the case of security, you can take advantage of user 
differences to prevent unauthorized users. You could also do this by monitoring EMG signals 
corresponding to typical computer command sequences. The EMG signals have different signatures 
depending on age, muscle development, motor unit paths, skin-fat layer, and gesture style. The external 
appearances of two peoples’ gestures might look identical, but the characteristic EMG signals are 
different. In terms of fun applications, the video game industry constantly needs quick, flexible 
interfaces. New input devices such as the Xbox controller are pushing the limits by increasing the 
complexity of numerous physical buttons and sticks manipulated simultaneously. However, it is 
possible to map multiple muscle groups to different actions to distribute this complexity across the 
body. This would require training for proficiency, but the net result would be a whole new gaming 
experience (Wheeler et. al., 2003). 

In the past three decades, myoelectric control has attracted more and more attention for its 
application in rehabilitation and human-computer interfaces. In myoelectric control systems, hand 
gestures are often used for controlling peripheral equipments. Hand gestures are captured by the means 
of surface electromyography (SEMG), by sensors which measure the activities of the musculature 
system (Weir, 2003; Chen et. al., 2007). Accurate recognition of the user’s intent on the basis of the 
measured SEMG signals are the key problem in the realization of myoelectric control. From early 
1970’, researchers have studied the classification of hand motions such as finger flexion-extension, 
wrist flexion-extension and supinationpronation by sensing the activities of upper arm muscles. 
However, although the recognition rates have reached above 90 percent in the recent research work, 
there are still many problems that need to be solved for realizing practical applications of myoelectric 
control (Chen et. al., 2007). 

Hand gestures involve relative flexure of the user’s fingers and consist of information that is 
often too abstract to be interpreted by a machine. An important application of hand gesture recognition 
is to improve the quality of life of the deaf or non-vocal persons through a hand-gesture to speech 
system. Another major application is in rehabilitation engineering and in prosthesis. Some of the 
commonly employed techniques in hand recognition include mechanical sensors (Pavlovic et. al., 
1997), vision based systems (Rehg et. al., 1994) and the use of EMG (Koike et. al., 1996) EMG has an 
advantage of being easy to record, and it is non-invasive. SEMG is the electrical manifestation in 
contracting muscles activity and closely related to the muscle contraction and thus an obvious choice 
for control of the prosthesis. Since all these muscles present in the forearm are close to each other, 
myoelectric activity observed from any muscle site comprises the activity from the neighbouring 
muscle as well, referred to as cross-talk. The cross-talk problem is more significant when the muscle 
activation is relatively weak (subtle) because the comparable signal strength is very low. Extraction of 
the useful information from such kind of SEMG becomes difficult mainly due to the low signal to 
noise ratio. At low level of contraction, EMG activity is hardly discernible from the background 
activity. To identify the small movements and gesture of the hand, there is need to identify components 
of SEMG originating from the different muscles (Naik et. al., 2008). 
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3.  EMG Classification Méthodologies for HCI 
Some artificial intelligence (AI) techniques mainly based on neural networks have been proposed for 
processing and discriminating EMG signal. Neural network is a computing technique that evolved 
from mathematical models of neurons and systems of neurons. During recent years, neural networks 
have become a useful tool for categorization of multivariate data. Even some of the cases, the neural 
network with other AI e.g. Fuzzy, Hidden Markov Model (HMM), Bayes yields very good 
performance. 
 
3.1. Artificial Neural Network 

In 1993, William Putnam et. al. (Putnam et. al., 1993) proposed a real-time computer control system 
based on neural network for pattern recognition of the EMG from user’s gestures. The system consists 
of two modes of communication are derived from the EMG. The first mode is a continuous control 
signal, proportional to muscular exertion which control computer software objects such as sliders or 
scroll bars. The second communication mode is gesture recognition. This allows the computer to make 
discrete choices such as menu selections or slider direction by executing different gestures. Single 
Layer Perception (SLP) structure was trained by Widrow-Hoff LMS algorithm. Whereas, a 
backpropagation algorithm was utilized to train Multi-Layer Perception (MLP) structure. Feature 
vector comprise with AR model parameters. Although 95% accuracy in classification was achieved, it 
is felt that a system utilizing both bicep and tricep data, along with a more robust classifier is warranted 
to accommodate users with disabilities who are unable to perform such clearly defined tasks as studied 
at the present time. Another prominent attempt is EMG controlled 2-dimensional pointer invented by 
Rosenberg (1998), which is known as Biofeedback Pointer. This graphic input device controlled by 
wrist motion. Moving the wrist causes the pointer to move in that direction. The pointer detects the 
EMG signals of four of the muscles used to move the wrist. These are interpreted by a neural network 
which is trained for each user. The Biofeedback Pointer’s simple neural network is computationally 
inexpensive, but with the side effect of a reduction in accuracy which is compensated for by using four 
EMG sensors. Instead of using special hardware to train the device, the training is performed by 
requiring the user to follow the pointer’s motion on the screen. During training period, the network 
calculated for 8 times with offset 0 to 448ms for finding out least error network. The reason behind this 
is to minimize the reaction time delay regarding user’s motion. The main problem with the current 
training is that the user’s motions may not adequately synchronize with the cursor. 
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Figure 3: The main steps of online classification of hand movement using EMG signals 
 

 
 

G. Tsenov et. al. (2006) discovered that the classification performance of hand and finger 
movements depends significantly upon feature extraction, which is very important to improve 
considerably the accuracy of classification. They described the identification procedure, based on EMG 
patterns of forearm activity using various Neural Networks models. After comparison between 
different intelligent computational methods of identification, they gained best classification result 
(nearly 93% using 2-channel data) using MLP other than Radial Basis Function (RBF) or Learning 
Vector Quantization (LVQ). In the time domain, features like: Mean Absolute Value (MAV), Variance 
(VAR), Waveform Length (WL), Norm, Number of Zero Crossings, Absolute Maximum, Absolute 
Minimum, Maximum minus Minimum and Median Value (Med) are some of extracted features. 
Relevant features will lead to high and accurate classification rates. However, in practice, 
determination of relevant features is very difficult. One year later, Kyung Kwon Jung et. al. (2007) 
came with stronger classifiers that would help to implement the HCI. They proposed a method of 
pattern recognition of EMG signals of hand gesture using spectral estimation and neural network. 
Proposed system is composed of the Yule-Walker algorithm and the Learning vector quantization 
(LVQ). The use of the Yule-Walker algorithm is to estimates the power spectral density (PSD) of the 
EMG signals. LVQ is a method for training competitive layers in a supervised manner. A competitive 
layer automatically learns to classify input vectors. However, the classes that the competitive layer 
finds are dependent only on the distance between input vectors. If two input vectors are very similar, 
the competitive layer probably will put them in the same class. There is no mechanism in a strictly 
competitive layer design to say whether or not any two input vectors are in the same class or different 
classes. The experiment verified that EMG signals produced by hand gestures are reliably classified by 
proposed system with a success rate of about 78%. 
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Figure 4: LVQ Network Architecture 
 

 
 
3.2. Back-Propagation (BP) based Neural Network 

Back-propagation Neural Network (BPN) algorithm applied to EMG based mouse cursor control 
system as a man-machine interface by Itou et. al. (2001). They used neural network with three inputs, 
two hidden layer and one output layer which achieved 70% rate of recognition. Any muscle can be 
used, mouse cursor can be operated using a leg too, whereas, muscle fatigue may appeared for long 
time use. In 2007, Naik et. al. applied BPN to overcome the drawback of the standard Artificial Neural 
Network (ANN) architecture by augmenting the input hidden context units, which give feedback to the 
hidden layer, thus giving the network an ability of extracting features of the data from the training 
events. The data was divided into subsets of training data, validation, and test subsets. One fourth of 
the data was used for the validation set, one-fourth for the test set, and one half for the training set. The 
four RMS EMG values were the inputs to the ANN. The outputs of the ANN were the different 
isometric hand action RMS values. The overall accuracy was reported 97%, but the number of hand 
gesture identification was restricted to three. One year later Ganesh R Naik et. al. (2008) proposed 
more improving identification of various hand gestures using multi run ICA of SEMG with back-
propagation learning algorithm based ANN classifier. They reported that only ICA is not suitable for 
SEMG due to the nature of SEMG distribution and order ambiguity. They also showed that a 
combination of the mixing matrix and network weights to classify the SEMG recordings in almost real-
time. Their results indicate an overall classification accuracy of 99% for all the experiments and can be 
used for the classification of different subtle hand gestures. However, BPN cannot realize high learning 
and discrimination performance because the EMG patterns differ considerably at the start and end of 
the motion even if they are within the same class. Whereas, Eman et. al. in 2008, applied HMM of 
surface EMG algorithm that facilitates automatic SEMG feature extraction and ANN are combined for 
providing an integrated system for the automatic analysis and diagnosis of neuro-muscle disorders. The 
number of input nodes is 312 using the 4 HMM features for 78 SEMG segments and the number of 
outputs is two output nodes. In each model, each subject was characterized by 312 feature vector 
calculated using HMM. Every vector is considered as one training pattern, so there are 52 training 
patterns and 55 testing set. ANN architectures with three layers (input layer, hidden layer and output 
layer) were used. The ANN architectures are expressed as strings showing the number of inputs, the 
number of nodes in the hidden layers and two output nodes. They achieved the best correct 
classification rate was 90.91% for 80 hidden layers. 
 
3.3. Log-Linearized Gaussian Mixture Network (LLGMN) and Probabilistic Neural Network 

(PNN) 

The neural network has to estimate the probability that the pointer will move to each base direction, so 
that the heavy learning calculation and the huge network structure are not necessary. Neural network is 
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used as a pointer controller in the prototype system. This system can adapt itself to changes of the 
EMG patterns according to the differences among individuals, different locations of the electrodes, 
time variation caused by fatigue or sweat, and so on. Fukuda et. al. (1999) presented an EMG 
controlled pointing device using a neural network and developed a prototype system. This system uses 
the information on the EMG signals for pointer control. The operator's intended direction of the pointer 
movement and its velocity are estimated from the EMG signals, and natural interaction can be expected 
using this information. In the proposed method, a several numbers of base directions are set on the 
computer display, and the operator's intended direction is estimated from the probability that the 
pointer will move to each base direction. The neural network used to estimate the probability of the 
pointer movement to each base direction. This way it is possible to avoid heavy learning calculation 
and the huge network structure. In the neural network part, the Log-Linearized Gaussian Mixture 
Network (LLGMN) proposed by Tsuji et al.(1995) is used. 
 

Figure 5: Structure of the prototype system based on LLGMN classifier 
 

 
 

The LLGMN can acquire the log-linearized Gaussian mixture model through learning and 
calculate the posteriori probability of the pointer movement to each base direction based on this model. 
The probability density function is expressed by the weighted sum of the Gaussian components. It 
enables the LLGMN to learn the complicated mapping between the operator's EMG patterns and the 
pointer movement. Before the operation, the LLGMN must be trained the nonlinear mapping between 
the EMG patterns and the pointer movement. Then the LLGMN can estimate the pointer movement 
based on the statistical model. The accuracy improves depending on the increase of the number of the 
base directions, although a large number of the base directions require much longer learning time. The 
error becomes large when the desired direction differs from the base direction. However, this method 
can control the pointer in an arbitrary direction, but accuracy of the estimated direction was not so high 
to the intention of the operator. Furthermore, if the pointer is allowed to move in all directions from the 
current position, the number of moving directions will be infinite. To overcome this, Tsuji et al. (1995) 
has therefore proposed Recurrent Log- Linearized Gaussian Mixture Network (R-LLGMN) based on a 
continuous density hidden Markov model (CDHMM) (Chen Xiang, 2007). This network uses recurrent 
connections added to the units of LLGMN in order to discriminate a time sequence of the signals with 
high accuracy. Osama Fukuda et al. (2003) proposed a new EMG-controlled omni-directional pointing 
device using R-LLGMN. In the proposed pointing device, an arbitrary direction of pointer movement 
is represented using a combination of finite base directions. Since the neural network utilized in this 
system only estimates the probability for each base direction, it may lead to avoid a heavy learning 
calculation and a huge network structure. The probability of pointer movements in each base direction 
can be estimated by R-LLGMN using probability theory. Their results showed that the direction errors 
improved remarkably. According to Nan Bu et. al. (2004), a probabilistic neural network (PNN) 
provides a stochastic perspective of pattern discrimination; it has been proven to be efficient for 
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complicated data such as bioelectric signals. They proposed programmable gate array (FPGA) 
implementation of a PNN, with which system on chip (SoC) design of a bioelectric human interface 
device. This PNN called a LLGMN, which estimates the posterior probability based on a Gaussian 
 

Figure 6: The Structure of R-LLGMN 
 

 
 
mixture model (GMM) and the log-linear model. Although weights of the LLGMN correspond to a 
nonlinear combination of the GMM parameters, such as the mixture coefficients, mean vectors, and 
covariance matrices, constraints on the parameters in the statistical model are relieved in the LLGMN. 
Therefore, a simple learning algorithm can be derived, and the LLGMN is expected to have high 
performance in the case of statistical pattern discrimination. The LLGMN has been successfully 
applied to pattern discrimination of bioelectric signals, e.g., EMG and EEG and has been further used 
to develop various human interface applications like prosthetic device control, an EMG-based pointing 
device. The problems include non-trivial in cases of implementation of larger and more complicated 
neural networks, and more hardware efficient algorithms are required. 
 
3.4. Fuzzy Mean Max Neural Network (FMMNN) 

Jong-Sung Kim et. al. (2004) applied fuzzy mean max neural network (FMMNN) as a classifier for 
online EMG mouse that controls computer cursor. Also, stochastic values such as integral absolute 
value were used as features for an appropriate classification of the intended wrist motions. He 
interpreted 6 predefined wrist motions to left, right, up, down, click and rest operation. Here, 
Difference Absolute Mean Value (DAMV) extracted from the EMG signals is used as the input vectors 
in learning and classifying the patterns. The commands for controlling mouse cursor movements can 
then be generated in accordance with these classified patterns. The DAMV is calculated for each 
window of data according to the following equation: 

2

1 ( ) ( 1)
1

N

i
DAMV x i x i

N −

= − −
− ∑  (1) 

where x is data available within a window and N is window size on the time frame . 
Pattern recognition rate for each wrist motion reported as above 90%. The average recognition 

rate of 97% shows a promise that it can be used as an efficient means of HCI. 
 
3.5. Radial Basis Function Artificial Neural Network (RBFNN) 

A novel method for online estimation of human forearm dynamics using a second-order quasi-linear 
model is presented by Farid Mobasser et al. (2006). Human arm dynamics can be used for human body 
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performance analysis or for control of human-machine interfaces. The proposed method uses Moving 
Window Least Squares (MWLS) to identify dynamic parameters for a limited number of operating 
points in a variable space defined by elbow joint angle and velocity, and the electromyogram signals 
collected from upper-arm muscles. The dynamic parameters for these limited points are then employed 
to train a Radial Basis Function Artificial Neural Network (RBFNN) to interpolate/extrapolate for 
online estimation of arm dynamic parameters for other operating points in the variable space. The 
model parameters are identified for a limited number of points using a MWLS estimation method. The 
limited number of points is justified as in contact applications the arm workspace and movement is 
relatively small and slow. The RBFANN has the advantage of minimum memory usage for function 
approximation and has been used significantly for interpolation. One major factor in parameter error is 
the stochastic nature of EMG signals. The online estimation accuracy may be improved by changing 
the neural network input quantization level, and the use of more sensors for each muscle for more 
accurate representation of Muscle Activation Levels. 
 
3.6. Other Methodologies used 

3.6.1. Hidden Markov Model 
Wheeler (2003) introduced an approach of designing and using neuroelectric interfaces for controlling 
virtual devices. Hand gestures are used to interface with a computer instead of manipulating 
mechanical devices such as joysticks and keyboards. EMG signals are non-invasively sensed from the 
muscles used to perform these gestures. These signals are then interpreted and translated into useful 
computer commands. Among the most common methods like Short Time Fourier Transform (STFT), 
Wavelets, Moving Average, Auto-Regression (AR) Coefficients, they found moving average is the 
best and simplest for feature space. The pattern recognition method employed was a HMM. The ability 
to naturally interface with a computer allows for humans to manipulate any electrically controlled 
mechanical system. In addition to wearable computing applications it can also applied interfaces to 
robotic arms, mobile robots for urban rescue, unmanned aircraft drones, robotic exoskeletons, and 
space suit interfaces. There are also side benefits to using EMG signals for control in long duration 
space missions. However, one of the side effects of living in a zero gravity environment for extended 
periods is muscle atrophy. Another disadvantage is wet electrodes caused unintentional misplacement 
that greatly degraded our recognition performance. Standard EMG dry electrodes incorporated into a 
sleeve alleviated this problem but then raised significant reliability issues in signal sensing. Chan et. al. 
(2005) used HMM in their research for feature discrimination. Using 4-channel of SEMG signal, they 
achieved a classification accuracy of 87%. 
 
3.6.2. Bayes Network 
Alsayegh (2000) presented an EMG-based human-machine interface system that interprets arm 
gestures in the 3-dimensional (3D) space. Gestures are interpreted by sensing the activities of three 
muscles, namely, anterior deltoid (AD), medial deltoid (MD), and biceps brachii (BB) muscles. The 
problem of gesture classification is carried out in a framework of the statistical pattern recognition. The 
processing of the EMG signals utilizes the temporal coordination activity of the monitored muscles to 
identify a particular gesture. The classification procedure is carried out by constructing successive 
feature vectors for each gesture. These feature vectors describe the gesture's temporal signature. This 
type of classification is referred to as the context-dependent classification, which is carried out in this 
study within the framework of Bayes theorem. The overall success rate is 96%. It was observed that 
the structured type movements have a higher classification success rate than the pointing (simple) 
movements. The main reason that structured type gestures have a better classification rate is due to the 
clear coordination of the muscular activities. However, The input method described there is of course 
non-standard, since it does not make use of a keyboard or a mouse – it is, however, inappropriate for 
helping disabled persons, since it still requires control over the hands. In 2007, Xiang Chen et. al. 
implemented multiple hand gesture recognition along with a 2-D accelerometer for mobile HCI. 
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Feature extraction is carried out to reduce the data dimensionality while preserving the signal patterns 
which help to differentiate between the gesture classes. In their research, MAV, the ratio of two 
MAVs, and fourth-order AR model coefficients are used in the formation of the feature vectors. The 
accelerometer feature vector consists of the mean absolute values. The Linear Bayesian Classifier is 
trained with the feature vectors to distinguish the different gesture actions from each other. Due to their 
low computational complexity and stable recognition performance, classical linear classifiers are well 
suited for real-time gesture analysis and real life implementation. It was reported that the combination 
of accelerometers and SEMG sensors provided higher classification accuracy, especially for gesture 
sets including wrist motions, than the approaches using only the accelerometers or SEMG sensors. The 
development of an EMG based interface for hand gesture recognition is presented by Jonghwa Kim et 
al. (2008). For realizing real-time classification assuring acceptable recognition accuracy, they 
introduced the combination of two simple linear classifiers (K-nearest neighbor (KNN) KNN and 
Bayes) in decision level fusion. As the duration of the classification process is an essential factor for 
the efficiency of a real-time system, it is required to apply two comparatively simple and thus fast 
algorithms: the K-nearest neighbor (KNN) classifier and the Bayes classifier. Despite their simplicity 
these algorithms generally provide proportionally good results. The KNN classifier, which belongs to 
the non-parametric statistical classifiers, rates a pattern by regarding the most similar labeled training 
samples. For this purpose, the distances (e.g. Euclidean distance) between the feature vector of the 
current pattern and the feature vectors of each training sample are calculated. Beforehand, all vectors 
are generally normalized. The number of adjacent samples which are taken into account is defined by 
the parameter k. In our pattern recognition system, they considered the five nearest neighbors. 

 
Figure 7: Decision Tree of Classifier Combination 

 

 
 

The presented EMG-based controlling interface is able to reliably recognize various hand 
gestures with a positive classification rate of over 94% even though only one single EMG sensor used, 
in contrast to related work which is based on multiple EMG sensors. Moreover, since the EMG signal 
can be used to sense isometric muscular activity, it is possible to detect motionless gesture or intention 
in the EMG signal. Consequently, there is a wide range of potential applications using EMG signal in 
human-machine interfacing. However, to realize advanced applications, many issues still need to be 
resolved, including the development of algorithms for EMG-specific analysis, the extraction of 
relevant features, and the design of real-time classifiers with guaranteed accuracy 
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4.  Discussion 
It can be found from the review that ANN plays an important role in the classification of EMG signal 
for further interpretation to computer command. By last decades, many researchers successfully 
applied various algorithm based neural network. Even though, it can be realized that, neural network as 
well as composition with other artificial intelligent as for example Fuzzy logic, HMM yields 
satisfactory recognition results. The neural network with Yule-Walker algorithm and the Learning 
vector quantization (LVQ) reported a success rate of about 78%. Effective classification accuracy can 
also be obtained from BP based neural network but problem is that it cannot realize high learning and 
discrimination performance because the EMG patterns differ considerably at the start and end of the 
motion even if they are within the same class. PNN with LLGMN is efficient for complicated data such 
as bioelectric signals. The accuracy improves depending on the increase of the number of the base 
directions, although a large number of the base directions require much longer learning time. 97% 
average recognition rate reported by using FMMNN. HMM are popular dynamic classifiers in the field 
of speech recognition. HMM are perfectly suitable algorithms for the classification of time series. 
HMM are not much widespread within the HCI community but the studies revealed that they were 
promising classifiers for HCI systems. A summary of major classification methods is given in the table 
below. 
 
Table 1: Summary of major methods used for EMG classification in the field of HCI 
 
Classifier Used Researcher Description 

• AR model parameters based feature vector for Neural Network 
• 95% accuracy in classification was achieved Putnam et. al. 

(1993) 
• More robust classifier required for persons with disabilities 
• One layer feed-forward neural network 
• Performance yields 14% according to Fitt’s law Rosenberg 

(1998) • More sophisticated neural network and better training methods required for 
future improvement 

• Both time and frequency domain features used 
• MLP based model yield best result compare to RBF and LVQ 
• Classification accuracy can be as hi as 98% using 4-channel data set, 

computational time becomes double. 

Tsenov et. al 
(2006) 

• It is hard to determine complete set of relevant discrimination features 
• Yule-Walker algorithm based AR model for spectral estimation 
• 4th order AR model parameters as input for LVQ neural network 
• Competitive layer for learning and linear layer for classifying for LVQ 
• Classifier success rate is about 78% 

Artificial Neural 
Network (ANN) 

Kyung Kwon 
Jung et. al 
(2007) 

• There is no mechanism in a strictly competitive layer design depending on 
input vector classes 

• New type of EMG based mouse developed 
• 70% recognition rate in mouse cursor 
• Not applicable for long term use 

Itou et. al. (2001) 

• Limited to 4 directions and drag action absent 
• ICA based signal extraction method used 
• Temporal decorrelation source separation (TDSEP) algorithm based ICA gives 

97% separation efficiency than others 
• RMS value of each signal used to form feature vector as input to neural 

network 
• Combination of the mixing matrix and network weights to classify the sEMG 

recordings in almost real-time 

Backpropagation 
Neural Network 
(BPNN) 

Naik et. al. 
(2007, 2008), 
Eman M. El-
Daydamony et. 
al. (2008) 

• Number of hand gesture identification was restricted to three and six 
Log-Linearized 
Gaussian 
Mixture 

Tsuji et. al. 
(1995) Fukuda 
et. al. (1999) 

• LLGMN for creating LLGM model through learning and calculating the 
posteriori probability of pointer movement in each base direction depending 
on EMG patterns 
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• Higher discrimination performance can be achieved than other neural network 
• The direction of pointer movement is achieved by output of neural network 

Network 
(LLGMN) 

• The accuracy of pointer movement depends on number of learning data and 
the accuracy of estimated direction depends on number of base directions 

• Continuous density hidden Markov model 
• (CDHMM) based Recurrent LLGMN 
• Finite base direction assumed which leads to avoid heavy learning calculation 

and huge network structure 
• Higher accuracy for the discrimination of time sequence of signal 

Recurrent 
LLGMN 

Tsuji et. al. 
(2003) Fukuda et 
al. (2004) 

• Direction errors improved remarkably 
• FPGA implementation of PNN, LLGMN 
• HCI on FPGA chip much more portable and compact 
• Classification rate of hardware is 97.9%, more than software 
• Shortage of memory for hardware language 

LLGMN based 
Probalistic 
Neural Network 
(PNN) 

Nan Bu et. al. 
(2004) 

• Processing speed needs to improve 
• Stochastic values such as integral absolute value were used as features 
• Six distinctive wrist motions can be classified well 
• Difference Absolute Mean Value (DAMV) extracted from the EMG signals is 

used as the input vectors in learning and classifying the patterns 
• Pattern recognition rate of each wrist motions is above 90%, whereas average 

recognition rate yield 97% 
• 4 channel raw EMG signal used 

Fuzzy Mean 
Max Neural 
Network 
(FMMNN) 

Jong-Sung Kim 
et. al. (2004) 

• It is important to extract appropriate feature vector for the classifier 
• Moving Window Least Squares (MWLS) estimation method used to identify 

limited number of operating points. 
• RBFNN is trained using limited points and is utilized for 

interpolation/extrapolation for online estimation of arm dynamic parameters 
• Parameters error found because of stochastic nature of EMG signals 

Radial Basis 
Function 
Artificial Neural 
Network 
(RBFNN) 

Farid Mobasser 
et al. (2006) 

• Estimation accuracy can be improved by changing neural network input 
quantization level and more sensors for each muscle 

• Moving average selected for feature space as it is best and simplest 
• HMM has inherent ability to deal with spurious misclassification 
• During classifier training, HMM provides large computational savings 

compared to MLP 
• Error rates depends on sleeve position, sweating, skin moisture, length of time 

that electrodes were worn, fatigue 
• Astronauts required further training to overcome muscle atrophy for long term 

staying in a zero gravity environment 
• Reported that the used methodology does not vary adaptively 

Hidden Markov 
model (HMM) 

Wheeler (2003), 
Chan et al. 
(2005) 

• Further improvement would required in model correcting adaptation and 
calibration stage 

• Reported that structured type movements have higher classification success 
rate than pointing movements 

• Common time domain and frequency domain features extracted 
• K-Nearest Neighbour (k-NN) classifier added with Bayes to obtain good result 
• Addition of accelerator meter with EMG sensors cany increase the 

classification rate 5-10% 
• Feature selection is important for better classification and increasing number 

of features does not always produce good result 
• Average classification rate reported was over 94% 

Bayes Network 

Alsayegh, Xiang 
Chen et. al 
(2007), Jonghwa 
Kim et al. (2008) 

• Small discrepancies can result major differences in EMG signal as well as 
degrade the performance of classifier 
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5.  Conclusion 
Use of standard interface to operate computer is inappropriate for the persons suffering severe physical 
disability. This is because it requires reliable use of hand movements. Developing of HCI using 
different biosignals will help to improve the QOL of the disabled persons. EMG signal is one of the 
prominent out of other biosignals having valuable information regarding nerve system. This review 
paper focused on the algorithms and methodologies used for classifying EMG signals in the field of 
HCI. It can be concluded that the neural network dominating the classification of EMG for HCI 
development. There are still huge possible way to work for the disabled people by improving HCI and 
making it more natural use to them. Beside neural network, there are several artificial intelligent using 
of which may yield remarkable humanizing of HCI. 
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