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Abstract Robotic perception is fundamental to important application areas. In the
Joint Research Project DESIRE, we develop a robotic perception system with the
aim of perceiving and modeling an unprepared kitchen scenario with many objects.
It relies on the fusion of information from weak features from heterogenous sensors
in order to classify and localize objects. This requires the representation of wide
spread probability distributions of the 6D pose.
In this paper we present a framework for probabilistic modeling of 6D poses that
represents a large class of probability distributions and provides among others the
operations of fusion of estimates and uncertain propagation of estimates.
The orientation part of a pose is described by a unit quaternion. The translation part
is described either by a 3D vector (when we define the probability density function)
or by a purely imaginary quaternion (which leads to a prepresentation of a trans-
form by a dual quaternion). A basic probability density function over the poses is
defined by a tangent point on the 3D sphere (representing unit quaternions), and a
6D Gaussian distribution over the product of the tangent space of the sphere and of
the space of translations. The projection of this Gaussian induces a distribution over
6D poses.
One such base element is called a Projected Gaussian. The set of Mixtures of Pro-
jected Gaussians can approximate the probability density functions that arise in our
application, is closed under the operations mentioned above and allows for an effi-
cient implementation.
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1 Introduction

As a basic tool in robotic perception, probability density functions of 6D poses need
to be represented. In order to be able to represent and process weak information from
imperfect sensors, widely spread densities need to be covered by the representation
and the inference mechanisms.
The more critical part in the representation of a rigid transform is the rotation. The
requirements concerning the parameterization of the rotation are contradictory, but
our design goal is to satisfy them as well as possible:

• Unique: There should be only one representation for each orientation
• Minimal: The rotation should be represented with few parameters
• Composable: There should be an easy way to derive the parameters of the com-

posed rotation from the parameters of two rotations in the composition
• Smooth: The rotation should be an at least continuous, or better still a differen-

tiable function of the parameters.
• Distance and area preserving: Properties like areas or distances in the parameter

space should be preserved under rigid transform. This is important when we deal
with probability density functions over the rotations or transforms.

The formalism for the probability density function of the 6D poses should satisfy
the following properties:

• Coordinate System Independent: A coordinate change should only change the
arguments to the pdf, not the structure or the parameters of the pdf.

• Information Fusion: The formalism supports the fusion of two probability density
informations (for example maximum likelihood estimation).

• Information Propagation: The formalism supports the propagation of uncertain
information (i.e. a pose estimate) through an uncertain transform.

• The representation of the pdf uses not too many parameters, much fewer than for
example a particle set.

Since each position and orientation w.r.t a given coordinate system is the result
of a translation and a rotation. Position and translation can be and will be used syn-
onymously in this paper, as well as orientation and rotation. Also, pose and (rigid)
transform are used synomymously.

In Section 2 we will recapitulate various approaches to the parametrization of
rigid transforms and corresponding probability density functions. None of them ful-
fills all requirements listed above, but they provide ingredients to our synthesis. In
Section 3 we will present our approach to probability density functions over rigid
transforms. In Section 4 we will recollect the presented system and indicate direc-
tions of future work.
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2 Previous Work

The representation of rigid transforms, and especially of orientation, in 3D is a cen-
tral issue in a variety disciplines of arts, science and engineering, and contributions
from various disciplines are available.
The most popular representations of a 3D rotation are rotation matrix, Euler angles,
Rodrigues vector and unit quaternions. For rotation matrices, renormalization is dif-
ficult, Euler angles are not invariant under transforms and have singularities, and
Rodrigues vectors do not allow for an easy composition algorithm.
Stuelpnagel [9] points out that unit quaternions are a suitable representation of rota-
tions in 3D with few parameters, but does not provide probability distributions.

Choe [7] represents the probability distribution of rotations via a projected Gaus-
sian on a tangent space. However, he only deals with concentrated distributions, and
he does not take translations into account.

Goddard and Abidi [4, 5] use dual quaternions for motion tracking. They also
capture the correlation between rotation and translation. The probability distribution
over the parameters of the state model is a uni-modal normal distribution. This is an
appropriate model if the initial estimate is sufficiently certain, and if the information
that is to be fused to the estimate is sufficiently well focused. Dual quaternions pro-
vide a closed form for the composition of rigid transforms, similar to the transform
matrix in homogeneous coordinates (see also Kavan et al. [13]).

Antone [6] suggests to use the Bingham distribution in order to represent weak
information. However, he does not give a practical algorithm for fusion of informa-
tion or propagation of uncertain information. Also, Love [10] states that the renor-
malization of the Bingham distribution is computationally expensive. Furthermore,
it is not (yet) clear to us how the Bingham distribution for rotations could be ex-
tended to rigid transforms.

Mardia et al. [12] use a mixture of bivariate von Mises distributions. They fit
the mixture model to a data set using the EM algorithm. This allows for modelling
widely spread distributions. However, they do not treat translations.

In general, the Jacobian is used to propagate the covariance matrix of a random
variable through a non-linear function. Kraft et al. [11] use an unscented Kalman
Filter - this technique could be applied also in our setting. However, it would have
to be extended to the mixture distributions.

From the analysis of the previous work, we synthesize our approach as follows:
We use unit quaternions to represent rotations in 3D, and dual quaternions to obtain
a concise algebraic description of rigid transforms and their composition. The base
element of a probability distribution over the rigid transforms is a Gaussian in the
6D tangent space, characterized by the tangent point to the unit quaternions and
the mean and the covariance of the distribution. Such a base element is called a
Projected Gaussian. We use mixtures of Projected Gaussians to reach the necessary
expressive power of the framework.
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3 Pose uncertainty by Mixtures of Projected Gaussian
distributions

We assume that the quaternion as such is sufficiently well known to the reader. In
order to clarify our notation, at first some basics are restated.

3.1 Quaternions

Let H be the quaternions, i.e H = {q|q = a+ ib+ jc+ kd} , where a is the real part
of the quaternion, and the vector v = (b,c,d) is the imaginary part. The imaginary
units {i, j,k} have the properties i2 = j2 = k2 = i jk = −1, i j = k, jk = i,ki = j. The
quaternions can be identified with R4 via the coefficients, q = a + ib + jc + kd ∼
(a,b,c,d). The norm of a quaternion is defined as ‖q‖ 2 =a2 + b2 + c2 + d2, the
conjugate of a quaternion as q∗ = a− ib− jc− kd .With the above properties of
quaternions we have ‖q‖2 = q∗ q∗.

Analogously to the way that unit complex numbers z = cos(φ)+ isin(φ) = e iφ

represent rotations in 2D via the formula p rot = zp for any point p ∈ C, unit quater-
nions represent rotations in 3D.

A point (p1, p2, p3) in 3D is represented as the purely imaginary quaternion
p = ip1 + jp2 + kp3; a rotation around the unit 3D axis v by the rotation angle θ

is given by the quaternion
q = cos(θ/2)+ sin(θ/2)(iv1 + jv2 + kv3).
The rotated point is obtained as prot = q∗ p∗q∗ . Clearly, q and −q represent the

same rotation, so the set U of unit quaternions is a double coverage of the special
orthogonal group SO(3) of rotations in 3D.

The set U of unit quaternions is identified with the 3-dimensional unit sphere
S3 in R

4, and probability density functions on U are defined by probability density
functions on S3.

3.2 Base element

For a sufficiently expressive set of probability density functions on the rotations we
choose a mixture of base elements.

Each base element is obtained by projecting a Gaussian distribution defined on
a tangent space onto the sphere of unit quaternions. This technique is illustrated in
Figure 1 for the example of a 1-dimensional unit sphere in R

2. Note that the peaks
are lower due to renormalization.

Definition 1: Let S3 be the 3-dimensional unit sphere in R4 and r0 be an ar-
bitrary point on S3. Further, let T (r0) ∼ R3 be the 3-dimensional tangent space
to the sphere S3 at the point r0, with a local coordinate system that has the point
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Fig. 1 A base element on the unit circle, obtained by projecting a Gaussian on a tangent line.

q0 as origin. Further, let N (μ ,Σ) be a Gaussian distribution on TR (r0) and the
corresponding probability density function be p T . With the 2-valued central pro-
jection Πr0 :TR (r0)−→S3 (Figure 1 illustrates how a probability density function
is induced on the unit sphere S1 ⊂ R2), a density function is given on S3 by
pS(r):= 1

C pT
(
Πr0

−1(r)
)

with C =
∫

S pT
(
Πr0

−1(r)
)

dr. The set of these pdfs pS is
called set of Rotational Projected Gaussians or RPG. The subset of pdfs for which
μ = 0 in the corresponding Gaussian on the tangent space TR is denoted as RPG0.
Note that this definition is not valid for points r⊥ ∈ S3 that are orthogonal to r0.
pS

(
r⊥

)
:=0 is the continuous completion.

In practice, the RPG is represented by its tangent point and the basis of the
tangent space, and by the parameters of the corresponding Gaussian distribution:
pS ∼N (TR (r0) ,μ ,Σ). Note that the same distribution can be represented by RPGs
with antipodal tangent points.

3.3 Pose Uncertainty

The pose uncertainty is modeled along the lines of the rotation uncertainty by in-
cluding the translation.

Definition 2: Let SE(3) be the group of rigid transforms in R
3, the rotation rep-

resented by a unit quaternion or equivalently a point on S 3 and the translation by a
vector in R3, SE(3)∼ S3×R3. Let x = (r0, t) be a transform (or pose), with rotation
r0 and translation t. The tangent space to x is given by T (r0) :=TR (r0)×R3 ∼ R6,
where TR (r0)∼R3 is the tangent space to the rotation part. Let N (μ ,Σ) be a Gaus-
sian distribution on TR (r0). With the 2-valued mapping

Π(r0,t) : T (r0) −→ S3 ×R3,
Π(r0,t) (y1,y2,y3,y4,y5,y6) =

(
Π(r0) (y1,y2,y3) ,(y4,y5,y6)

)
a density function is given on S3 ×R3 by p(r, t):= 1

C p
(
Π(r0,t)

−1(r, t)
)

with
C =

∫
S3×R3 p

(
Π(r0,t)

−1(r,t)
)

drdt. The set of these pdfs p is called set of Pro-
jected Gaussians or PG. The subset of pdfs for which μ1 = μ2 = μ3 = 0 in the
corresponding Gaussian on the tangent space is referenced as PG 0.
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Note that S3 ×R3 is a double coverage of SE(3) in the same way that S3 is a
double coverage of SO(3). Note also that we do not shift the origin with respect to
the position part of the pose. Again, in practice the PG is represented by the tangent
space as p ∼ N (T (r0) ,μ ,Σ).

3.4 Fusion of Projected Gaussians

In analogy to the fusion of Gaussian pdfs pertaining to the same phenomenon, we
now describe the fusion of two PGs. The approach is to find a common tangent space
that can represent both of the original PGs reasonably well. A detailed analysis
based on the approximation theory of the MPG framework exceeds the scope of
this paper - a valid heuristic for PG0 type distributions is to fuse PGs if the angle
between the tangent points is less than 15◦, or, equivalently, larger than 165◦. Below
we describe the fusion process for PG in general - in practice we use PG 0.

Let p1 ∼ N (T (r0,1) ,μ1,Σ1) and p2 ∼ N (T (r0,2) ,μ2,Σ2) be two pose pdfs
with cos(r0,1 · r0,2) ≥ 0.966 (if cos(r0,1 · r0,2) ≤ −0.966, use −r0,2 instead of r0,2,
the rest is unchanged).

1. Select r0,3 = 1
‖r0,1+r0,2‖ (r0,1 + r0,2) as the first tangent point for a common tan-

gent space T (r0,3). The basis of the space can be selected arbitrarily (we use a
random basis).

2. Restate p1 in T (r0,3): We define the transfer function f1,3 : T (r0,1) −→ T (r0,3)

by f1,3(y):=Π(r0,3,t)
−1

(
Π(r0,1,t)(y)

)
, and the Jacobian of this transfer function at

the mean value μ1of the original distribution p1: J1,3 = ∂ f1,3
∂y

∣∣∣
μ1

. The statistical

moments of the distribution p1 represented in T (r0,3) are then estimated as μ3,1 =
f1,3 (μ1) and Σ3,1 = J1,3 ·Σ1 · J1,3

T , so p3,1 ∼ N (T (r0,3) ,μ3,1 ,Σ3,1).
3. Restate p2 in T (r0,3) as p3,2 ∼ N (T (r0,3) ,μ3,2 ,Σ3,2). Note that while this is

technically well defined even for large angle difference and wide spread distri-
butions, it only makes sense for rather small angle differences and concentrated
distributions. If wide distributions are needed, we use mixtures (Section 3.6).

4. Fuse p3,1and p3,2: These pdfs are now stated in the same R6, so the fused pdf
is p3 ∼ N (T (r0,3) ,μ3 ,Σ3), with the parameters Σ3 =

(
Σ3,1

−1 + Σ3,2
−1

)−1and
μ3 = (Σ3,1 + Σ3,2)−1 · (Σ3,2 ·μ3,1 + Σ3,1 ·μ3,2). The resulting probability density
function on S3 ×R3 needs to be normalized according to definition 2.

5. Generally, μ3 �= 0. Since it is advantageous to refrain to base elements of type
PG0, p3 is restated according to step 2, with the new tangent point r0,4 =
Π(r0,3,t) (μ3). Finally, the resulting base element is renormalized.
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3.5 Composition of transforms

It is required to model uncertain transforms of uncertain poses, for example if a
sensor is mounted on a mobile robot and the pose estimate is needed in world coor-
dinates. In our framework, transforms and poses are represented as dual quaternions
in order to calculate the probability distribution function of the composition, see
Goddard [4] for more detail.

3.5.1 Dual Quaternions

A dual quaternion q1 = q1,1 + eq1,2 is composed of two quaternions q1 and q2 and
the dual number e, with e ·e = 0. Summation of dual quaternions is per component,
q1 +q2 = (q1,1 + eq1,2)+ (q2,1 + eq2,2) = (q1,1 +q2,1)+ e(q1,2 + eq1,1).

The product of dual quaternions is
q1 ∗q2 = (q1,1 + eq1,2)∗ (q2,1 + eq2,2) = (q1,1 ∗ q2,1)+e(q1,2 ∗ q2,1 +q1,1 ∗ q2,2).
The conjugate of a dual quaternion is q∗ = q1

∗ + eq1
∗.

Let qr be the rotation unit quaternion, and qt = [0, t1, t2, t3] be the quaternion de-
rived from the translation components, then the dual quaternion q = q r +e0.5qt ∗qr

represents the transform. A point (p1, p2, p3) is embedded into the dual quaternions
as p = [1,0,0,0]+ e [0, p1, p2, p3] , and with this convention the rotation and trans-
lation is q∗p∗q∗. The composition of two transforms, or of a transform and a pose,
is represented by the product of the dual quaternions,

p̂ = q2 ∗q1 ∗p∗q1
∗ ∗q2

∗ = q2 ∗q1 ∗p∗ (q2 ∗q1)∗.
The composition function g will be used to derive the covariance:
q3 = g(q1,q2) = gT (y1,y2),
where the yi are the 6-dimensional vectors on the corresponding tangent spaces,

and g and gT are related via the central projections Π(r0,1,t) and Π(r0,2,t).

3.5.2 Calculation of Composition

This algebraic formulation justifies to set the tangent point of the composed base
element to r0,3 = r0,2 ∗ r0,1, which for PG0 is also the mean value. For base elements
in PG\PG0 , the mean values in the describing pdfs need to be projected to S 3×R3,
then propagated and projected back to the tangent space.

The Jacobian of gT is used to derive the covariance matrix of the base element
describing the composition. With

JC = ∂gT
∂ (y1,y2)

∣∣∣
(0,0)

and ΣC =
(

Σ1 0
0 Σ2

)
the resulting covariance matrix of the

composition is Σ3 = JC ·ΣC · JC
T .



8 Wendelin Feiten, Pradeep Atwal, Robert Eidenberger, Thilo Grundmann

3.6 Mixture of Projected Gaussians

As stated above, a precondition for the fusion PG base elements is that their tangent
points are sufficiently close to each other and that they are sufficiently well concen-
trated. For this reason, widely spread probability density functions should not be
modeled in a single base element.

Instead, we use a mixture of PG or PG0 base elements. Thus let pi ∈ PG
or pi ∈ PG0 be base elements, then the set of Mixtures of Projected Gaussians
MPG or Mixtures of Projected Gaussians with zero mean MPG0 is defined as{

pm = 1
n ∑n

i=1 πi pi |0 ≤ πi ≤ 1,∑n
i=1 πi = 1} . The techniques of fusion and compo-

sition carry over to mixtures in a similiar way they work for mixtures of Gaussians
[1].

Let pm,1, pm,2 ∈ MPG, pm,1 = 1
n ∑n

i=1 π1,i p1,i, pm,2 = 1
l ∑l

j=1 π2, j p2, j. The base
elements of the fused mixture are obtained from fusing the base elements of the
original mixtures: pm,3 = f (pm,1, pm,2) =C ·∑n,l

i, j=1 λi, j ·π1,i ·π2, j · f
(
p1,i, p2, j

)
, with

a normalizing constant C =
(

∑n,l
i, j=1 λi, j ·π1,i ·π2, j

)
−1. The weights π1,i and π2, j are

those of the prior mixture.
The plausibility is composed of two factors, λ i, j = αi, j ·δi, j.

The factor αi, j = e−aarccos((r0,1,i·r0,2, j)2) says whether the mixture elements can
share a tangent space and thus probably pertain to the same cases in the mixture.
The angle distance is controlled by the factor a. Plausible results were obtained
with a = 5, but this lacks a rigid mathematical justification.

The factor δi, j =
(
μ3,1,i − μ3,2, j

) ·(Σ3,1,i + Σ3,2, j
)−1 ·(μ3,1,i − μ3,2, j

)
T is the Ma-

halanobis distance of the mean values and covariances transported to the common
tangent space. It expresses that even if the mixture elements could share a tangent
space, they could still not be compatible.

The composition carries over in a similar manner.
pm,3 = g(pm,1, pm,2) = C ·∑n,l

i, j=1 π1,i ·π2, j ·g
(
p1,i, p2, j

)
,

with C =
(

∑n,l
i, j=1 π1,i ·π2, j

)
−1. In this case, there is no question of whether two

base elements could apply at the same time, since the two probability distributions
are assumed to be independent, so the factor λ i, j is omitted.

Note that in both cases the individually fused or combined resulting base ele-
ments are assumed to be renormalized.

4 Conclusion and outlook

In this paper we present the framework of Mixtures of Projected Gaussians that
allows for modelling a large variety of possible probability distribution functions of
6D poses. In contrast to a particle filter approach, much fewer parameters are needed
to describe the distribution. Like particle filter appraoches, it allows for classical
probabilistic inference rules like the Bayes update.
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The MPG representation of probability density functions is part of our overall
architecture for robotic perception [3]. In this larger framework we also use particle
filter representations [2]. We can transform the probability density models between
the different representation forms. Currently, we use rejection sampling in order to
sample from MPG distributions to obtain particle sets, and we use a variant of the
EM algorithm in order to estimate MPG parameters from sample sets.

The operations of fusion, propagation or multiplication of MPG distributions
generally result in a large number of mixture elements. However, many of them have
practically zero weight, while others are approximately identical. The approach for
identifying doublettes described in [1] will be carried over to the MPG. Similar com-
ponents are merged, negligible ones are omitted and the weights are renormalized.

The algorithms for probabilistic inference (fusion, propagation, multiplication)
are fully implemented in Mathematica and ported to C. The single time consuming
step is the integration in renormalizing the components. Here, we hope to find a
quadrature function that takes full advantage of the special structure of the integrand
to speed up the processing.

The covariance matrices are currently estimated using the Jacobian of the non-
linear transforms. These estimates could be improved by using the unscented esti-
mation technique (see Julier and Uhlmann [14])

In this paper we focus on the perception of static objects. The MPG framework
can be extended to the dynamic case as well, following concepts by Goddard [4]
and by Brox et al. [8].

Further work needs to be done on the analysis of the errors made in the approx-
imations by mixtures of projected Gaussians. This includes also the selection of an
appropriate statistical error measure, which in turn might very well depend on the
application.

Acknowledgment

This work was partly funded as part of the research project DESIRE by the German
Federal Ministry of Education and Research (BMBF) under grant no. 01IME01D.

References

1. Eidenberger, R.,Grundmann, T., Feiten, W., Zoellner, R. D.: Fast Parametric Viewpoint Es-
timation for Active Object Detection. Proceeding of the IEEE International Conference on
Multisensor of Fusion and Integration for Intelligent Systems (MFI 2008), Seoul, Korea, 2008

2. Grundmann, T., Eidenberger, R., Zoellner, R. D.: Local Dependency Analysis in Probabilistic
Scene Estimation. Proceeding of the 5th International Symposium on Mechatronics and Its
Applications (ISMA08), Amman, Jordanien, 2008

3. Grundmann, T., Eidenberger, R., Zoellner, R.D., Xue, Z., Ruehl, S., Zoellner, J.M., Dillmann,
R., Kuehnle, J., Verl, A.: Integration of 6D Object Localization and Obstacle Detection for
Collision Free Robotic Manipulation. IEEE International Symposium on System Integration,
Nagoya, Japan, 2008

4. Goddard, J. S.: Pose and Motion Estimation from Vision using Dual Quaternion-based Ex-
tended Kalman Filtering, PhD Dissertation, University of Tennessee, Knoxville, 1997



10 Wendelin Feiten, Pradeep Atwal, Robert Eidenberger, Thilo Grundmann

5. Abidi, M.A., Goddard, J. S.: Pose and Motion Estimation from Vision using Dual Quaternion-
based Extended Kalman Filtering, Proc. of SPIE Conf. on Three-Dimensional Image Capture
and Applications, Vol. 3313, pp. 189-200, San Jose, CA, January 1998

6. Antone, M.E.: Robust Camera Pose Recovery Using Stochastic Geometry, PhD Dissertation,
Massachusetts Institute of Technology, 2001

7. Choe, S.B.: Statistical Analysis of Orientation Trajectories via Quaternions with Applications
to Human Motion, PhD Dissertation, University of Michigan,2006

8. Brox, T., Rosenhahn, B., Kersting, U., Cremers,D.: Nonparametric Density Estimation for
Human Pose Tracking, in Pattern Recognition, Springer LNCS 4174, K. Franke et al. (Eds.),
Springer-Verlag Berlin Heidelberg, pp. 546-555, 2006

9. Stuelpnagel, J.: "On the Parametrization of the Three-Dimensional Rotation Group", SIAM
Review, Vol. 6, No. 4., pp. 422-430, 1964

10. Love, J.J.: Bingham statistics, Encyclopedia of Geomagnetism and Paleomagnetism, 45-47,
Springer, Dordrecht, The Netherlands pp. 45-47, 2007

11. Kraft, E.: A Quaternion-based Unscented Kalman Filter for Orientation Tracking, Proceed-
ings of the Sixth International Conference of Information Fusion, Vol. 1, pp. 47-54, 2003

12. Mardia, K.V., Taylor, C.C., Subramaniam, G.K.: Protein Bioinformatics and Mixtures of Bi-
variate von Mises Distributions for Angular Data, Biometrics, Volume 63, Number 2, pp.
505-512, 2007

13. Kavan, L., Collins, S., O’Sullivan, C., Zara, J.: Dual Quaternions for Rigid Transformation
Blending, Technical Report, 2006

14. Julier, S.J., Uhlmann, J.K.: Unscented Filtering and Nonlinear Estimation, In Proc. of the
IEEE, Vol. 92, No. 3, pp. 401-422, March 2004


