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Abstract

This paper presents the stiffness characteristics of a three-prismatic-universal–universal (3-PUU) translational parallel
kinematic machine (PKM). The stiffness matrix is derived intuitively based upon an alternative approach considering actu-
ations and constraints, and the compliances subject to both actuators and legs are involved in the stiffness model. The stiff-
ness performance of the manipulator is evaluated by utilizing the extremum stiffness values, and the influences of design
parameters on the stiffness properties are presented, which will be valuable for the architecture design of a 3-PUU PKM.
Moreover, the stiffness behavior of the PKM is investigated via the eigenscrew decomposition of the stiffness matrix, which
provides a physical interpretation of the PKM stiffness and allows the identification of the stiffness center and compliant
axis.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, parallel manipulators have been investigated and developed more and more widely for var-
ious applications [1]. At the same time, less-DOF (degree-of-freedom) parallel manipulators with less than six
DOF have been applied extensively in many situations since they both maintain the inherent advantages of
parallel mechanisms and possess several other merits in terms of the total cost reduction in manufacturing
and operations [2–4].

Stiffness is one of the most important performances of parallel mechanisms, particularly for those which are
used as machine tools, because higher stiffness allows higher machining speeds with higher accuracy of the
end-effector. Therefore, it is quite necessary to perform the stiffness modeling and to evaluate a parallel kine-
matic machine (PKM) in the early design stage. The three-prismatic-universal–universal (3-PUU) transla-
tional parallel mechanism was proposed and investigated before [5,6]. However, there are no efforts made
towards the assessment of its stiffness considering the compliances in both the actuators and legs. The stiffness
0094-114X/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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model of a 3-PUU PKM is derived in this paper, which is firstly used to evaluate its stiffness over the work-
space in order to see the effect of altering the kinematic parameters in the structure and then further utilized to
have a physical view of the PKM compliant behavior.

1.1. Stiffness modeling

Regarding a rigid body elastically suspended by elastic devices, if only small displacements from its unpre-
loaded equilibrium position are considered, the overall spatial force–deflection relation of the mechanism is
linear, which is described by a 6 · 6 symmetric positive semidefinite matrix [7], i.e., the stiffness matrix. Gen-
erally, the stiffness characteristics of a parallel manipulator can be described by the 6 · 6 stiffness matrix,
which relates the vector of compliant deformations of the end-effector to an external static wrench that is
applied on the manipulator [8]. By taking into account the flexibilities of every compliant elements, the stiff-
ness model of 6-DOF parallel manipulators with six legs can be established straightforwardly [9]. While for
those less-DOF parallel manipulators, it is not easy to derive their overall stiffness matrices. For instance,
the stiffness of a tripod-based PKM is modeled in [10] by decomposing the whole machine structure into
two separate substructures, and formulating the stiffness model of each substructure by means of virtual work
principle. A stiffness model of the 3-DOF CaPaMan parallel manipulator is established in [11] by taking into
account the kinematic and static features of the three legs in view of the motions of every joint and link.

An observation of the stiffness modeling of less-DOF parallel manipulators reveals that it is not obvious
what is the best way since the existing approaches are not intuitive enough. In this paper, a new approach
is presented to directly derive the stiffness matrix of a less-DOF parallel manipulator based upon an overall
Jacobian which is previously proposed in [12] to identify both the architecture and constraint singularities.
Via this approach, a 6 · 6 stiffness matrix that is defined as the overall stiffness matrix including the stiffness
of actuations and constraints of a less-DOF parallel manipulator can be established intuitively, which is shown
by the stiffness modeling of a 3-PUU translational PKM in this paper.

1.2. Stiffness evaluation

For a given PKM, the stiffness changes with the variation of the manipulator configurations within its
workspace as well as the direction of the applied wrenches. Once the stiffness model is derived, it is desired
to predict its stiffness characteristics over the workspace in order to assess whether the design is satisfied with
the stiffness requirements or even further to perform an optimal design with the stiffness considered especially
in the design stage. Moreover, it is necessary to investigate the stiffness behavior of a PKM at specified con-
figurations to have an insight into its stiffness behavior.

As far as the approaches for stiffness evaluation are concerned, several different performance indices have
been proposed and utilized in the literatures. A simple way to predict the stiffness is to use the interested stiff-
ness factors, i.e., the terms of the stiffness matrix [8,10]. Besides, the stiffness can be evaluated using the eigen-
value of the stiffness matrix which is experienced in the direction of the corresponding eigenvector [8,13]. It has
been shown that the stiffness is bounded by the minimum and maximum eigenvalues of the stiffness matrix
[14]. Based on this point, the stiffness values have been predicted by the minimum, maximum, and average
eigenvalues, even magnitude of the ratio of the maximum and minimum eigenvalues of the stiffness matrix
[14]. Additionally, the determinant of stiffness matrix, which is the product of its eigenvalues, has been
adopted to assess the stiffness of parallel manipulators [5,11]. Furthermore, similar to the condition number
of Jacobian matrix, the condition number of the stiffness matrix has been introduced, then a global stiffness
index defined as the inverse of the condition number of the stiffness matrix integrated over the reachable work-
space and divided by the workspace volume is presented to assess the stiffness of a 3-DOF spherical parallel
manipulator [15].

Among these usually used stiffness performance indices, the stiffness factor is preferred to be applied to
evaluate the stiffness matrix only with a diagonal form. Because for a stiffness matrix with the generic form,
the off-diagonal terms couple the forces/torques applied in the corresponding directions, it follows that indi-
vidual stiffness factors cannot totally reflect the stiffness property in any directions. Concerning the determi-
nant or trace of the stiffness matrix, it cannot distinguish the situations in which the manipulator has a very
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low stiffness in one direction while a very high stiffness in another one, that leads to a high value of the deter-
minant or trace although the low stiffness prohibits applying the manipulator for machine tool applications.
Consequently, neither the determinant nor the trace of the stiffness matrix is a good choice for the stiffness
evaluation of PKMs. And the same problem arises for the average of the eigenvalues of the stiffness matrix.
In view of the condition number of the stiffness matrix, it indicates the ill-conditioning of the stiffness matrix,
while does not provide enough information of the stiffness values. For the machine tool application, the min-
imum stiffness over the workspace should be larger than a specified value to ensure the accuracy of the manip-
ulation everywhere in the workspace. Hence, the minimum and maximum values of stiffness and their
variances appear to be the reasonable indices for stiffness evaluation, and are adopted as stiffness performance
indices in this paper.

In addition, once the stiffness model of a PKM is established, it is also desired to have a better understand-
ing of the spatial compliant behavior of the PKM. It has been shown that the eigenscrew decomposition of the
stiffness matrix can identify the basic structure of the stiffness and provide a physical interpretation of the spa-
tial elastic behavior [7,16,17], then the center of stiffness and the compliant axis [18] can also be identified if
they exist. The center of stiffness is a generalization of the RCC (remote center of compliance) concept, at
which the stiffness matrix can be expressed as a normal form with the off-diagonal blocks diagonalized.
Although the normal form itself obtained for generic stiffness matrices is not diagonal, it still maximally
decouples rotational and translational aspects of stiffness. Moreover, the compliant axis is a useful concept
for robotic applications, since it acts as independent torsional and linear springs. For a compliant axis, a force
produces a parallel linear deformation, and a rotational deformation about the line of the force produces a
parallel couple.

In the remainder of this paper, after a brief description of the 3-PUU PKM in Section 2, the procedure for
the stiffness matrix determination using an alternative approach is presented in Section 3. Then in Section 4,
the stiffness is evaluated by adopting the minimum and maximum stiffness as performance indices, and the
influences of design parameters on the stiffness characteristics are predicted. Moreover, the stiffness behaviors
of the PKM are evaluated based upon the eigenscrew decomposition of the stiffness matrix along with the stiff-
ness center and compliant axis identified. Finally, some concluding remarks are presented in Section 5.
2. Kinematic description

The CAD model of a 3-PUU PKM is shown in Fig. 1 and the schematic diagram is described by Fig. 2. The
manipulator consists of a mobile platform, a fixed base, and three limbs with identical kinematic structure.
Each limb connects the fixed base to the moving platform by a prismatic (P) joint followed by two universal
(U) joints in sequence, where the P joint is driven by a lead screw linear actuator.

Since each U joint consists of two intersecting revolute (R) joints, each limb is kinematically equivalent to a
PRRRR kinematic chain. A 3-PUU mechanism can be arranged to achieve only translational motions with
Fig. 1. A 3-PUU PKM.
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Fig. 2. Schematic representation of a 3-PUU PKM.
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some certain geometric conditions satisfied, i.e., in each kinematic chain, the axis of the first revolute joint is
parallel to that of the last one, and the two intermediate joint axes are parallel to each other.

For the purpose of analysis, as depicted in Fig. 2, we assign a fixed Cartesian reference frame O{x,y,z} at
the centered point O of the fixed base platform DA1A2A3, and a moving frame P{u,v,w} on the mobile plat-
form at the centered point P of triangle DB1B2B3. In addition, let the x- and u-axes be parallel to each other,

and the x-axis direct along OA1

!
. The angle between vectors OAi

!
and PBi

!
ði ¼ 1; 2; 3Þ is defined as the twist

angle h, i.e., the angle between the mobile platform and the fixed base. The three rails AiM intersect one
another at point M, and intersect the x–y plane at points A1, A2, and A3, that lie on a circle of radius a.
The three legs CiBi with lengths of l intersect the u–v plane at points B1, B2, and B3, which lie on a circle
of radius b. In addition, angle a is measured from the fixed base to rails AiM and is defined as the actuators
layout angle. In order to achieve a symmetric workspace of the manipulator, both DA1A2A3 and DB1B2B3 are
assigned to be equilateral triangles.

Let ki be an unit vector along the leg CiBi, di represent a linear displacement of the ith actuator, and hi

denote the corresponding unit vector pointing along rail AiM. In addition, let ai ¼ OAi

!
, bi ¼ PBi

!
, and

p ¼ OP
!
¼ ½x y z�T. Using a suitable vector-loop analysis, both the inverse and forward kinematics problems

can be solved in closed-forms. We recall briefly the inverse kinematics solutions as follows (see [6] for more
details), which are used to determine the reachable workspace of the 3-PUU PKM
di ¼ hT
i ei �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhT

i eiÞ2 � eT
i ei þ l2

q
; ð1Þ
where ei ¼ pþ bi � ai for i ¼ 1; 2; and 3.

3. Stiffness matrix generation

3.1. Jacobian matrix derivation

The theory of reciprocal screws is an effective way to derive the Jacobian matrix of a parallel manipulator
[12]. With t and x respectively denoting the vectors for the linear and angular velocities, the twist of the
mobile platform can be defined as T ¼ ½tT xT�T in Plücker axis coordinate. Concerning a 3-PUU PKM, the
connectivity of each limb is equal to 5, hence the instantaneous twist T of the mobile platform can be
expressed as a linear combination of the five instantaneous twists, i.e.,
T ¼ _di
bT1;i þ _h2;i

bT2;i þ _h3;i
bT3;i þ _h4;i

bT4;i þ _h5;i
bT5;i ð2Þ
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for i = 1, 2, 3, where _hj;i is the intensity and bTj;i denotes an unit screw (in Plücker axis coordinate) associated
with the jth joint of the ith limb, and
bT1;i ¼
s1;i

0

� �
; bT2;i ¼

ci � s2;i

s2;i

� �
; bT3;i ¼

ci � s3;i

s3;i

� �
; bT4;i ¼

bi � s4;i

s4;i

� �
; bT5;i ¼

bi � s5;i

s5;i

� �
can be identified, with sj;i represents an unit vector along the jth joint axis of the ith limb, ci ¼ bi � lki, and 0
denotes a 3 · 1 zero vector. In addition, as a translational PKM, the joint axes of the 3-PUU mechanism are
assembled to satisfy the conditions: s3;i ¼ s4;i and s2;i ¼ s5;i.

Firstly, one screw t̂c;i expressed in Plücker ray coordinate that is reciprocal to all the joint screws of the ith
limb forms a 1-system, which can be identified as an infinite pitch screw with a direction perpendicular to the
two joint axes of a U joint, i.e.,
t̂c;i ¼
0

ri

� �
; ð3Þ
where ri is an unit vector along the direction defined by s2;i � s3;i (or s5;i � s4;i).
Taking the product of both sides of Eq. (2) with t̂c;i, leads to three equations, which can be assembled into

the matrix form:
JcT ¼ 0; ð4Þ
where
Jc ¼
0 rT

1

0 rT
2

0 rT
3

2
64

3
75

3�6

ð5Þ
is called the Jacobian of constraints. Each row in Jc denotes an unit wrench of constraints imposed by the
joints of a limb, the combination of which constrains the mobile platform a 3-DOF motion. Hence, if ri

for i = 1, 2, 3 are linearly independent, the unique solution to Eq. (4) is x ¼ 0.
Secondly, with the actuators locked, the reciprocal screws of each limb form a 2-system which includes the

screw t̂c;i identified earlier. One additional basis screw t̂a;i being reciprocal to all the passive joint screws of the
ith limb can be identified as a zero pitch screw along the direction passing through the two U joints, i.e.,
t̂a;i ¼
ki

bi � ki

� �
: ð6Þ
Similarly, taking the product of both sides of Eq. (2) with t̂a;i, leads to a matrix-form result:
JaT ¼ _q; ð7Þ
where _q ¼ ½ _d1
_d2

_d3�T denotes the actuated joint rate and
Ja ¼

kT
1

kT
1

s1;1

ðb1�k1ÞT

kT
1

s1;1

kT
2

kT
2

s1;2

ðb2�k2ÞT

kT
2

s1;2

kT
3

kT
3

s1;3

ðb3�k3ÞT

kT
3

s1;3

2
66664

3
77775

3�6

ð8Þ
is called the Jacobian of actuations.
An observation of the units of matrix Ja reveals that the first three columns are dimensionless while the last

three ones are related to the units of length which are introduced by the position vectors bi. As shown in the
following discussions, the matrices Ja and Jc are integrated into the overall stiffness matrix of the manipulator,
thus it is necessary to homogenize the units of the Jacobian matrices so as to generate a stiffness matrix and
performance index invariant of the length unit adopted. Since Jc is dimensionless, the dimensionally homoge-
neous Jacobian of actuations can be achieved by
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Jah ¼ JaW ð9Þ
with W ¼ diag 1; 1; 1; 1
b ;

1
b ;

1
b

� �
, where the mobile platform radius b is chosen as the characteristic length to

homogenize the dimension of the Jacobian matrix.
Combining Eqs. (4) and (7) allows the generation of
_q0 ¼ JT; ð10Þ

where _q0 ¼ ½ _d1

_d2
_d3 0 0 0�T is the extended joint rate, and
J ¼
Jah

Jc

� �
6�6

ð11Þ
is called the overall Jacobian of a 3-PUU PKM, which is homogeneous in terms of units.

3.2. Stiffness modeling

It can be observed that the wrench system that is the infinite pitch reciprocal screw system of constraints
exerts three constraint couples to the mobile platform, and the wrench system which is the zero pitch recipro-
cal screw system of actuations imposes three constraint forces to the mobile platform with the directions along
the legs. This means that each leg suffers a force and a couple along the leg’s direction. With the assumption
that the rigidities of the U joints and mobile platform are infinite, the compliance subject to actuators and legs
can be derived as follows.

3.2.1. Compliance subject to actuators

In a lead screw actuation system, through the torque transmission, the force acting on the ith nut and the
corresponding linear displacement can be respectively calculated as
fi ¼
2si

lcds
and Dti ¼

psi

Ka;i
; ð12Þ
where lc is the friction coefficient, si and Ka;i denote the torque and torsional stiffness of the ith actuator, ds

and p represent the pitch diameter and lead of the lead screw, respectively.
In view of Eq. (12), one can derive the compliance for the ith linear driving device:
Ci ¼
Dti

fi
¼ lcdsp

2Ka;i
: ð13Þ
Hence, the projection of compliance subject to the ith actuator in the corresponding leg’s direction can be de-
rived as
Ck
a;i ¼ kT

i s1;iCi: ð14Þ
3.2.2. Compliance subject to legs

Let Ck
l;i and Ck

h;i be the longitudinal and transverse compliance of the ith leg. Since each leg suffers a con-
straint force ðF k

i Þ along the leg’s direction and a constraint couple ðMr
i Þ with its direction perpendicular to the

universal joint of the limb, the elastic deformations of the ith leg due to the force and couple can be expressed
as
Dli ¼ Ck
l;iF

k
i ¼

l
AE

F k
i ; ð15Þ

Dhi ¼ Ck
h;iM

r
i ¼

l
GIp

kT
i riMr

i ; ð16Þ
where l and A denote the length and cross section area of each leg, E and G are the moduli of the longitudinal
and transverse elasticity, and Ip represents the polar moment of inertia, respectively.

Then, an observation of Eqs. (15) and (16) allows the generation of Ck
l;i and Ck

h;i.
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3.2.3. Stiffness model

In view of the inverse relationship between the stiffness and compliance, the stiffness of actuations and con-
straints can be respectively obtained as
Ka;i ¼ C�1
a;i ¼ ðCk

a;i þ Ck
l;iÞ
�1
; ð17aÞ

Kc;i ¼ C�1
c;i ¼ ðCk

h;iÞ
�1 ð17bÞ
for i = 1, 2, and 3.
In consequence, the stiffness model of a 3-PUU PKM can be established by considering that the mobile

platform is connected to the fixed base by three linear springs and three rotational ones as illustrated in Fig. 3.

3.3. Stiffness matrix determination

Assume that the mobile platform suffers an external wrench w ¼ ½fT mT�T expressed in the Plücker ray coor-
dinate, where f ¼ ½fx f y f z�

T denotes a force and m ¼ ½mx my mz�T denotes a torque. Additionally, let sa and sc

represent the reaction forces/torques of actuators and constraints, respectively. In the absence of gravity, the
external wrench is balanced by the reaction forces/torques exerted by the actuators and constraints, i.e.,
w ¼ JT
a sa þ JT

c sc; ð18Þ

where the reaction forces/moments can be expressed as
sa ¼ vaDqa; ð19aÞ
sc ¼ vcDqc ð19bÞ
with Dqa and Dqc denote the displacements of actuations and constraints, respectively, and the diagonal matri-
ces are va ¼ diag½Ka;1; Ka;2; Ka;3� and vc ¼ diag½Kc;1; Kc;2; Kc;3�, respectively.

Moreover, let Dx ¼ ½Dx Dy Dz�T and Dh ¼ ½Dhx Dhy Dhz�T be the infinitesimal displacements of translation
and rotation of the mobile platform with respect to three axes of the reference frame. And then, applying the
principle of virtual work by neglecting the gravitational effect, allows the generation of
wTDX ¼ sT
a Dqa þ sT

c Dqc; ð20Þ

where DX ¼ ½DxT DhT�T denotes the mobile platform’s twist deformation in the axis coordinate.
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Fig. 3. Stiffness model of a 3-PUU PKM.
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A careful analysis of Eqs. (18)–(20) at the same time, leads to the expression of
Table
Archit

Param

a

b

l

a
h

Table
Physic

Param

Ka,i

lc

ds

p

w ¼ KDX; ð21Þ
where K ¼ JTvJ is defined as the 6 · 6 overall stiffness matrix of a 3-PUU PKM including the effect of actu-
ations and constraints, with the 6 · 6 diagonal matrix v ¼ diag½va vc�.
4. Stiffness evaluation of a 3-PUU PKM

The architectural parameters of a 3-PUU PKM are shown in Table 1, which are designed to make a com-
promise between the performance of global dexterity index over the entire workspace and the space utility
ratio index defined as the ratio of total workspace volume to physical size of the robot [6]. In addition, the
cone angle limits of the U joints are ±20� and the motion range limits of the P joints are assigned to be
±D0.1 m. By adopting a numerical searching method described in [19], the reachable workspace of the manip-
ulator is generated as shown in Fig. 4. Moreover, the physical parameters of the designed 3-PUU PKM are
elaborated in Table 2.

Let the home position of the mobile platform be in the case of mid stroke of linear actuators, i.e.,
di ¼ 0 ði ¼ 1; 2; 3Þ, in which the stiffness matrix can be calculated as follows:
1
ectural parameters of a 3-PUU PKM
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0.3 m
0.1 m
0.3 m
45.0�
0.0�

—0.1 —0.050 0.05 0.1
—0.1

0
0.1

—0.4

—0.35

—0.3

—0.25

—0.2

—0.15

—0.1

x (m)y (m)

z 
(m

) 

Fig. 4. Reachable workspace of a 3-PUU PKM.

2
al parameters of a 3-PUU PKM

eter Value Parameter Value

1.45 · 106 N m/rad E 2.03 · 1011 N/m2

0.25 G 7.85 · 1010 N/m2

20 mm A 2.01 · 10�4 m2

3 mm Ip 3.22 · 10�9 m4
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K0 ¼

9:0891 0 0 0 �1:0162 0

0 9:0891 0 1:0162 0 0

0 0 22:7228 0 0 0

0 1:0162 0 0:1137 0 0

�1:0162 0 0 0 0:1137 0

0 0 0 0 0 0:0001

2
666666664

3
777777775
� 107; ð22Þ
where the units of terms are N/m for fK0
11; K0

22; K0
33g, N/rad for fK0

15; K0
24g, N m/m for fK0

42; K0
51g, and N m/

rad for fK0
44; K0

55; K0
66g.

Given a wrench applied on the mobile platform of the PKM, the compliant displacements DX can be
derived in view of Eq. (21). Fig. 6 depicts the plots of compliant displacements when the mobile platform fol-
lows a trajectory shown in Fig. 5 at a constant velocity with an external static force of fx = 20 N applied. It is
observed that the maximum linear compliant displacement is 1.4 mm which occurs in the x-axis direction as
expected. In addition, the maximum rotary compliant displacement is the rotation around the y-axis.
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4.1. Stiffness assessment

In order to ensure the accuracy of the manipulation of the PKM anywhere in the workspace, the minimum
stiffness over the workspace should be larger than a specified value. In this subsection, both the minimum and
maximum eigenvalues obtained through the conventional eigenvalue decomposition of the stiffness matrix are
used as stiffness indices so as to have a global view of the stiffness values over the workspace.

A numerical approach is adopted here to evaluate the stiffness throughout the PKM workspace. The main
feature of the algorithm is the partition of a covering volume V in the Cartesian coordinate into small sam-
pling pieces {vi} and the piece-by-piece check in order to recognize whether the piece vi belongs to the work-
space. The size of the samples is dependent on the required accuracy. The checking procedure is based upon
the inverse kinematic solutions along with the consideration of motion limits of mechanical joints. In the
pieces that fall into the workspace, the stiffness matrix is derived and decomposed to obtain the minimum
and maximum stiffness, which are separately stored at the same time. Once the check of all the sampling pieces
is completed, the stored minimum and maximum stiffness values are compared respectively to get the mini-
mum and maximum values over the workspace.

The algorithm is adopted here due to the ease of implementation in a computer program. It should
be noticed that other alternative approaches can also be adopted to the current problem, and one of
them is the interval analysis algorithm, which has the advantages of allowing computer round-off errors
to be taken into account and is applied to solve the complex forward kinematics of a Gough-type parallel
manipulator successfully [20] and used for the design and comparison of two 3-DOF PKMs [3] and other
problems.

The distributions for the minimum stiffness and maximum stiffness in the planes of z = �0.224 m (home
position height) are illustrated in Fig. 7. It can be observed that, similar to the reachable workspace, the dis-
tribution of stiffness in a x–y plane is 120-deg-symmetrical about the axial directions of three P joints. In addi-
tion, the lowest value of minimum stiffness occurs around the boundary of the workspace, so does the highest
value of the maximum stiffness, since the manipulator approaches singular when it comes near the workspace
boundary.

Since around the boundary of the reachable workspace, the PKM takes on a bad stiffness property, it is
reasonable to restrict the PKM to operate in a subworkspace located within the reachable workspace. Accord-
ing to the PKM tasks and performances, there are several ways to define this subworkspace. Here, for the
main purpose of examining the effects of altering the kinematic parameters on the stiffness, the subworkspace
is assigned as a cubic shape usable workspace with the edge length of 0.1 m, whose center lies at the home
position point of the mobile platform. And the size of the sample pieces is chosen as 0.002 m for the numerical
evaluation of the stiffness in the usable workspace.

Along with the varying of architectural parameters of the 3-PUU PKM, the tendency of variation on the
minimum and maximum stiffness over the usable workspace is described in Figs. 8a–d, from which it is clear to
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see the impacts of design parameters (a, h, b, and l) on the stiffness property of the manipulator. For instance,
along with the increasing of actuators layout angle a from 0� to 90�, the minimum stiffness seems to reach the
highest value between 30� and 35�, and the maximum stiffness approaches the lowest value around 60� of actu-
ators layout angle. Additionally, in case of the twist angle h ¼ 0�, the stiffness has a lowest minimum stiffness
and a highest maximum stiffness values, and the minimum stiffness decreases monotonously as the increasing
of the mobile platform size b from 0.05 m to 0.2 m and the leg length l from 0.25 m to 0.5 m, while in which
ranges, there are extremum values for the maximum stiffness.

The stiffness indices for the manipulator with aforementioned parameters are also marked in Fig. 8. It is
seen that the architectural parameters optimized for dexterity and workspace performances do not result in
a manipulator with the highest minimum stiffness values. Since the objective of optimization depends heavily
on the tasks to be performed, the stiffness indices provide a measure for the architectural optimization of the
PKM particularly for machine tool applications.

4.2. Stiffness interpretation via eigenscrew decomposition

In what follows, the stiffness behavior is investigated through the eigenscrew decomposition of the stiffness
matrix by resorting to useful results from previous relevant literatures.

In view of Plücker’s original conventions, a twist is expressed in the axis coordinate and a wrench is
expressed in the ray coordinate. As far as the stiffness matrix eigenscrew problem is concerned, it should be
formulated using consistent coordinates for the results to be meaningful. Either ray or axis screw coordinates
can be utilized. In addition, this preserves the integrity of the units and ensures that the results are independent
of the coordinate frame. Otherwise, the results are not invariant and thus become meaningless.
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The conversion between the two types of coordinates is allowed by a matrix bD with the expression of
bD ¼ 0 I

I 0

� �
; ð23Þ
where 0 and I denote a zero matrix and an identity matrix in 3 · 3, respectively. The definition of bD and a
description of its characteristics are given in [16]. In general, bD interchanges the first and last three components
of a screw.

The eigenscrew problem formulated in the ray coordinate is described as follows:
KbDe ¼ ke; ð24Þ
where the eigenvalue k is defined as the eigenstiffness of the stiffness matrix K, and the six-vector (screw) e is
defined as its corresponding eigenscrew of K.

Based on Eq. (24), the eigenscrew decomposition of the stiffness matrix is stated in [17] as follows: Let K be
a full-rank stiffness matrix and wi be the unit eigenscrews corresponding to eigenstiffnesses ki ði ¼ 1; 2; . . . ; 6Þ
obtained from the eigenscrew problem Eq. (24). Then K can be decomposed into the form:
K ¼ k1

2h1

w1wT
1 þ

k2

2h2

w2wT
2 þ � � � þ

k6

2h6

w6wT
6 ; ð25Þ
where
hi ¼
1

2
wT

i
bDwi 6¼ 0 ð26Þ
is the pitch of wi, for i ¼ 1; 2; . . . ; 6.
Let
ki ¼
ki

2hi
; i ¼ 1; . . . ; 6; ð27Þ
then Eq. (25) indicates that K can be interpreted by a body suspended by six screw springs each with spring
wrench wi and spring constant ki. The screw springs can be expressed as [7]
wi ¼
ni

ri � ni þ hini

� �
; ð28Þ
where ni is an unit vector representing the direction of the spring axis, and ri identifies the direction and dis-
tance to the line of action.

The results from these previous investigations of the eigenscrew problem are used to study the stiffness
behavior of the 3-PUU PKM. As an example, the eigenscrew decomposition is applied to the stiffness matrix
K0 as described in Eq. (22). By solving the eigenscrew problem in Eq. (24), the six eigenstiffness [k], the six
eigenscrew pitches [h], and the six corresponding unit eigenscrews [w] obtained are detailed in Eq. (29).
½k� ¼ diag½5:3631; �5:3631; 2:3984; �2:3984; 2:3984; �2:3984� � 105;

½h� ¼ diag½0:0024; �0:0024; 0:0026; �0:0026; 0:0026; �0:0026�;

½w� ¼

0 0 0:8801 �0:8262 �0:0236 �0:0247

0 0 0:4749 �0:5634 �0:9997 �0:9997

1 1 0 0 0 0

0 0 0:0554 �0:0608 �0:1118 �0:1117

0 0 �0:0971 0:0939 0 0:0054

0:0024 �0:0024 0 0 0 0

2
666666664

3
777777775
:

ð29Þ
The interpretation of stiffness matrix K0 based on eigenscrew decomposition is elaborated in Table 3, which
indicates that K0 can be interpreted by a body suspended by six screw springs si with directions along the
eigenscrews of K0 as shown in Fig. 9. The pitch of helical joint (in length/rotation) used in the screw spring



Table 3
Spring constant and geometrical connection for each screw spring

Spring k · 10�8 nT rT p

s1 1.1361 [0,0,1] [0,0,0] �0.0148
s2 1.1361 [0,0,1] [0,0,0] 0.0148
s3 0.4545 [0.8801,0.4749,0] [0,0,�0.1118] �0.0166
s4 0.4545 [�0.8262,�0.5634,0] [0,0,�0.1118] 0.0166
s5 0.4545 [�0.0236,�0.9997,0] [0,0,�0.1118] �0.0166
s6 0.4545 [�0.0247,�0.9997,0] [0,0,�0.1118] 0.0166

O
x

yz

1s 2s

3s4s
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Fig. 9. The physical interpretation of the stiffness of a 3-PUU PKM.
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is determined by �2phi. Thus, each screw spring is defined by its spring constant k, helical joint pitch p, and
the geometrical connection parameters n and r. It can be observed that the first two springs are parallel to each
other and along the z-axis, and the other four springs lie in a common plane perpendicular to the z-axis, i.e.,
the plane of z = �0.1118 m. Moreover, the six springs intersect at a common point P K ð0; 0;�0:1118Þ, that
denotes the center of stiffness, at which the stiffness matrix can be brought to a normal form and allows
the maximally decoupling of the rotations and translations.
4.3. Compliant axis determination

A compliant axis exists when a force produces a parallel linear deformation, and a rotational deformation
about the line of the force produces a parallel couple [18]. The existence of a compliant axis is related to the
corresponding eigenscrew problem. A necessary and sufficient condition for a compliant axis is that there are
two collinear eigenscrews with eigenstiffnesses of equal magnitude and opposite sign. The compliant axis direc-
tion is determined by the direction of the two collinear eigenscrews.

In view of Eq. (29) and Table 3, it is observed that there exist two collinear eigenscrews in the direction of
[0, 0, 1]T, i.e., the z-axis direction, with the eigenstiffness of 5.3631 · 105 and �5.3631 · 105, respectively.
Therefore, there exists one compliant axis along the z-axis direction for the stiffness matrix K0. A rotational
deformation about the z-axis, according to Eq. (24), results in
K0bD 0 0 1 0 0 0½ �T ¼ 103 0 0 0 0 0 1:2658½ �T; ð30Þ
i.e., a pure couple parallel to the z-axis.
Taking the inverse of both sides of Eq. (24), yields
bDK�1e ¼ k�1e; ð31Þ
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which represents the eigenscrew decomposition of the compliance matrix (K�1) actually. Applying a force
along the z-axis, using Eq. (31), yields
bDðK0Þ�1 0 0 1 0 0 0½ �T ¼ 10�8 0 0 0 0 0 0:4401½ �T; ð32Þ
i.e., a single linear deformation along the z-axis.
By examining any points on the z-axis, it is observed that when the mobile platform of the PKM lies in the

z-axis, there always exist a compliant axis and a stiffness center in the z-axis direction. Therefore, from the
accuracy point of view, the 3-PUU PKM has better operation in the z-axis, since the force and deformation
about the compliant axis will not affect any other directions.
5. Conclusions

The stiffness matrix is derived based on an overall Jacobian via the theory of reciprocal screws considering
the effect of actuations and constraints. And the rigidities in both actuators and legs are taken into account to
establish the stiffness model of the manipulator. Through a survey of the commonly used stiffness performance
indices, the minimum and maximum eigenvalues of the stiffness matrix over a cubic shape usable workspace
are adopted to evaluate the stiffness of the PKM. The variation tendency of stiffness within the workspace is
presented and the impact of variation of design parameters on the stiffness characteristics is given, that is help-
ful for the architecture design of a 3-PUU PKM considering stiffness performance. Furthermore, the eigen-
screw decomposition of the stiffness matrix is carried out to have an insight view of the compliant behavior
of the PKM stiffness. It is illustrated that, at a specified configuration, the stiffness can be interpreted by a
body suspended by a set of screw springs. In addition, the PKM’s stiffness is better along the z-axis since it
always has a compliant axis and a stiffness center in that direction.

The main contribution of this paper lies in the derivation of the stiffness model of a 3-PUU PKM via an
intuitive approach, the stiffness evaluation of the PKM with the variation of architectural parameters, and the
physical interpretation of the PKM stiffness. Furthermore, the modeling and analysis methodology presented
here can be generalized to other types of parallel manipulators as well. This paper provides a basis for the
architectural design of the 3-PUU PKM with stiffness properties taken into account, which is necessary from
the design point of view. Once a PKM is designed and fabricated, the experimental study will be performed to
validate the results obtained from the stiffness analysis.
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