Proceedings of the 2000 IEEE
International Conference on Robotics & Automation
San Francisco, CA e April 2000

Evolution-Based Virtual Training in Extracting Fuzzy Knox\}.ledge
for Deburring Tasks

S.-F. Su', T.-J Horng~, and K.-Y. Young”

Department of Electrical Engincering

Taiwan R. O. C.

Abstract

In this research. the problems of how (o tcach a robot
to execute skilled operations arc studied. Human workers
usually accumulate his expericnce after executing the
same task repetitively. In the process of training. the
worker must find ways of adjusting his/her execution. In
our system. the parameters for the impedance control
scheme are used as the targets for adjustment. After mass
amount of training. the worker is supposed 1o be able 1o
execute deburring tasks successfully. This is because the
worker might have gotten some knowledge about tuning

the parameters required in the impedance control scheme.

Thus, the rules for adjusting the parameters in impedance
control are the operational skills to be identified. In this
research, a training scheme. called the evolution-based
virtual training scheme. is proposed in cxtracting
knowledge for robotic deburring tasks. In this approach,
a evolution strategy is employed to searching for the best
set of fuzzy rules. This learning scheme has been
successfully applied in adjusting the paramcters of
impedance controllers required in deburring operations.
In general. the results of deburring arc much satisfactory
when compared with those in the previous research.
When exccuting a deburring task. the robot simulator can
find its optimal adjusting rules for paramecters afler
several generations of evolution.

1. Introduction

Recently, industry has successfully used robots in
engaging in executing various tasks whose working
environment is harmful to human beings or whose
operations are repetitive and/or require high accuracy.
Usually, those tasks can be programmed into the
operations of robots because thosc tasks do not interact
with the environment frequently and then human skill
may not be necessary for the operations of the tasks. On
the other hand. there exist tasks. such as dcburring.
grinding, milling. assembly. ctc.. which may need a great
deal of interactions with the convironment and thus.
require lots of decision-making processes while facing
those interactions. Hence. the successful exccution of
those tasks largely relies on human skill in achicving
satisfactory results. Such kinds of tasks are very difTicult
to be satisfactorily programmed into the opcration of
robots. In fact, even there exists some work that has tricd
to manage to embed thosc tasks into the operation of
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robots. those operations may face lots of problems when
uncertainty occurs in the cnvironment and the actual
operations may not be satisfactory.

Scveral researchers have tried to discover the
relationships between human experts' intentions and
operational strategies for tasks so that the skills could be
modeled accordingly and then are possibly transferred to
the operations of robots. Asada ef al. have tried to use
neural netwotiks | 1.2}, adaptive control |3], or fuzzy rules
[4] to model and to transfer human skills to the
opcrations of robots. In |3]. in order to acquire human
skills. the authors have rclaxed the joints of a robot
manipulator; ‘and let a human expert worker take ‘the
end-cffector of a manipulator to accomplish a compliant
task. for instance. deburring. The data of the deburring
process. such as positions (angles) and forces (torques) of
all joints are recorded. The approach is then to extract
usclul rules or strategics for representing the skills from
the collected data. However. sotne problems may arise in
the above approach. First. the obtained ruies or strategies
based on this sct of data may not be able to represent the
skills in sufficiency. When an expert worker need to take
the end-effector to procecd the exccution. since in this
unusual way the worker cannot execute the task as he/she
usually did. the results may not be satisfactory. Besides,
the rccorded data may not be sufficient to adequately
express the operational skills. Secondly. the rules or
strategics extracted from the diata arc rather primitive and
are sensitive to the operational conditions. For-example,
in deburring tasks. if different material properties or
surface roughness of workpicces are considered for
deburring tasks. the obtained stratcgies may not work::
well. Therefore, it may be required (o further generalize
that obtained knowledge 10 cope with the variation of
tasks. Thus. in this rescarch we attempted to propose
another way of defining operational skills and training
schemes for learning the deburring tasks.

In the work of [11]. human skills are stored in the
desired position commands to the controller of a robot
manipulator. In that approach. other parameters,. for
deburring  tasks. the parameters required in  the
impedance control -scheme arc chosen as constants.
However. the results in our simulation have shown that
the performance can bc improved by changing the
parameters in the impedance control mechanism. In
order to obtain better results for deburring operations, a
way of determining when and how to change those



parameters must be defined. In this rescarch. a fuzzy rule
decision-making svstem is proposcd to define strategics
for changing those paramcters. In other words. we
attempted to use the paramecters (o represent  the
operational skills for deburring. However. it is dilficult to
obtain such rules from expert knowledge or from training
data. Thus. we proposed another concept of learning
called virtual training for our study.

2. The Concept of Virtual Training

The idea of virtual training is to check the results of
the operations shown in a virtual cnvironment. which is
defined as a simulation system that can truly model the
considered plant. When the results arc not good cnough.
the operational schemes are changed according to some
criteria, and another simulation is then conducted again.
Hopefully, after a period of training. the operational
scheme yvielding acceptable performance can be obtained.

From the training point of vicw. idecally. a worker is
trained to know how to satisfactorily execute deburring
tasks. and such knowledge is accumulated from repetitive
operations. With a virtual environment. human opcrators
can virtually execute the tasks to obtain training data.
The first advantages of using virtual training is that since
the operations of tasks are emulated in the simulation.
there is no cost for repetitive operations. and then mass
amount of training become possibic. Another fold of
advantages is that it is possiblc to capturc various kinds
of information or states that mayv be difficult or
impossible to get in the real world operations.

In the process of training. the worker must find ways
of adjusting his/her exccution. In our system. the
parameters for the impedance control scheme arc used as
the targets for adjustment. After mass amount of training.
the worker is supposed to be able to execute deburring
tasks successfully. This is becausc the worker might have
gotten some knowledge about tuning the parameters
required in the impedance control scheme. Hence. (he
learning task is to analvze the data recorded in the
operation process and to extract the operational skills
from those data. In this rescarch. the analysis is to
identify the relationship between the parameters and the
performance of the operation and to estimate what valucs
for those parameters should be set for certain situations.
Naturally. such a kind of knowledge is represented in a
rule base. In our work. the knowledge obtained from the
collected data is also converted into rules. However, the
representation of knowledge by using rules is discrete in
nature. but the data obtained arc all continuous variables.
Therefore. in order (o soften the boundary between rules.
the fuzzy concept is included into the rule reasoning
svstem for the operational skills.

In a training paradigm. various patierns must be
used to explore all possibilitics to scarch for the pattern
that can yield the best performance. However. if the
training patterns are tried in a random manner. the

search for finding the best candidite may take lots of

time. or cven worse may not find a feasible solution. For
our case. the number of possible rule sets is extremely
large. and then the exhaustive scarch for all rule sets is
impossible. Therefore. it is nature to think about the use
of cvolution strategies to provide an effective way of
finding the best candidate. 1t will be introduced later. In
this paper. an cvolution based virtual training scheme
used to find rules for delermining proper parameters in
impedance control is proposed.

3. Impedance Control

In this research. decburring tasks are the skilled
operations for training. Deburring tasks are usually
carricd out by impedance control mechanisms [6,17-19].
The modcls used by Asada er al. in [6] and by Kazerooni
et al. in |17-19] are all impedance control schemes. In
{6]. the authors considered that the function of the
operation should be simple cnough so that it does not
requirc heavy computation. Nevertheless, the function
must also model the motion cxecuted by human experts
with a reasonable accuracy. The authors in [17-19] have
also chosen impedance control with a view of the

specifications of performance and robustness. Thus, in

this work. impedance control is also employed as the
compliance controller for deburring operations.

In an impedance control scheme, with simple
physics. the following control is used:

M N+ BN +K, (N =\ )=F,,. (1)
where Af,. B, and KA, arc the inertial, the damping
and the stiffncss matrix. respectively. specified by the
designer. \. . and X arc the end-cffector's position,
velocity and acceleration vectors, respectively. X, is
the goal position vector in the Cariesian space, and F,,,

is the external force caused by the environment. The
impedance in Eq. (1) is a decoupled form in the
Cartesian space. Since the controf of robot manipulator is
always considered in the joint spacc. the above equations
must be transformed into the joint space to derive the
control torque. From the robot dynamics [9] and
straightforward manipulation. the control law is obtained.
The dctailed discussions can be scen in [14].

In the use of impedance control. one major issue
must be resolved. It is about how to choose the suitable
target mpedance or thosc parameters in Eq. (1). In the
work of [11]. those parameters are chosen as constants in
his work of transferring human skills. However, the
results in the later simulation have shown that the
performance can be improved by changing the
parameters -in the impedance control mechanism. Thus,
in order to obtain a better result for deburring operations,
a way of determining when and how to change those
paramcters must be defined.

4. Fuzzy Rules for Deburring Tasks

Asada ¢t al. |4} had ever made use of fuzzy rules as
the skills in robotic deburring operations. In the approach,
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the moving trajectory of a human expert is measured and
then categorized bascd on the expert  linguistic
information. An example of the expert linguistic
information is that if a burr is large. the cutting force
should be increased in general. The linguistic control
rules are constituted of both discriminate functions and a
group of associate linear mappings. Those functions arc
identified from the obtained data.

In this research. the above concept of fuzzy rules is
adopted to capture the skills required in deburring
operations. As we have stated. in this work. the rules for
adjusting the parameters in impedance control arc the
operational skills to be identificd. Thus. the training is to
identify the rules that imitate the behavior of human
experts to increase or to decrease the external force in the
impedance controller when the crror between the current

point .\" and the desired position .\, is large. If the
end-effector has staved at the same position for a long
time. it means that the .\'; command must be changed
to move the end-effector ahcad again.

According to the above description. the rules for
adjusting the parameters of impedance controllers are of
the form “JF (4, <error < .1,) THEN (AM. AB. AK.
AX,)=P" Intherule. A, and .
the upper boundaries, respectively. for the /-th rule. AV
AB, AK, and A .Y, are the variables for the changes.

are the lower and

i

respectively, of A/,;. B,. K,.and \, in Eq. (1) 10
be set. P, is a set of values for AV A3. AK. and A\,
of the i-th rule. Thus. 7 is the target to be lecarned.
Note that since only line deburring tasks are discussed.
the dimensions for the above variables arc all 2. It is
worthy mentioning that since the training is to determine
whatis P inthe rules. in the rule structure. P is a set

of crisp values instead of fuzzy scts. Thus. the simplificd
TSK [8] reasoning mechanism is uscd in our work.

5. Evolution Strategy

Evolution strategy is a way of finding paramcters
that optimize an objective function [7]. In fact. evolution
strategies are often referred as genctic algorithms. which
are defined for the problems of finding the best
combination of gene [13]. Evolution strategics have oficn
been utilized in solving a wide range of optimization
problems. Various applications can be found in robotics.
such as solving inverse kinematics of redundant robots
[21]. motion planning and obstacle avoidance |22]. or
navigation of mobile robot [12]. Thev have also be
employed in fuzzy svstems or ncural nctworks to ‘scarch
for the optimal answer [10.15.20].

In this work. the forms of the initial chromosomes
include eight attributes. AN/, AN/ .. AB,. AB .. AKX .

AK,.AN,,;.and A5, . Those valucs are to be scarched

through training. An example of an initial chromosomc
is shown in Figure 1. In reproduction operations. the

chosen probabilities of chromosomes depend on their
fitness value. A higher cvaluation score results:in-a
higher chosen probability. Floating crossover operation is
cmploved. For instance. consider two: chronmosomes;
GGG Cae ey Gy and E<ay L o0, n,>. A
crossover site 7 is selected at randoni.  In our approach,
new offspring are obtained as <, +@p -¢\)/ay, -,
Cn + (7’)1 _.(rl)/all > and < m * (.(] _,]l)/bl s T
n, + (&,—n,)/b, > where a; and b; are real
numbers greater than 1. for i=1 ... . In the simulation,
a;, and b, are set between 2 and 3. ‘

E]

Mutation value must be limited to a given range;
otherwisc. the operation may become unstable. Let &

in =< ¢, 6.8 -, £, > be the chosen
attribute 1o be mutated. Then it is directly as ¢ +8

where & is a real number with given the reasonable
extension. In our simulation. cach attribute has its
individual mutation probability. Then. there may be more
than one attribute that will mutate in a chromosome. The
mutation probability of each altribute is 0.03 and & is
limited within the region |-3.3]. The initial population of
thosc impedance parameters is shown in Tables 1.

6. System Implementation and Simulation Results

Figure 2 shows the block diagram of the proposed
learning system. First. the rules (initial population of the
evolution strategy) enter into the system and are soften
with the fuzzy module. Then. the impedance controller
usc those soften rules to adjust its pafameters during the
task exccution. Note that a free space trdjectory must be
planed in advance. because the robot is asked to move in
the free space automatically. The same initial situations
arc nceded to make meaningful comparisons. Thus, the
trajectory in the frec space and the contact point of each
simulation cycle are fixed. When a deburring simulation
task has been accomplished. the fitness of the set of rules
is ‘cvaluated according 1o the results. The evolution
strategy is then used to produce new offspring (new sets
of rules). Hopefully. with the above evolution-based
training mechanism. a satisfactory set of rules can be
acquired. o

The dynamic model proposcd in [11] is adopted in
this = simulation. The dynamics of the working
environment is described as:

- l‘:’-‘ll = /g("\.' + A'U('\' - ‘\'(; )
['T/"f = SNV, ) ‘/)7 /';,,,,-
. k.
\ o =~k — extl
| x5 |+a

where /,, is the cxternal force caused by the

cnvironment. [;; is the friction. / is the force

o
nor

normal to the contact surface. (', is the coefficient of

tii

friction. - v, is the velocity of the tangent direction, and
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k, and o are positive constants. The external force is
caused by the deformation of the workpicce. and may
debur the extra material beyvond the desired line. Due to
the contact force. the position of the surface of the
workpiece will approach to the desired surface. In the
differential equation describing the deburring process.
the constant A, represents the clficiency of dcburring.

When £, is large. the efficicncy of deburring is high. A

small positive constant ¢ is uscd as a bias term to avoid
dividing by zero in the cquation. In addition o the
normal contact force. the vclocity of the horizontal
direction in the deburring process is also related to the
vertical velocity of the end-effcctor of the manipulator.

In this simulation. a sct of fcasible rules for adjusting
the parameters required in an impedance controller must
be acquired at first to definc the initial population for
evolution-based training. The requircments for those
rules are to make sure that the whole system be stable
during the deburring operation. In order to soften the
boundary between rules with the fuzzy concept. the
mechanism of approximate rcasoning is cmploved to
interpreting those rules. Hopclully. afier training. some
usable strategies as in our casc. rules for adjusting
parameters. A7, B. K. and .\",. to accomplish a deburring

task with satisfaction can be extracted.

The requirements of dcburring tasks in our training
are described as follows. First. when the end-ceffector of
the robot manipulator is in comtact with the working
environment, big impact should be avoided. Sccondly.
the line after deburring is asked to be as close 1o the
desired line as possible. and then the position error is one
index of the performance mcasurc. Thirdiy. the stability
during the execution of the task nceds to be assured.
Finally, the execution timc should not exceed a
prescribed value. Nevertheless. the weight of the position
performance in the evaluation scorc is larger than that of
the time consumption and that of the force exertion. If
the robot simulator can complete the task fast and the
results can match the task requirements. it is perfect.

According to the above task requirements. the
evaluation function used in our work to cvaluate the
performance of a deburring opceration is delined as:

Score= I x score, +105 X scores

2x count 2 connt

+ (100 4r, <117y Y xexp(=p = count)

n
score | = Z[sgn(OA = X e expi=py o (04 =V
i=0

n

SCOTe 3 = S (exp(=py % (Fpgy = Fin) ) = e5PU= 4 x (Fogs = P )]

o
where [, is the desired force. 117 and 15 are
weights of the position score and ol the force score.
respectively. p,. p,. and p, are the multipliers of
each score. 0.4 is the desired position and .\, is the
position after deburring. cownt = 4 is the number of

points nceded to accomplish a deburring task and is the
mcasure of the exccution time. In this simulation, the
counting number can not exceed a desired number. If it
exceeds this desired number. the evaluation score is set as
zero. In other words. if the moving speed of the
deburring opcration is too slow. the deburring operation
will be regarded as a fail operation. In the same way, if
the external force excced the tolerable force, the robot
simulator alerts the user and also the evaluation score is
set as zero. Those parameters and the weights used in our
simulations are given in Tablc 2.

First. the simulation results using the initial rules are
presented. The used cnvironment parameters are
B, =05, B,, = 05, K, =100000, and K,,=10000.
The results are as shown in Figure 3. For comparison, the
results in [11] are also cited and shown in Figure 4. It
can be found that our results are much better than those
in |11]. The results of applied the rules obtained from our
cvolution-based virtual training are shown in Figures 5-7.
Those results are obtained with different burr sizes but
with the same environmental stiffness. From the resuits,
the performance is better than that by using the initial
rule set. It can be concluded that this approach can
indeed achieve the purposc of training. If the moving
velocity of .Y, dimension keeps a low-valued constant,

the line after deburring will be smooth. In addition, if the
excrting force is sufficiently large. the line will be close
to the desired line. If the moving speed is too large or not
a constant. the line after deburring will be rugged and
rough. Moreover. it may destrov the workpiece or the
robot environment.

For the workpiece with the same stiffness but
diffcrent burr sizes. the robot simulator can find its
proper target impedance. The results are shown in
Figures xx-xx. The obtained rules can also be
successfully applied to the workpieces with the same
environmental parameters but different bur sizes. The set
of the rules obtained from the first casc is used to debur
the workpicce of the second case. Similarly, the set of the
tules obtained from the second case is also used to debur
the workpiece of the first case. The simulation results are
shown in Figures 8 and 9.

¢}

7. Conclusions

In this rescarch. the probicms ol how to teach a robot
to exccute skilled operations arc studied. The idea of
transferring the human skills to robots 1s somewhat
different from those proposed in the literature. Even a
human expert meet a new material that he never faced
before. he may treat this material with his experience and
intuition. Human workers usually accumwulate his
expericnce after exccuting the same task repetitively. In
addition. human experts usually teach other workers how
1o exccute a skilled sk by showing the exccuting
process. instcad of expressing the skills by some sort of
information or data. For instance. if the burr size is
larger. then the exerting lorce should be larger. Such

3858



knowledge is difficult to be represented both sufficicntly
and accuratcly no matter in numerical data or in
linguistic rules. As a consequenice. the skills required in a
skilled opcration arc difficult to. be wransferred o the
operation for a robot. In this rescarch. a new training
scheme. called the evolution-based  virtual  training
scheme. was proposed in cxtracting knowledge for
robotic deburring tasks.

The results in our simufation have shown that the
performance can be improved by changing the
parameters in the impedance control mechanism. A fuzzy
rule dccision-making system  was_ proposed in  this
resecarch 1o definc strategics  for changing thosc
parameters. In order to obtain a better result for
deburring operations. a way of deteimining when and
how to change thosc parameters must be defined. The
number of possible rule sets is extreincly large. and then
the exhaustive scarch for all rule scts is impossible. In
this paper. an cvolution bascd virtual training scheme
used to find rules for detcrmining proper paramelers in
impedance control is proposcd. This learning scheme has
been successfully applied in adjusting the parameters of
impedance controllers required in deburring operations.
In general. the results of deburring are much satisfactory
when compared with those in the previous rescarch.
When executing a deburring task. the roboi simulator can
find its optimal adjusting rules for parameters alier
several generations of evolution.
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Table 1. The initial population used in the study.
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X —10<Error < 50x 10 | 5| 4| 3| 4| 4|44 4[4]5
{c) B 50X 107 < Ervor <00 [2 (A [ (2221|1112
0.0< Error <80 x 10°* v eyt
BOx10*<EBrror<15> [2 |2 |2]|3]3({2(2]2]2]¢?
15 x 100 < Error 13/10/10{9|9]8]51516]8
Region Tea initial chromosomes {x10~1
Xyspeed > 2.0 x 1077 2015712712710 [10]20 181120
(d)B: [00Z Xaspeed<20x107 [ 5 [3[3 |34 ]a]5(517
- Xyspeed < 0.0 A afz]e2|2]2[d]2] 3]t
Region Ten initial chromosomes
Error < —107% S[5[ 5[ 5]4[4]-5[5]515
. —10-Y < Error < 0.0 A [ A4 4T 3]3[4]471414
(e) K, 0.0< Brror < 1057 Tt
10 < Error <30x10° [ 5|3 | 3]3|3[3]5}:31312
30Xx10 < Error <50° (10|88 |8 (7 [9[1W0]7[7]6
50x 107 < Errar 13[10]10]|10[99[13[9}9] %
,h Region Teq initial chromosomes (x10°*)
. [T Xaspeed 2 2.5 x 1077 30]25]20[15[10]12]2]20}20]30
DK, TS X107 € Xyspeed <25x 10 |20 | 1512|1018 16 116118115115
T [ Xaspeed <15 %10 al2 (34l 3]3]
Region Ten iaitial chromosomes (x10°%)
- Error 2 00 gJoJoJojojojojojofo
(g)«\'u [ =10 <Error <00 Tl gl
50X 10 < Error < —10 | 3({312]-e|-2l-21-1 111}
{: Ervor < —50 x 10> 55|34 el 212)2|212
:
(OREN
[ Erer<io™ |

3860

Ps 500 if (0.4 — Xoin) > 0.0
200 if (0.4 — Xoia) € 0.0




