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Abstract
A new approach to the deformation modeling of vis-

coehwtic objects for their shape control is presented.
Manipulative operations of viscoeiastic objects can be
found in many industrial fields such as food indust~
and medical product industry. Automatic operations of
viscoelastic objects are eagerly requirwd in these jields.
Since viscoelastic objects deform during operation pro-
cesses, it is necessay to simulate the behavior of the
objects and to estimate their deformation for the au-
tomatic operations. Consequently, a model of a vis-
coelastic object is needed for the simulation and the
estimation of its deformation.

We will propose a lattice structure based modeling
method for viscoekstic object deformation. First, be-
havior of four element models is briefiy explained. Sec-
ond, a viscoelastic object is modeled as a lattice struc-
ture, where mass points am connected through four el-
ement models. We will simulate shape deformation of
the model when force input is applied to it. Validity
of the model is then discussed. Next, we will introduce
a nonlinear damper(NLD) into a four element model
in order to solve a discrepancy between an actual vis -
coelastic object and its linear model. Comparing the
behavior of the two models, we will show the validity
of the model using NLD ‘s.

1 Introduction
Manipulative operations of viscoelastic objects can

be found in many fields. There exist forming opera-
tions of bread dough and pizza dough in food indus-
try and handling operations of soft supplies in medi-
cal industry. Most handling operations of viscoelastic
objects with large deformation depend upon humans.
For example, the forming process of pizza dough in-
cludes a forming operation of the dough stretched by
a roller. This operation is performed by humans and
automatic forming of the stretched dough is required
to improve product quality. Molding has been utilized
in the automatic shape control of viscoelastic objects.
However, we find many operations where the mold-
ing cannot be applied in food industry and in medical
product industry. For example, the pizza dough must
be shaped by extending the dough to ensure its qual-
ity. Molding the dough decreases the palate of a pizza.
Thus, we have to develop new automatic machines for
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these operations without molding, and have to derive
control strategies for the shape control of viscoelastic
objects. Since the objects deform during operation
processes, it is necessary to simulate the behavior of
the objects and to estimate their deformation for the
automatic operations. Consequently, a model of a vis-
coelastic object is needed for the simulation and the
estimation of their deformation.

Modeling of viscoelastic objects has been studied in
computer graphics and virtual reality. Terzopoulos et
al. have proposed a method to the modeling of vis-
coelastic objects in computer graphics [1]. Joukhsx.ier
et al. have proposed a modeling technique for de-
formable objects and have simulated the collision be-
tween deformable objects [2]. Chai et al. have devel-
oped a virtual reality system where users can deform
virtual objects in computer [3]. These researches fo-
cus on deformed shape of the objects and their shaping
process is out of consideration. Handling operations of
deformable objects have been studied recently. Taylor
et al. have experimentally studied automatic handling
of deformable parts in garment industry and in shoe
industry [4]. Zheng amd Chen have proposed a strat-
egy to insert a deformable beam into a hole [5]. Wada
et al. have propose a control law for the position-
ing operation of extensible clothes [6]. These studies
mainly deal with elastic objects. Shaping operation of
viscoelastic objects are not studied.

In this paper, we will propose a lattice structure
based modeling method for viscoelastic object defor-
mation. First, behavior of four element models is
briefly explained. Second, a viscoelastic object is mod-
eled as a lattice structure, where mass points are con-
nected through four element models. We will simulate
shape deformation of the model when force input is
applied to it. Validity of the model is then discussed.
Next, we will introduce a nonlinear damper(NLD) into
a four element model in order to solve a discrepancy
between an actual viscoelastic object and its linear
model. Comparing the behavior of the two models,
we will show the validity of the model using NLD’s.

2 Modeling of viscoelastic materials
In this section, we will briefly explain four element

models, which describe viscoelastic nature of object
materials. Elements describing viscoelastic materials



are shown in Figure 1. Element shown in Figure l-(a)
is called Voigt model, that in Figure l-(b) is called
Maxwell model, and that in Figure l-(c) is called four
element model. Voigt model consists of a spring and
a damper, which connect two mass points parallel.
Maxwell model is a series of a spring and a damper
connecting two mass points. Four element model is a

Y
series of a Voi model and a Maxwell model, as shown
in Figure 1-(c .

ia) (b)

(c)

Figure 1: Viscoelastic elements: (a) Voigt model, (b)
Maxwell model, (c) Four element model

Chamcteristics of the three models are described
in Figure 2. Force of 1 [N] is applied to individual
models during 10 seconds, as shown in Figure 2-(a).
Responses to this force of individual models are plot-
ted in Figure 2-(b). Graphs in this figure show defor-
mation of individual models. Deformation of a Voigt
model converges to an equilibrium when a constant
force is applied to it. The deformation decreases and
converges to zero after an applied force vanishes, as
shown in Figure 2-(b). Namely, a Voigt model is capa-
ble of describing elasticity of materials. Deformation
of a Maxwell model increases while a constant force
is applied to it. The deformation reaches to a cer-
tain non-zero value after an applied force vanishes, as
shown in Figure 2-(b). Namely, a Maxwell model can
describe viscosity of materials. Deformation of a four
element model is given by a sum of deformation of a
Voigt part in the model and that of a Maxwell part.
Thus, a four element model shows both characteris-
tics of a Voigt model and that of a Maxwell model.
In other words, four element model can describe vis-
coelastic nature of materials. From the above observa-
tion, we will use four element models to build a model
of a viscoelastic object.

Time[sec]
(a) Input f-e
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Figure 2: Characteristics of viscoelastic elements: (a)
force input, (b) responses of viscoelastic elements
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Figure 3: Four element model

Let us formulate the behavior of a four element
model shown in Figure 3. Let O be the origin of a
spatial coordinate system. Let P~_ 1 and P~ be coor-
dinates of end points of a four element model. Recall
that a four element model consists of a Voigt part and
a Maxwell part. Spring constant and damper constant
of a Voigt part in the model are denoted K1 and Cl,
respectively. Spring constant and damper constant of
a Maxwell part in the model are denoted Kz and C5,
respectively. Natural length of a Voigt part is given
by ll. Natural length of a spring of a Maxwell part is
12 and that of a damper of a Maxwell part is 13. Let
AZ be mass at each end point. Let P; be position of a
point connecting a Voigt part and a Maxwell part, as
described in Figure 3. Let P; be position of a point
connecting a spring and a damper in a Maxwell part,
as illustrated in the figure. Note that points Pn– 1,
P;, Pi, and Pn exist on a straight line. Thus, posi-
tion P: and P: can be described using parameters tl
and tzas follows:

P; = tl(Pn – Pn_l) + Pn_l
P: = t2(Pn – P.-J + P..l

Let F, be a force applied to a mass point P. by a
four element model. Force Fe is equal to a force by
the Voigt part. This yields

Force Fe coincides a force by a spring in the Maxwell
part. Thus, we have

F. = –K2((t2 – tI)lPn – Pn_ll – 12)
P. – P.-1

1P. - P.-,1

(2)

Force F. is equal to a force by a damper in the
Maxwell part. Namely,

Fe = –C2((1 –t2)lP; – Pn_ll)
#5Ef3)

Let Fa be an external force acting on a mass point

P.. Equation of a motion of a mass point at position
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P. is then given by

ivlPn = Fe+Fa (4)

Equations (1) through (4) provide equation of a mo-
tion of a four element model. Eliminating vector F.
from equation (1), (2), and (3), we can determine pa-
rameters tl and tz uniquely. Substituting the values
of tl and t2 into one equation of (1), (2), and (3), we
can determine the value of vector Fe. Namely, we
can compute a force by a four element model and can
compute the motion of mass point P..

3 Lattice model of viscoelastic objects
Viscoelastic objects deform in 3D space. Thus, we

have to describe their deformation in 3D space. In this
paper, we will propose a lattice structure to describe
deformation of a viscoelastic object in 3D space. Let
us distribute mass points in a natural shape of a vis-
coelastic object at the same intervals along z, y, and z-
axis, as illustrated in Figure 4. Let IV be the number of
the mass points and ~obje.t be the mass of the object.
Then, mass of a point is given by ~ = ~ObjeCt/N.

m
Figure 4: Lattice model of object

Four element models are inserted between all neigh-
boring mass points, as illustrated in Figure 5. Namely,
four element models are arranged along longitude,
transverse, and diagonal directions. Viscoelastic de-
formation of an object can be described by deforma-
tion of these four element models. Let Pi,j,k be posi-
tion vector corresponding to lattice point (i, j, k). Let
us derive equation of motion of a mass point at Pi, ‘,/c.
Force acting on Pi,j,k by a four element model ~e-
tween Pi,j,k and a neighboring point Pi+a,j+fl,k+y is

denoted by F~>~L7. Then, total internal force acting

on Pi,j,k is given by the sum of F~~~~7, that is,

F:,j,k = ~B,,~,,o,,,%fi7
(:,p,7)#(o,o,o)

Recall that force F~;~Lv can be computed using a pro-
cedure explained in section 2. Thus, force ~~,~,k can
be computed by summing all forces. Let F~,j,k be to-
tal external force acting on Pi, j,k. The equation of
motion is thus described as follows:

By solving a set of equations corresponding to all mass

points consisting of the model, we can compute the
deformation of a viscoelastic object.
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Figure 5: Nei~hboring lattice points and four element
models

4 Simulation results of 2D model
In this section, we will show simulation results of

deformation of a viscoelastic object using its two-
dimensional model. Computation process described
in Section 3 can be applied to tw~dimensional mod-
els. In addition, computation results using tw~
dimensional models can easily extended to 3D defor-
mation of viscoelastic objects.

Let us consider a lattice model for a cubic object
shown in Figure 6. This lattice model consists of 6 x
6 mass points. Four element models are inserted be-
tween all neighboring mass points. 25 elements along
z-axis, 25 elements along g-axis, and 50 diagonal ele-
ments are involved in the model.

*

Figure 6: Two-dimensional model of cubic object

Let us compute deformation of the model corre-
sponding to force input at its surface. Mass of all
mass points is assumed to be M = 0.1. Values of
spring constants and damper constants in all four el-
ement models are assumed as K1 = K2 = 1.0 and
Cl = Cz = 1.0. The bottom of the object is fixed to
the space.

Force input: Let us impose force input on the
model at points corresponding to (2,5) and (3,5). Step
force input at the two points is given in Figure 7-(a).
Step force of 0.2 along y-axis in the negative direction
is applied to the two points for 2 seconds. Figure 7-(b)
shows the initial shape and a deformed shape in the
stationary condition.

From the simulation results shown in Figure 7-(a)
and (b), we find that the deformation of a viscoelas-
tic object can be computed and the proposed model
shows a behavior similar to am actual viscoelastic ob-
ject. But one discrepancy between that of the model
and that of an actual object is found. Assume that



a small force is applied to a viscoelastic object. For
example, imagine a situation that a penny is located
on an amount of bread dough. Then, the bread dough
may not deform in a short time. On the other side,
the proposed model deforms in a short time even if
a small force is exerted on it. Figure 7-(c) and (d)
shows the deformation of the model for a small force.
Figure 7-(c) describes step force input of 0.01 applied
to two points corresponding to (2,5) and (3,5). De-
formed shape after 50 seconds is described in Figure
7-(d). Note that the object continues to deform while
a small force is applied to it. Namely, the deforma-
tion does not converge. This discrepancy between the
model and an actual object is due to linearity of a
four element model. In the next section, we will in-
troduce a nonlinear four element model to solve this
discrepancy.

Tme[sec] Tme[sec]
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x axis
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Figure 7: Response of two-dimensional model for force
input: (a) force input at points (2,5) and (3,5) (F=O.2),

1)

b) deformed shape in stationary condition by force of
a , (c) force input at points (2,5) and (3,5) (F=O.01),
d deformed shape after 50 seconds by force of (c)

5 Four element model using nonlinear

damper
As discussed in the previous section, a viscoelastic

object may not deform for a small force. In this sec-
tion, we will introduce a nonlinear four element model
to describe this behavior of a viscoelastic object. Dis-
crepancy discussed in the previous section is caused
by a linear damper in the Maxwell part of a four ele-
ment model. This damper continues to extend while
a small force is applied to the damper. To solve the
discrepancy, the damper should not extend for a small-
applied force while it can behave as a linear damper
otherwise. Thus, we will introduce a nonlinear damper
(NLD) into a four element model. Damper constant of
the NLD should be large for a small force while should

be an appropriate constant value otherwise. Namely,
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damper constant of the NLD depends on a force ap-
plied to the NLD. Let ~ be the magnitude of a force
applied to an NLD and C2 (~) be damper coefficient of
the NLD. Function C2 (~) must be a monotonously de-
creasing function. For example, we can define function
Cz(f) as follows:

{

CMAX (F< F~+6)

Gj(”f)= Acot-l(B(F – Fe)) + c~I~

F–F.
(F~Fo+t)

where A, B and e are constants. Maximum value and
minimum value of the darnper coefficient are given by
CMAX and CMIN, respectively. Value of CMAX must
be large enough. Then, the NLD does not extend
when the applied force is smaller than Fo+e. The NLD
extends when force exceeds F. + c. Thus, parameter
F. defines a limit whether the NLD extends or not.
An example of function Cz (~) is plotted in Figure 10.
In this example, A = 10, B = 10, C = 1, c = 10-8,
CMAX = 1.6 x 109, and F. = 1. As shown in the
figure, value of C2(~) is large around ~ = O while
C2 (~) has a constant value when ~ is greater than
FO+C =1+10-8.
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Figure 8: Coefficient of nonlinear damper

Figure 9 shows response to step input of force on
a normal four element model and that on a four el~
ment model using an NLD. Broken lines in the figures
describe the response of a normal element while con-
tinuous lines show the response of an element using an
NLD. The magnitude of force F is 1 in Figure 9-(a)
and is 0.1 in Figure 9-(b). As shown in Figure 9-(a),
response of a four element model using an NLD is al-
most same as that of a normal element when F = 0.1.
On the other hand, a normal four element continues to
deform while deformation of a four element model us-
ing an NLD converges to a certain value when F = 1,
as plotted in Figure 9-(b). Recall that damper coef-
ficient Cz (f) of the NLD has a large value when F
is around 0.1. This yields the response shown in the
figure.

As discussed above, response of a four element
model using an NLD is similar to that of an actual
viscoelastic object. We will therefore use the nonlin-
ear model to build models of viscoelastic objects.
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Figure 9: Response of four element model using NLD
for step input of force: (a) external force F = 1, (b)
external force F = 0.1

6 Simulation results of deformation us-

ing nonlinear four element models
In th~s section, we will show simulation results of

object deformation using nonlineax four element mod-
els. Let us build a two-dimensional lattice model of
a viscoelastic object using four element models with
NLD’s. The model consists of 6 x 6 mass points to
describe a cubic shape. Deformation for force input
and that for displacement input are computed here.

Force input: Let us impose force input to the sur-
face of the model at the two points. Step force input at
the two points is given in Figure 10-(a). Step force of
0.2 along y-axis in the negative direction is applied to
the two points for 2 seconds as plotted in Figure 7-(a).
Figure 10-(b) describes the initial shape of the model
and the deformed shape in stationary condition. Com-
paring Figure lo-(b) with Figure 7-(b), we find that
the model using NLD’s deforms as the normal model
does. Figure 1O-(C) shows step force of 0.01 applied
to the two points. Figure 10-(d) describes the initial
shape of the model and the deformed shape in station-
ary condition. Recall that the linear model continues
to deform for any small force, as shown in Fi ure 7-

f(d). Comparing Figure 10-(d) with Figure 7- d), we
find that the model using NLD’s does not deform for
a relatively small force. Consequently, introducing a
nonlinear damper to a four element model enables us
to build a model more similar to an actual viscoelastic
object.
771
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Figure 10: Response of two-dimensional model using
NLD’s for force input: (a) force input at lattice points
(2,5) and (3,5), (b) deformed shape in stationary con-
dition

Displacement input: Let us impose displacement
input to the surface of the model at two lattice points
(2,5) amd (3,5). Displacement input at the two points
is given in Figure n-(a). Value of ~-coordinate at the
two points decreases from 5.0 to 3.5 during 2 seconds.
Figure n-(b) describes an initial shape of the model
and its deformed shape after 3.6 seconds. Figure 11-
(c) shows the initial shape and a deformed shape in
the stationary condition.

Comparing these figures, we find that both topsides
of the model deform toward the center of the model,
where displacement input is applied. Moreover, we
find that the model expands along z-axis.
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Figure 11: Response of two-dimensional model using
NLD for displacement input: (a) position input at lat-
tice points (2,5) and (3,5), (b) deformed shape after
3.6 seconds, (c) deformed shape in stationary condi-
tion

7 Simulation of shaping process
In this section, the shaping process of a viscoelastic

object is simulated. A viscoelastic object is shaped
with a rotating roller, aa illustrated in Figure 12.

In this simulation, a viscoelastic object is modeled
by the lattice structure of four element models de-
scribed in Section 4. Radius of the roller is assumed
to 1. The roller is assumed to move from the initial
position in the direction of x at a speed of 0.4. The
roller rotates by 1(rad/see). This simulation result is
shown in Figure 13.

roller
nv viscoelastic obje
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Figure 12: Shaping of viscoelastic object by roller
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Figure 13: Response of tw~dimensional model in
shaping by roller

8 Conclusion
In this paper, we have proposed a new method to

the modeling ofviscoelastic objects for their deforma-
tion control. lVe have proposed a lattice structure to
describe the deformation of a viscoelastic object. Non-
linear dampers are introduced to the object model so
that the deformation corresponding to small forces can
be described appropriately.

Future problems are (1) identification of parameters
in four element models, (2) experimental verification
of the proposed approach, and (3) derivation of control
strategies for shape control of viscoelastic objects.
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