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Abstract
The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide
variety of bio-inspired vision sensors. We are interested in exploring the vision system of
various insects and adapting some of their features toward the development of specialized
vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather
develop sensor systems tailor made for the application at hand. We envision that many
applications may require a hybrid approach using conventional digital imaging techniques
enhanced with bio-inspired analogue sensors. In this specific project, we investigated the
apposition compound eye and its characteristics commonly found in diurnal insects and certain
species of arthropods. We developed and characterized an array of apposition compound
eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the
ability to follow a pre-defined target and avoid specified obstacles using a simple control
algorithm.

1. Introduction

The Wyoming Information, Signal Processing, and Robotics
(WISPR) Laboratory is interested in exploring the vision
system of various insects and adapting some of their features
toward the development of specialized vision sensors. We do
not attempt to supplant traditional digital imaging techniques
but rather develop sensor systems tailor made for a wide variety
of commercial, medical and military applications. We envision
that many applications may require a hybrid approach using
conventional digital imaging techniques enhanced with bio-
inspired sensors.

This approach to sensor development has some
precedence; Sanders and Halford noted ‘Alternative methods
modeled after the multi-aperture optical system of arthropods
offer new ways to segment the object space of a sensor,
increase the field of view, and perform low-level visual
functions relatively easily, inexpensively, and quickly. [ . . . ]
There are many reasons for investigating biological apposition
compound eyes as paradigms for manmade systems. [ . . . ]
Insects and crustaceans perform many perceptually oriented

tasks with their compound eyes, such as obstacle avoidance,
landmark recognition, searching for mates and food, and
avoidance of predators. Many of these tasks are essentially the
same as the tasks required by artificial sensor platforms, and
arthropods accomplish these with simple neural processing
systems compared to those of vertebrates.’ [1].

In this project, we investigated the characteristics of
the apposition compound eye commonly found in diurnal
insects and certain species of arthropods. We developed and
characterized an array of sensors configured similarly to an
apposition compound eye and tested them on an autonomous
robotic vehicle. The robot exhibits the ability to follow a
specified target and avoid pre-defined obstacles using a simple
control algorithm much like an insect searching for a mate or
food and avoiding predators [2, 3].

We begin with a brief review of apposition compound
eyes and related historical work in biologically inspired
autonomous vehicles, followed by a discussion of the
apposition compound eye sensor, array layout and our small
autonomous vehicle equipped with an algorithm for target
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Figure 1. Insect vision configurations: (a) apposition, (b) superposition, and (c) neural superposition. Adapted from [4]. Published with
permission of ISA. Copyright 2008. All rights reserved.

tracking and obstacle avoidance. Sensor characterization
along with tracking and avoidance results is then provided.

2. Background and related work

This research effort investigated the potential for building a
system that exhibited complex behavior using a sensor and
processing based on apposition compound eye vision. Our
primary research goal was to perform experiments with an
autonomous vehicle with such a bio-inspired vision system
and a very simple controller. In this section, we briefly review
related work in these areas.

2.1. Types of insect vision

Land [4] describes the basic configurations of insect vision,
including apposition, superposition and neural superposition
compound eyes and the acuity characteristics of each.
Each configuration has its own inherent advantages and
disadvantages. As can be seen in figure 1(a), in an apposition
compound-type eye the rhabdomere (light sensitive cell)
bundle, called the rhabdom, has its own lens. The individual
light gathering contributions from each rhabdomere is pooled.
The spatial acuity of the apposition compound eye is primarily
determined by the interommatidial angle (�φ) described by

�φ = D/R,

where D is the diameter of the facet lens and R is the
local radius of curvature of the eye [4]. As can be seen in

figure 1(a), �φ describes the angular displacement between
adjacent ommatidia. The optical superposition eye pools
light from adjacent ommatidia as shown in figure 1(b). This
effectively enhances the light gathering capability of this insect
vision configuration but reduces the effective acuity due to
the blurring effect of spatial superposition. In the neural
superposition eye, illustrated in figure 1(c), one rhabdomere
in seven adjacent ommatidia shares an overlapped field of
view with the other. These overlapped fields of view
provide a motion resolution greater than that implied by the
photoreceptor spacing of the retinal array, a phenomenon
known as hyperacuity [5].

Our research group has researched fly-inspired vision
sensors for a number of years. It is important to note that most
of these sensors are of the neural superposition compound type.
A thorough review of this type of sensor and its characteristics
is provided in [6]. In contrast, the work described in this paper
is of the apposition compound-type eye commonly found in
diurnal (daylight) insects and certain species of arthropods.

2.2. Related vision behavior

Beyond modeling an apposition compound-type eye, we also
wanted to investigate and model some of the aspects of the
apposition compound eye exhibited by certain diurnal species
including adaptation to various lighting conditions, processing
of photoreceptor inputs and pattern matching for navigation.
These aspects of apposition compound eye vision seemed to
lend themselves readily to simple electronic implementation
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of a similar sensor, which when paired with a simple control
algorithm could lead to interesting autonomous behavior.

Mazokhin-Porshnyakov made the following observation
about apposition compound eye-type vision systems:
‘Considering the extremely small dimensions of the corneal
lenses we can expect eyes of such type to be of little use for
vision in weak light. In fact, apposition eyes are present almost
exclusively in diurnal insects.’ [7]. To compensate for this
limitation, insects use a variety of adaptations. Recent work by
Greiner et al [8–10] has shown that certain species of nocturnal
bees may use neural summation of light in time and space to
visually orient to landmarks at night. Greiner also noted that
pigment migration during light and dark adaptation ‘constitute
the most important pupillary mechanism found in compound
eyes’ [11–13]. There is also evidence that photoreceptors of
diurnal animals adapt their properties according to current
illuminance allowing them to function in light that may
change over eight orders of magnitude [14]. Laughlin also
reported that various actions adjust the large monopolar cells
‘sensitivity to the background intensity so that their responses
code contrast fluctuations rather than absolute intensity’ [15].
Harris et al supported this theory indicating ‘adaptation
in retinas shifts the operating range of photoreceptors and
neurons to match the prevailing stimulus distribution’ [16].
In this research effort, the robot performs a light adaptation
routine to adjust to ambient light conditions. The robot senses
the ambient light conditions and automatically adjusts the
analogue electronics operational parameters. This provides for
a wide dynamic range of sensing for various light conditions.

As previously mentioned, Greiner et al [8] hypothesized
that nocturnal bees may use neural summation of the
apposition compound eye photoreceptor input in time and
space to orient to landmarks at night. This appears to
be counterintuitive since summing the photoreceptor inputs
would have a blurring effect. However, related work by
Goldhoorn et al indicates that combining this information
into an average landmark vector [ALV] may be a powerful
method of navigation and homing. An ant species from the
Saharan desert, the Cataglyphis, uses this technique for visual
homing [17–19]. In this research effort, we employed a similar
technique to ALV. We calculate a center of mass (COM), a
weighted average of sensor inputs, as a method of combining
the sensor inputs to assist in robot navigation.

In addition to the COM processing, we employ a pattern
match technique to determine robot behavior. The pattern of
obstacles and targets is considered against pre-defined patterns
to determine the robot’s response. This is similar to a number
of techniques well documented in the literature used by a wide
variety of species including bees, ants and fish [9, 20–23].

2.3. Bio-inspired autonomous vehicles

In 1948, Norbert Weiner published Cybernetics. Weiner
focused on parallels between mechanical systems and living
systems. Cybernetics was soon followed by the experiments
of Dr Grey Walter, an English physician. Walter constructed
a number of small autonomous vehicles in the 1950s that he
referred to as an ‘imitation of life’ [24–26]. His ‘turtles’

were wheeled vehicles with a control system made up of
several vacuum tube circuits and sensors. They were able
to seek light, avoid touching walls and connect themselves to
a power source to recharge their batteries. By 1953, Walter had
constructed a system that was able to use oscillatory circuits
as the memory for rudimentary learning. An important feature
of his cybernetic work was the use of analogue computation
elements.

From the late 1950s through the 1970s, the growing
availability of digital computers caused a shift away from
cybernetics towards artificial intelligence (AI). Classical AI
concerns itself with the use of world models and symbolic logic
to make inferences and plans from input data. This approach
showed high initial promise, especially in the areas of game
playing and symbolic math. The traditional AI approach did
not have a great deal of success dealing with the complexity
of real world sensor input encountered in the development
of autonomous systems, primarily due to problems with the
creation of accurate world models [27, 28].

The 1980s saw the return of reaction-driven rather than
model-driven approaches to autonomous mobile systems.
Rodney Brooks and his research group at the MIT mobile
robot lab introduced a control system model that uses simple
computations to map sensor inputs to actuator outputs. A
number of these mappings are then combined in what he calls
a ‘subsumption’ architecture to enable the construction of a
robust system capable of operating in an environment with
little or no structure. This approach has led to the construction
of robots able to walk or roll across unstructured environments
with little or no supervision [28].

In 1984, a well-known neuroscience researcher named
Valentino Braitenberg published Vehicles. Braitenberg
presented a series of hypothetical ‘vehicles’ of slowly
increasing technical complexity, but of quickly increasing
complexity of behavior. The vehicles range from ones similar
to the ones built by Walter to more complex ones incorporating
learning and motion detection. The thought experiments
presented in Vehicles seem to have had a strong influence
on later work by others. The book is deceptively simple, and
is focused on the idea that systems of relatively simple design
can exhibit surprisingly complex behavior [29].

In 1992, Franceschini et al performed ground breaking
work inspired by Braintenberg’s ‘vehicles’. In this research
effort, a small robotic vehicle was equipped with a complement
of 100 elementary motion detectors (EMDs) inspired by the
neural superposition eye of the fly. The vehicle was able to
track an active stationary lamp as a target. The robot was
able to navigate about obstacles and track the target at speeds
up to 50 cm s−1 [30]. The work described in this paper is a
natural extension of Franceschini’s research. However, unlike
Franceschini, an apposition style compound eye vision system
found in a wide variety of species including diurnal insects,
ants, bees and certain species of arthropods is employed.
Furthermore, a center-of-mass tracking algorithm inspired by
these species is used to navigate about obstacles and track a
moving target using passive sensing techniques at speeds up
to 100 cm s−1. The goals between the two projects are similar:
track a target while navigating obstacles using simple systems
inspired by species within the insect world.
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2.4. Contemporary machine vision

The main thrust of the research by Koch, Reid and Higgins is
in building systems based on EMDs which can be attributed to
Reichert. EMDs basically work by correlation of information
from two adjacent photo cells. The present and delayed input
to each cell is combined to determine if one detector is seeing
what the adjacent detector saw a moment ago. The EMD
produces a bipolar output signal with the sign indicating the
direction of motion. An array of EMDs together can detect
visual flow [31–36].

Fearing is building a micro aerial vehicle (MAV)
equipped with motion detectors (based on EMDs), micro-
electromechanical sensors used to measure body rotations and
artificial ocelli which are used by insects in horizon-based
attitude control. The control system for the insect is based on
a hierarchical decomposition of the control functions [37, 38].

Neumann has been using insect-inspired vision algorithms
to develop flight control models. The work consists mainly
of computer simulations of EMD-equipped unmanned aerial
vehicles (UAVs) flying through simulated environments. The
simulations use a very structured textured environment and a
simple flight model. Translation and rotation-induced optical
flow is calculated and used to calculate velocity and altitude,
as well as computing attitude. EMDs form the basis of the
vision algorithms [39–41].

Franceschini and Netter have work similar to that of
Neumann, but using a physical UAV instead of a simulated one.
They have constructed a system which includes a UAV tethered
to a pantographic arm which restricts the pitch and altitude
of the UAV to limited ranges, while completely limiting the
roll and yaw. As the UAV flies, the attached arm is pulled
around and up and down; the position of the arm as well
as rotor commands to the UAV is passed by a slip ring. A
ramp with a pattern painted on it lies below the flight path,
and the UAV is equipped with an array of EMDs which are
used to control its flight. Over 50 successful automatic terrain
following flights have been accomplished with this system.
The EMD integration is done digitally, and the visual pattern
used on the flight surface is similar to that used in Neumann’s
work [42].

The United States Naval Research Lab (NRL) and
Centeye have also been doing work similar to that of
Franceschini, Netter and Neumann, but their experimentation
has been conducted in less-structured environments. Using a
variety of flying platforms from small glider models to UAVs,
they have demonstrated the usefulness of insect-based vision
in UAVs operating in an unstructured environment [43, 44].

3. Methods

In order to perform the series of experiments required to
explore the viability of an artificial apposition compound
eye system, quite a bit of system development had to be
performed. In this section, we detail the development of
the sensor element, array layout, the processing and control
algorithm, and the adaptation of a low-cost, ground-based

vehicle. The bulk of the equipment was developed with off-
the-shelf components.

3.1. Sensor development

Nearly all animals that have vision systems exhibit both
seeking and avoiding behaviors. Virtually all animals seek
food and mates, and they must avoid predators and obstacles
in nature. The goal of this project was to develop an apposition
compound eye vision system that would allow an autonomous
system to exhibit these kinds of behavior in a semi-structured
environment. Based on this goal, the following requirements
were established.

• Sensors shall be passive and operate at visible
wavelengths.

• Sensors shall be able to operate under ordinary indoor
lighting conditions.

• Sensors shall be able to provide output that allows for
discrimination of a target versus an obstacle on the basis
of shade.

• Sensors shall be able to detect objects at a range which is
large compared to the size of the vehicle.

• Sensors shall have angular sensitivity in the range of
2–10◦.

• The sensor array should be able to determine bearing to
an object (target or obstacle).

• The array should be of a reasonable physical size (i.e. on
the order of the robot’s width).

• The array should maximize the total field of vision relative
to the mounting footprint.

Sensor array coverage is a trade-off between the angular
sensitivity of a single sensor and the number of sensors
employed in the array. The individual sensor sensitivity
selected allows for a target object (about 250 mm wide) to
take up the entire field of view at the sensor’s nominal range.
In other words, the field of vision is about 300 mm wide at
a range of 3 m, and the target is also about 300 mm wide.
To provide sufficient angular coverage in front of the vehicle
required a sensor array consisting of seven individual sensors
as shown in figure 2.

An individual sensor consists of a photodiode, a lens
for focusing and gathering light, the mounting hardware
and the support electronics as shown in figure 3. After
evaluating alternatives, the TAOS TSL251R photodiode with
an integrated transimpedance (current-to-voltage) amplifier
was chosen [46]. Each photodiode was equipped with an
integrated lens providing a field of vision on the order of 60◦.
To achieve better angular selectivity and range characteristics,
an additional spherical plano-convex lens (f = 12 mm) was
mounted on the front of each detector assembly. The final
sensor module design had a field of vision of approximately
5◦ and a useable range on the order of 3 m.

The sensor output was passed to a Twin-T notch filter
[46] to eliminate the 120 Hz noise from fluorescent lights.
Additionally, a low-pass filter was also employed to remove
high frequency noise that was present in the raw sensor output.

The output from the filtering stage was fed to a digitally
controlled level shifting stage. The purpose of this stage is to
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Figure 2. Top of the robot. The interommatidial angle of 6◦ has been superimposed on the diagram.

Figure 3. A single apposition compound eye sensor. Published with permission of ISA. Copyright 2008. All rights reserved.

maintain the output sensor level given various ambient lighting
conditions. This is accomplished by sensing the ambient light
conditions and generating a corresponding offset voltage from
a digital-to-analogue converter which is fed back to the filtering
stage for use as a bias. To provide the maximum dynamic
range for the detection of black targets and white targets, two
different bias levels are calculated. During operation of the
sensor, the offset can be adjusted for optimal detection of either
target type.

After considering various sensor information processing
algorithms, a ‘tri-state’ (light shaded, dark shaded, ambient)
object detection algorithm was chosen. The ‘tri-state’ sensor
provides less information than a continuous value sensor
output, but it is extremely robust. When configured properly, it
was able to detect that either a target (black object designated
T), an obstacle (white object designated O) or nothing (ambient
designated A) was present within a specific sensor field of
view. Further, it is capable of categorizing these objects while
in motion. The final output from an array of these apposition
compound eye sensors is a trinary-valued one-dimensional

vector, for example OOAATTT. The vector indicates what is
currently in the field of view of the sensor array.

3.2. Controller

To achieve the overall goal of the system, it is necessary to
have an intermediary between the sensors and actuators—
the controller. Essentially the controller is an algorithm
implemented on a microcontroller. The general approach
to algorithm development was to partition the algorithm into
two major portions: (1) track a target and (2) while avoiding
obstacles. The first step in designing the algorithm was to try
to get each behavior working on its own.

Figure 4 is a flowchart illustrating the algorithm used for
tracking and avoidance. The basic approach is simply to
provide the servo with an input command that is proportional
to the bearing to the target. If no target has been seen, the
algorithm waits to send any commands until a target appears.
Once a target does appear, the algorithm performs a center-of-
mass calculation of thresholded sensor outputs. The center-
of-mass calculation results in target bearing. For tracking,

5



Bioinsp. Biomim. 4 (2009) 046002 J D Davis et al

Figure 4. Control algorithm. Specific reactions to obstacle and
target pattern stimulus are programmed as a series of decision
statements. Once a specific pattern has been found, the vehicle
executes a pre-determined maneuver specific to the stimulus
pattern.

platform heading is driven to minimize the target bearing to
zero. If a turn is required, the controller begins issuing servo
commands and the drive motor is turned on for forward motion.
If the target disappears, the algorithm continues to command
the vehicle to turn in the same direction it was turning when
the target disappeared. This persistence is meant to allow
the system to deal with very tight turns by the target vehicle.

Obstacle avoidance is similar to tracking except that
instead of trying to minimize object bearing, the obstacle
avoidance algorithm works to maximize it. Because we
assigned high cost to hitting obstacles, instead of turning away
from the obstacle proportionally the turn is made as hard as
possible in the opposite direction. Once the obstacle has been
cleared, the vehicle steering is straightened. If an obstacle is
directly centered in front of the sensor array, the robot has an
arbitrary preference to turn right.

Combining obstacle avoidance and target tracking
presents a number of problems. We have already stated that
we assign high cost to a collision with an obstacle. Because

of this, if the commands do not conflict the command from
the obstacle avoidance algorithm is preferred. However, there
are cases where the commands are in conflict. The general
approach to the problem was to investigate the possible cases
and to create a logical structure that allows for the combination
of the two algorithms into one appropriate behavior from the
two possible actions. The most challenging case involves
obstacles on both edges of the field of view. If the obstacles
are far enough apart, the controller attempts to pass between
them. If the obstacles use up too much of the field of view, the
obstacle avoidance behavior takes precedence and the vehicle
maneuvers to open one side of the field of view.

It is interesting to note that for either the case of target
tracking or obstacle avoidance, the critical computation done
is finding the center of mass of an object in a binary image. In
the experimental implementation, this is accomplished using a
microprocessor, but it could just as easily have been computed
prior to being digitized using analogue components such as
comparators, op-amps and multipliers. Well-known circuits
for the computation of weighted averages and sums can be
readily found in the literature [47]. Processing of data in
this fashion should allow very high throughput with little
hardware, and is more consistent with the biological systems
from which our approach is derived. To combine tracking
and obstacle avoidance under this paradigm is non-trivial, but
can be accomplished using combinational logic circuits as the
current algorithm purposely does not have any memory or
state.

3.3. Ground-based vehicle

An off-the-shelf Kyosho scale model car was chosen as
the project vehicle due to desired features of electric drive,
proportional control of steering and speed, and low cost. The
vehicle is 460 mm long, 198 mm wide and 145 mm tall and
weighs 1680 g [45]. The weight is approximately doubled
with the sensor and control hardware mounted. The vehicle
has a top speed of approximately 3 m s−1 and a turn radius of
approximately 1.5 m.

Power for the drive motor and steering servo is provided
by a 7.2 V battery pack. The electronic speed control and
the steering servo are controlled by pulse width modulated
(PWM) signals. The nominal period of the control signal is
20 μs with command duration centered around 1 μs.
Deviations in speed and direction are made by varying the
on time of the PWM signal. Optical isolation is used to
prevent noise from the motor operation and speed control from
affecting the control and sensor circuits. All of the control and
sensing electronics are powered by an independent 5 V power
supply. The control and sensing electronics as well as the
optics are mounted on a sheet of acrylic that is bolted at three
points to the vehicle as shown in figures 5 and 6. Figure 2
depicts the interommatidial angle of the apposition compound
eye sensor, which is approximately 6◦.

4. Testing and results

The system was tested in three main phases: (1) measuring
the characteristics of a single sensor operating independently,
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Figure 5. Side of the robot. The apposition compound eye vision array is mounted on the front of the robot beneath the plexiglass support
structure. The array analogue processing electronics and digital processor are mounted on the support structure. The robot operates
autonomously to navigate about an unknown environment to avoid obstacles and follow and intercept a target robot.

Figure 6. Front of the robot. The apposition compound eye vision array consists of seven apposition compound eye sensors yielding an
interommatidial angle of 6◦. Published with permission of ISA. Copyright 2008. All rights reserved.

(This figure is in colour only in the electronic version)
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Table 1. Layout comparison data.

Base width End width
Layout (mm) (mm) Ratio

Linear 19 mm 150 400 2.66
Linear 50 mm 400 610 1.53
Linear 100 mm 812 965 1.19
Stereo 400 1575 3.94
Fan 150 2210 14.73

(2) measuring the characteristics of an entire array of sensors
and (3) testing the entire system in a variety of operational
environments. We discuss the results of each phase in
turn.

4.1. Phase I. Sensor testing

The goal of phase I testing was to provide a firm basis
for choosing a layout strategy for the array. The field of
view for a single sensor was characterized for both a dark
and white object. The maximum response from each object
was first determined and then the object was systematically
moved about in a grid pattern to determine the −3dB points
demarcating the sensor field-of-view lobe. The sensors were
found to have a field-of-view lobe of approximately 6◦ with a
−3 db range of 2 m for a black target and 2.5 m for a white
target. The sensor continues to detect targets for another 500–
800 mm greater range beyond the −3 dB point. Array design
was accomplished using these parameters

4.2. Phase II. Sensor array testing

Various array patterns were considered including a linear
pattern, a stereo fan pattern and a single fan pattern as shown
in table 1. The linear pattern wasted most of the available
sensor coverage by overlapping the sensors too much. The
primary advantage of the stereo fan pattern is its potential to
determine object range using stereo techniques. However, it
was determined that if the left and right sensor clusters were
placed far enough apart from one another to provide reasonably
sized intersection zones, the total width would be much greater
than that of the test vehicle platform. The single fan sensor
arrangement was chosen primarily due to its superior total field
of vision when compared to the other array configurations.

The chosen array behaved as would be expected from
its geometry and the previously discussed properties of the
individual sensor modules. To test the array, a grid was laid
out on the laboratory floor. A grid point was placed every
150 mm and the grid was set up to be about 2 × 2 m2. The
center of the sensor array was placed at a grid point and then
targets were placed at other grid points. The individual sensors
were able to detect objects that sufficiently occluded their
lobes. These characterization tests formed the basis of the
processing and control algorithm designs.

4.3. Phase III. System level testing

In phase III, the test vehicle equipped with an apposition
compound eye sensor array was tested under a variety of

conditions of increasing difficulty. The test setup consisted of
a 3 × 4 m2 corral of light colored tables turned on their sides
to create the ambient background. The corral was equipped
with a 1000 W halogen lamp at the open end. Additionally,
lighting was provided by both sunlight and overhead florescent
lighting. A video camera (720 × 480 pixels, 30 frames s−1)
was mounted 3.5 m above the corral.

The following tests were accomplished in this phase.

• Obstacle avoidance when only obstacles are present.
• Target tracking when only the target is present.
• Tracking and avoidance in an environment with static

obstacles and a static target.
• Tracking and avoidance in an environment with static

obstacles and a dynamic target.

Space does not permit a discussion of all results. We
concentrate on the most difficult task from phase III: track and
approach a target while simultaneously avoiding obstacles.
Again, this mimics an animal with an apposition compound
eye vision system searching for a mate or food while avoiding
predators. Various obstacle arrangements were tried. Most
of them follow an approach of building two parallel ‘fences’
of obstacles, placing the target in between the ‘fences’ and
then placing some random obstacles in the tunnel. This
arrangement is chosen for two reasons: first, it shows that
the vehicle is programmed to have a preference for target
seeking if the target can be located in the middle three sensors
and, second, it shows that the vehicle will seek out the target
while obstacles are present and hence meets the stated goal of
the project. Figure 7 shows one example of the results of the
test.

Figure 8 provides quantitative results from a
representative test. The speed plot indicates that the two
vehicles were moving at approximately the same speed. The
range to target plot indicates the chase vehicle caught up
with the target vehicle twice. The bearing plot indicates
the interplay of the tracking behavior and the obstacle
avoidance behavior. In a strict tracking scenario, the bearing
would be expected to remain closer to zero, but because of
the influence of obstacles the vehicle does not always try to
achieve zero bearing.

5. Discussion

A number of issues were identified during the testing process
as follows.

(i) The behavior appears to be indecisive, turning the wheels
all the time, never just heading straight for the target.

(ii) The obstacles make the robot swing widely to the
left or right, while the target only creates proportional
corrections.

(iii) The robot moves very slowly. This is less apparent in the
frame sequences, but is clearly apparent in the actual test
video records.

These issues are all legitimate; they are caused by design
decisions made in the development and their solutions are non-
trivial. Issue (i) is a direct consequence of the design of the
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Figure 7. Dynamic track and avoid. In this test scenario, the target was dynamic and followed the ‘plus’ track. The chase track is shown in
the ‘dot’ track. The tracks plot the center of mass of the vehicles. The chase vehicle track clearly shows the influence of the obstacle
avoidance algorithm.
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Figure 8. Speed, range to target, bearing to target from the dynamic track and avoid sequence. In the range to target plot, 400 mm is marked
because this indicates the approximate distance from the vehicle center for interception. Intercept or near misses occur at approximately
0.66 s, 2.33 s and 5 s.

control algorithm. The vehicle looks as if it is ‘trying to decide
what to do’, because it is. It is a response-based controller, and

there is no sophisticated decision process involved. It takes the
current vector of array data, performs an algorithm to make a
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decision and sets speed and direction accordingly. It does this
again and again and again. Rather than making any plan, or
having any knowledge of the past, the vehicle does the best it
can at each time instant, hopefully leading it to a solution to
its current problem.

A more complex design would start to solve this problem
by incorporating a memory of the past state of the system.
Knowing the previous position of the target, and the previous
state of the obstacles, would allow the vehicle to make
smoother changes in its direction. Incorporating a simple
version of this would entail little more than averaging
the previous target command and obstacle command into the
current one. This would smooth the movements, but might not
lead to any behavioral improvement.

Issue (ii) is partly caused by issue (i) and partly caused by
the selected number of sensors. The algorithm could make
proportional corrections for obstacles the way it does for
targets, but this would have clear disadvantages. The driving
design goal was to clear obstacles as quickly as possible.
Because of the limited number of sensors and the lack of
memory, there is no way to know if there is an obstacle
on either side of the vehicle. If there is an obstacle to the
side of the vehicle, it is very likely that the vehicle has just
avoided this obstacle and driven past it. This dilemma led
to the design decision of wide turns for obstacles. If the
vehicle passes the obstacle with a small turn, it will be very
close to the obstacle when it clears it. If, instead, the vehicle
passes the obstacle with a large turn, it is likely that by the
next turn any forward motion from the current (large) turn
will have carried the vehicle clear of the obstacle. Given the
designed-in ignorance of the current system, this seems to be
the best strategy. Memory of the previous positions of the
obstacles and targets would allow for additional constraints in
the programming.

The final issue (iii) is caused more than anything by
economics. There is no inherent reason why the robot could
not move more quickly. The travel time of the servo and the
mechanical dynamics of the system are the fundamental speed
limits of the system. These events would be measured on the
order of milliseconds; the control loop computations are on
the order of microseconds, with the longest portion being the
analogue-to-digital conversions. The low speed of the robot
was chosen for the practical reason that rebuilding it in case
of a crash would not have been possible given the scope of the
project. Also, the available arenas for testing would not have
been able to deal with the robot moving much more quickly.

The bottom line of these results is that the system was able
to exhibit seemingly complex behavior without a complex
underlying system, which is very much in line with what
Braitenberg suggests in Vehicles.

6. Summary and conclusions

Ultimately, the specific goals of the project were met. A
simple system can be designed to use passive photo sensing
with an apposition compound eye sensor array to achieve
reasonably complex goals as inspired by certain characteristics
of diurnal insects and arthropods. It should be emphasized

that the control algorithm, although hosted on a digital
microcontroller, can be implemented using simple analogue
operational amplifier building blocks. Future goals for this
project include equipping the platform with our latest sensor
array capable of hyperacuity. This will allow the vehicle to
sense and avoid obstacles of much smaller dimension.

Acknowledgments

This research was sponsored in part by National Institute
of Health (NIH) Center of Biomedical Research Excellence
(COBRE) Grants. Specifically, this publication was made
possible by grant numbers P20 RR015553, RR15640 and P20
RR15640 from the National Center for Research Resources
(NCRR), a component of the National Institutes of Health
(NIH). Its contents are solely the responsibility of the authors
and do not necessarily represent the official views of NCRR or
NIH. This research was also sponsored in part by Hyperacuity
Systems, Colorado Springs, CO, via contract with the Naval
Air Warfare Center, China Lake, CA. An early and abbreviated
version of this paper was presented at the Rocky Mountain
Bioengineering Symposium in April 2008 [48].

References

[1] Sanders J and Halford C 1995 Design and analysis of
apposition compound eye optical sensors Opt. Eng.,
Bellingham 34 222–35

[2] Passaglia C, McSweeney M, Stewart M, Kim E, Mole E,
Powers M and Barlow R 1997 Visual performance of
horseshoe crabs: role of underwater lighting Biol. Bull.
193 205–7

[3] Errigo M, McGuiness C, Meadors S, Mittmann B, Dodge F
and Barlow R 2001 Visually guided behavior of juvenile
horseshoe crabs Biol. Bull. 201 271–2

[4] Land M 1997 Visual acuity in insects Annu. Rev. Entomol.
42 147–77

[5] Nakayama K 1985 Biological image motion processing: a
review Vis. Res. 25 625–60

[6] Riley D, Harmann W, Barrett S and Wright C 2008 Musca
domestica inspired machine vision sensor with hyperacuity
Bioinsp. Biomim. 3 026003

[7] Mazokhin-Porshnyakov G 1969 Insect Vision (New York:
Plenum)

[8] Greiner B, Ribi W and Warrant E 2005 A neural network to
improve dim light vision? Dendritic fields of first-order
interneurons in the nocturnal bee Megalopta genalis Cell
Tissue Res. 322 313–20

[9] Warrant E, Kelber A, Gislen A, Griner B, Willi R and
Wcislo W 2004 Nocturnal vision and landmark orientation
in a tropical halictid bee Current Biol. 14 1309–18

[10] Theobald J, Greiner B, Wcislo W and Warrant E 2006 Visual
summation in night-flying sweat bees: a theoretical study
Vis. Res. 46 2298–309

[11] Griner B 2005 Adaptations for nocturnal vision in insect
apposition eyes Dissertation Lund University

[12] Walcott B 1975 Anatomical changes during light-adaptation in
insect compound eyes The Compound Eye and Vision of
Insects (Oxford: Clarendon)

[13] Autrum H 1981 Light and dark adaptation in invertebrates
Handbook of Sensory Physiology vol VII/6C (Berlin:
Springer)

[14] Burton B 2002 Long-term light adaptation in photoreceptors
of the housefly, Musca domestica J. Comp. Physiol. A
188 527–38

10

http://dx.doi.org/10.1117/12.183393
http://dx.doi.org/10.2307/1543360
http://dx.doi.org/10.1146/annurev.ento.42.1.147
http://dx.doi.org/10.1016/0042-6989(85)90171-3
http://dx.doi.org/10.1088/1748-3182/3/2/026003
http://dx.doi.org/10.1007/s00441-005-0034-y
http://dx.doi.org/10.1016/j.cub.2004.07.057
http://dx.doi.org/10.1016/j.visres.2006.01.002
http://dx.doi.org/10.1007/s00359-002-0327-5


Bioinsp. Biomim. 4 (2009) 046002 J D Davis et al

[15] Laughlin S 1981 A simple coding procedure enhances a
neurons information capacity Z. Naturforsch.
36 910–2

[16] Harris R, OCarroll D and Laughlin S 2000 Contrast gain
reduction in fly motion adaptation Neuron 28 595–606

[17] Goldhoorn A, Ramisa A, De Mantaras R and Toledo R 2007
Using the average landmark vector method for robot
homing Frontiers Artif. Intell. Appl. 163 331–8

[18] Lambrinos D, Moller R, Pfeifer R and Wehner R 1998
Landmark navigation without snapshots: the average
landmark vector model Proc. Neurobilogy Conf. (Gottingen)

[19] Hafner V 2001 Adaptive homing robotic exploration tours
Adapt. Behav. 9 131–41

[20] Cartwright B and Collett T 1983 Landmark learning in bees
J. Comp. Physiol. 151 521–43

[21] Schuster S and Amtsfeld 2002 Template-matching describes
visual pattern-recognition tasks in the weekly electric fish
Gnathonemus petersii J. Exp. Biol. 205 549–57

[22] Wehner R, Michel B and Antonsen P 1996 Visual navigation
in insects: coupling of egocentric and geocentric
information J. Exp. Biol. 199 129–40

[23] Srinivasan M, Zhang S, Altwein M and Tautz J 2000
Honeybee navigation: nature and calibration of the
‘odometer’ Science 287 851–3

[24] Wiener N 1961 Cybernetics: Or Control and Communication
in the Animal and the Machine (Cambridge: MIT Press)

[25] Walter W 1950 An imitation of life Sci. Am. 182 42–5
[26] Walter W 1951 A machine that learns Sci. Am. 185 60–3
[27] Jones J and Flynn A 1993 Mobile Robots: From Inspiration to

Implementation (New York: Cambridge University Press)
[28] Brooks R 1999 Cambrian Intelligence: The Early History of

the New AI (Cambridge: MIT Press)
[29] Braitenberg V 1984 Vehicles: Experiments in Synthetic

Psychology (Cambridge: MIT Press)
[30] Franceschini N and Pichon J 1992 From insect vision to robot

vision Phil. Trans. R. Soc. B 337 283–94
[31] Higgins C and Shams S 2002 A biologically inspired modular

VLSI system for visual measurement of self-motion IEEE
Sensors J. 10 508–28

[32] Higgins C and Koch C 2000 A modular multi-chip
neuromorphic architecture for real-time visual motion
processing Analog Integr. Circuits Signal Process.
24 195–211

[33] Harrison R and Koch C 1999 A robust analog VLSI motion
sensor Auton. Robots 7 211–24

[34] Harrison R and Koch C 1998 An analog VLSI model of the fly
elementary motion detector Advances in Neural

Information Processing Systems ed M Jordan, M Kearns
and S Solla (Cambridge: MIT Press)

[35] Harrison R and Koch C 2000 A silicon implementation of the
fly’s optomotor control system Neural Comput.
12 2291–304

[36] Mead C 1989 Analog VLSI and Neural Systems (New York:
Addison-Wesley)

[37] Schenato L, Deng X and Sastry S 2003 Flight control system
for a micromechanical flying insect: architecture and
implementation IEEE Int. Conf. Robotics and Automation
pp 1641–6

[38] Wu W, Schenato L, Wood R and Fearing R 2003 Biomimetic
sensor suite for flight control of a micromechanical flight
insect: design and experimental results IEEE Int. Conf.
Robotics and Automation pp 1146–51

[39] Neumann T, Huber S and Bultoff H 1997 Minimalistic
approach to 3d obstacle avoidance behavior from simulated
evolution Proc. 9th Int. Conf. on Artificial Neural Networks
pp 715–20

[40] Neumann T and Bultoff H 2000 Biologically motivated visual
control of attitude and altitude in translatory flight Proc.
3rd Workshop Dynamishe Perzeption pp 135–40

[41] Neumann T, Huber S and Bultoff H 2002 Minimalistic
approach to 3d obstacle avoidance behavior from simulated
evolution Proc. ESPRC/BBSRC Int. Workshop on
Biologically Inspired Robotics—the Legacy of W Grey
Walter pp 196–203

[42] Netter T and Franceschini N 2002 A robotic aircraft that
follows terrain using a neuromorphic eye Proc. EEE/RSJ
Int. Conf. on Intelligent Robots and Systems pp 129–234

[43] Kellog J 2002 The NRL micro tactical expendable (MITE) air
vehicle Aeronaut. J. R. Aeronaut. Soc. 106 431–41

[44] Barrows G 1999 Mixed-mode VLSI optic flow sensors for
micro air vehicles Dissertation University of Maryland

[45] Anonymous Kyosho The Finest Radio Control Models
http://www.kyosho.com/

[46] Anonymous TSL250R, TSL251R, and TSL252R
light-to-voltage optical sensors Texas Advanced
Optoelectronic Solutions http://www.taosinc.com/

[47] Yu N, Shibata T and Ohmi T 1998 A real-time center-of-mass
tracker circuit implemented by neutron MOS technology
IEEE Trans. Circuits Syst. II 45 495–503

[48] Davis J, Barrett S, Wright C and Wilcox M 2008 Bio-inspired
minimal machine multi-aperture apposition vision system
Biomedical Sciences Instrumentation Technical Papers
Composing the Proc. 45th Annual Rocky Mountain
Bioengineering Symp. vol 43

11

http://dx.doi.org/10.1016/S0896-6273(00)00136-7
http://dx.doi.org/10.1177/10597123010093002
http://dx.doi.org/10.1007/BF00605469
http://dx.doi.org/10.1126/science.287.5454.851
http://dx.doi.org/10.1098/rstb.1992.0106
http://dx.doi.org/10.1109/JSEN.2002.807304
http://dx.doi.org/10.1023/A:1008309524326
http://dx.doi.org/10.1023/A:1008916202887
http://dx.doi.org/10.1162/089976600300014944
http://www.kyosho.com/
http://www.taosinc.com/
http://dx.doi.org/10.1109/82.663806

	1. Introduction
	2. Background and related work
	2.1. Types of insect vision
	2.2. Related vision behavior
	2.3. Bio-inspired autonomous vehicles
	2.4. Contemporary machine vision

	3. Methods
	3.1. Sensor development
	3.2. Controller
	3.3. Ground-based vehicle

	4. Testing and results
	4.1. Phase I. Sensor testing
	4.2. Phase II. Sensor array testing
	4.3. Phase III. System level testing

	5. Discussion
	6. Summary and conclusions
	Acknowledgments
	References

