
International Workshop on Computer-Aided Design, Test, and Evaluation for Dependability,
Beijing, China, July 2-3, 1996, pp. 66-71.

An Integrated Environment for Development and Testing of
Software Fault Tolerance Systems

Kam S. Tso and Eltefaat H. Shokri
SoHaR Incorporated

Beverly Hills, CA 90211
ftso,shokrig@sohar.com

Abstract

The need to experiment with software fault tolerance to
investigate its effectiveness and the desire to reduce repeti-
tive effort in creating experimental SWFT systems have mo-
tivated the development of an integrated testbed environ-
ment which eases the construction and evaluation of soft-
ware fault tolerance systems. The integrated environment
comprises a library of reusable components from which a
wide variety of SWFT systems can be built. In addition,
interface components supporting the seamless integration
of applications into the SWFT systems, and fault-injection
components supporting dependability evaluation are also
provided. Another important ingredient of the environment
is a set of graphical tools to facilitate the creation of SWFT
systems from the reusable components, monitoring the exe-
cution of the resulting SWFT systems, and evaluation their
dependability through fault-injection testing.

1: Introduction

Although software fault tolerance (SWFT) was proposed
more than two decades ago, it is not widely used partly be-
cause its effectiveness is still controversial. Many experi-
ments have demonstrated favorable results when SWFT is
properly applied [2, 4]. However, a few theoretical and em-
pirical studies have raised concerns on the validity of the
design diversity approach which conjectures that indepen-
dent development can minimize the probability of common-
mode errors [7, 12].

Experimentation in SWFT techniques is hindered by the
difficulty of incorporating them in complex systems. More-
over, the majority of SWFT techniques are not transparent
to the application developer, meaning that the developer has
to address the concerns of the chosen SWFT scheme to-
gether with the application. This in turn increases the com-
plexity of the system to be developed.

The need to experiment with software fault tolerance to
investigate its effectiveness and the desire to reduce repeti-
tive effort in creating experimental SWFT systems have mo-
tivated our effort in developing the Reusable Software Fault
Tolerance Testbed (ReSoFT), a testbed environment for the
construction and evaluation of software fault tolerance sys-
tems.

The rest of the paper is organized as follows: Section
2 gives an overview of the integrated testbed environment.
The identified reusable components are described in Section
3. Section 4 presents the graphical tools for SWFT system
integration, SWFT system monitoring, and fault-injection
testing. Section 5 discusses the implementation of the dis-
tributed recovery blocks system within the integrated en-
vironment. The last section provides a conclusion of the
paper.

2: Integrated Environment for the Reusable
Software Fault Tolerance Testbed

The integrated environment of ReSoFT provides (1) a
library of reusable components from which software fault
tolerance systems can be built, and (2) a set of graphical
tools facilitating the construction of such systems, integra-
tion of applications, monitoring execution status, and eval-
uation their dependability. Figure 1 shows an overview of
the integrated hardware and software environment.

The hardware platform of the testbed, shown in Fig-
ure 2, is a network of Sun workstations running the So-
laris operating system. The widespread use of PCs has also
prompted an ongoing effort to port the environment to the
PC/Windows platform. We have chosen to use an open
architecture employing commercial-off-the-shelf hardware
and software products because they are widely available and
can evolve along with future technological changes.

As fault detection and recovery mechanisms rely greatly
on the reliable communication among the computing nodes,
the network becomes the single point of failure. In order to

1



Common Desktop Environment

Solaris

Recovery
Blocks

N-Version
Programming

ApplicationGraphical
Tools

Fault-Injection
Reusable

Components

SWFT Reusable Components

Fault-Tolerant Network Communication

Design Diversity

Retry
Blocks

N-Copy
Programming

Data Diversity

Windows NT

PCSPARCstation

SWFT
System

Integrator

Fault-
Injection
Manager

SWFT
System
Monitor

SWFT Interface Components

Figure 1. Integrated Environment for Soft-
ware Fault Tolerance

Sun SPARCstation 5 /
Solaris 2.5

Ethernet
Hub

Twisted Pair

Coaxial

Sun SPARCstation 5 /
Solaris 2.5

Sun SPARCstation 5 /
Solaris 2.5

Figure 2. Hardware Configuration of ReSoFT

tolerate network hardware and software faults, the worksta-
tions are connected by dual-redundant Ethernet networks.
One uses twisted pair while the other uses coaxial cable for
physical connection.

As shown in Figure 1, the software environment running
on top of the hardware platform consists of a number of lay-
ers. The bottom layer is the network communication which
provides fault-tolerant communication over the redundant
networks. On top of it are the reusable SWFT compo-
nents from which SWFT systems can be built. Currently
two SWFT techniques have been implemented — design
diversity which makes use of diverse techniques in design
and implementation [3], and data diversity which makes use
of diverse data inputs [1] — for tolerating software faults.
Reusable SWFT components have been developed for these
two techniques as exemplified by the recovery blocks, N-
version programming, retry blocks, and N-copy program-
ming schemes. SWFT Interface components are used to iso-
late application-specific functions from the reusable SWFT
components and to facilitate the integration of applications
to the SWFT systems. In additional to the reusable compo-
nents, the ReSoFT environment also provides a set of graph-

ical tools to ease the construction, monitoring, and testing
of SWFT systems.

3: Reusable Components

An in-depth object-oriented analysis of the well-
established SWFT schemes has been conducted based on
the Booch method [5] for identifying reusable SWFT
components. During this process, care was taken to
make sure that (1) the components capture the common
functionality of a wide variety of SWFT schemes, and
(2) application-specific functions are identified and ex-
cluded from the generic reusable components. How-
ever, application-specific functions are derived from generic
classes using the inheritance mechanism. The result of the
analysis is a reuse framework of software fault tolerance
and the details were reported in [15].

Based on their functionality, identified components can
be classified into the following categories: SWFT execu-
tive components, SWFT support components, SWFT in-
terface components, Network communication components,
and Fault-injection components.

The reusable components are implemented using Ada95,
the revised standard of the Ada language [9]. Ada95 in-
creases the flexibility and applicability of Ada by introduc-
ing new features supporting object-oriented programming,
hierarchical libraries, and development of real-time sys-
tems, while retaining its reliability goal. The details on how
the new Ada95 features support software reuse and real-
time processing in implementing the ReSoFT integrated en-
vironment can be found in [14].

���� SWFT Executive Components

The SWFT executive components are responsible for
managing orderly execution of the SWFT schemes which
include the following responsibilities: (1) initialization of
the execution including the activation of the various tasks,
(2) activation of the next execution cycle, (3) managing or-
derly execution of the ongoing cycle, and (4) producing
an acceptable result whenever possible. Depending on the
complexity, there can be one or more executive components
for each scheme.

���� SWFT Support Components

Comparing existing SWFT schemes, we find several
generic fault tolerance related components employed re-
peatedly. We designate them as SWFT specific support
components. Seven types of reusable SWFT Support
components have been identified during domain analysis:
Try Block, Acceptance Test, Voter, Heartbeat, Watchdog,
Checkpointing, and Data Re-expression components. The

2



Heartbeat Component is added for faster fault detection.
Heartbeats are periodical messages which are exchanged
among the nodes participating in the SWFT scheme and
used for identifying the health status of participant nodes.

���� SWFT Interface Components

The SWFT components should be designed such that
they can be reused by various applications. However, there
are aspects which vary from one application to another. The
inheritance mechanism provided by object-oriented meth-
ods has been used to separate application-specific concepts
from application-independent ones. The SWFT compo-
nents are designed as abstract classes and the application de-
signer creates subclasses for adding the application-specific
functions. These subclasses are part of the SWFT In-
terface component category. Moreover, the SWFT Inter-
face component category also includes components which
are used to decouple applications from the SWFT com-
ponents. The Application-Specific Acceptance Test and
Application-Specific Checkpointing components belong to
interface components.

���� Fault�Tolerant Network Communica�
tion Components

The Network Communication components provide an
application transparent reliable inter-node communication
among the ReSoFT nodes. The message redundancy man-
agement is designed to be transparent to the users. It au-
tomatically detects the existence of a second network and
establishes an alternate connection over it. Fault-tolerant
communication is achieved by sending duplicated mes-
sages, each with the same sequence number, over both con-
nections. The receiver can thus recognize and discard re-
dundant messages. Since the first message is forwarded to
the upper layer, a message delay in the other network will
be tolerated. If a network is permanently failed, the failure
will be detected by missing consecutive messages.

���� Fault�Injection Components

Fault-Injection components are designed to support test-
ing and evaluation of the dependability of the SWFT com-
ponents and systems [10]. There are four Fault-Injection
components: Fault-Injection Manager, Fault-Injection Re-
ceptor, Data Collector, and Data Analyzer. The Fault-
Injection Manager component provides an interface to the
tester for specifying fault-injection parameters such as the
location at which the fault should be injected and its dura-
tion. Each node has its own Fault-Injection Receptor com-
ponent for injecting the fault to occur in the node, and a Data
Logger to log events and data. The Data Analyzer compo-
nent is for off-line analysis of the fault-injection data.

4: Graphical Tools

The other major ingredient constituting the integrated
environment of ReSoFT is a set of graphical tools. The
SWFT System Builder facilitates creation of SWFT systems
from the reusable components. The SWFT System Monitor
provides status information during system execution. And
the Fault-Injection Manager allows dependability evalua-
tion of the SWFT components and systems through fault-
injection testing.

The graphical user interfaces (GUIs) of the tools were
implemented using the Tcl scripting language and the Tk
toolkit [13]. They provide a fast prototyping environment
for creating GUIs under X Windows. However, when fast
periodic graphics updates of the interface is needed, such as
the case in the SWFT System Monitor, Tcl can sometimes
be too slow because it is an interpretive language.

���� SWFT System Builder

The conventional approach to support reuse of software
components is to provide a repository management system
which has the capability of representing, browsing, navigat-
ing, and retrieving components from the library [8]. For a
specific and small reuse domain such as software fault tol-
erance it will be more effective to use the application gen-
erator approach [6]. In such an approach, specifications are
translated into application programs. In ReSoFT, the SWFT
System Builder provides a graphical form for the user to in-
put information about the SWFT system and application.
Figure 3 shows the graphical form where the user selected
the DRB scheme. The dynamic form then asks for the num-
ber of alternatives and number of tryblocks in the applica-
tion. After that, the user will be asked to input, for each
tryblock, the name of the procedure for the primary module,
alternate module, acceptance test, checkpoint establishment
routine, checkpoint restoration routine, and finally the time-
out period of the application modules. These procedures are
specific to the application and are to be supplied by the user.
The information is then used to retrieve the reusable SWFT
components which are then compiled with the supplied pro-
cedures to create the specified system.

���� SWFT System Monitor

The SWFT System Monitor allows the user to observe
the execution of the SWFT systems. Figure 4 is a snap-
shot of the System Monitor for the DRB scheme. During
fault-free operation the Monitor highlights the component
which is being executed and shows the data flow of the sys-
tem. In this snapshot, it shows the DRB active node and
shadow node are executing the primary and alternate mod-
ules, respectively. When a fault occurs, the Monitor shows

3



Figure 3. SWFT System Builder

the location and type of the fault, and how it was handled
by the SWFT system. The circle in the upper left corner of
each node blinks to show the heartbeats, and thus its physi-
cal health, of the node. The lower part of the GUI shows the
global view of the testbed. It highlights the node or network
when its failure is detected.

���� Fault�Injection Manager

The Fault-Injection Manager provides an interface to the
user for specifying fault-injection experiments, as shown in
Figure 5. Each experiment consists of a list of fault se-
quences. A fault sequence specifies the location where the
fault should be injected, the fault type, the starting time of
injection, how often it should be periodically injected if it is
a transient fault, and duration of the experiment. Once the
fault sequences are specified and the experiment is initiated,
the FI Manager parses the sequences to schedule the exper-
iment. When the time arrives for a fault to be injected, it
sends a fault-injection command to the Fault-Injection Re-
ceptor of specified component which in turn triggers the
Fault-Injection Activator of the particular fault type to in-
ject the fault. The FI Manager also monitors the results of
the injection. In case the injected fault causes a node to
crash the FI Manager restarts the node so that experiment
can continue. An additional task of the FI Manager is to log
all the events occurred and collect failure data.

Figure 4. SWFT System Monitor for Dis-
tributed Recovery Blocks

4



Figure 5. Fault-Injection Manager

5: Distributed Recovery Blocks Demonstration

Figure 6 depicts the implementation of the Distributed
Recovery Block (DRB) scheme [11] using the reusable
SWFT components. The reusable components are imple-
mented in three types of objects:

� Active objects: An active object is an object which pos-
sesses its own execution thread(s). Additionally, an ac-
tive object may also provide services to other objects.

� Passive objects: Passive objects do not have their own
execution threads but merely act as service providers.
Passive objects are stateless and do not maintain any
persistent data.

� Shared-data objects: Shared-data objects maintain
data stores to which multiple objects may have
mutually-exclusive access.

These object types are implemented by mapping them
to the following Ada constructs. An active object is imple-
mented as an Ada package with a task for each of its ex-
ecution threads. While a passive object is implemented as
an Ada package which does not contain any task. Finally,
a shared-data object is implemented using Ada protected

record type, thereby the Ada runtime system will guarantee
mutually exclusive accesses to the shared-data.

In the DRB implementation, the DRB Executive,
Heartbeat-Generator, and Try Block are active components,
the Checkpoint and Acceptance Test are passive compo-
nents, and the RB Data-Store is the only shared-data object.

To demonstrate effective reuse, a sequential recovery
block and retry block system are also implemented from the
reusable components. We have found that only the execu-
tive component is needed to be replaced for the particular
SWFT scheme. For retry block, a data re-expression com-
ponent is also added to generate a diverse data input.

6: Conclusions

The paper presented an integrated testbed environment
for developing and evaluating software fault tolerance sys-
tems. The testbed is built on an open architecture and uses
standard off-the-shelf hardware and software, thus making
it easily available and resilient to technological changes.
The environment comprises a library of reusable compo-
nents and a set of graphical tools. The reusable SWFT
components can be used to create a wide variety of SWFT
systems, and the interface components support seamless
integration of applications to those systems. The set of
graphical tools facilitates the creation of SWFT systems

5



RB Input
Coordinator

DRB
Executive

Outgoing
Message Handler

RB
Definitions

Acceptance
Test

A
pp

lic
at

io
n 

C
om

po
ne

nt
s

DRB Reusable ComponentsRB Generic Interface
Components

Health
Control

Heartbeat
Generator

Try
Block

Watchdog
Checkpoint

Application-specific
Checkpoint

Application
Execution Interface

Application-specific
Acceptance Test

Active Object

Passive Object

RB
Data-Store

Shared-data Object

Service Request

Data Flow

Shared-data Access

DRB
System

Figure 6. Components-Based Implementation of the DRB Scheme

from the reusable components, monitoring the execution of
the resulting systems, and evaluation of their dependability
through fault-injection testing.

References

[1] P. E. Ammann and J. C. Knight. Data diversity: An ap-
proach to software fault tolerance. IEEE Trans. Comput.,
pages 418–425, Apr. 1988.

[2] T. Anderson, P. A. Barrett, D. N. Halliwell, and M. R.
Moulding. Software fault tolerance: An evaluation. IEEE
Trans. Softw. Eng., SE-11(12):1502–1510, Dec. 1985.

[3] A. Avižienis. Design diversity — the challenge for the eight-
ies. In Digest of the 12th Annual International Symposium
on Fault-Tolerant Computing, pages 44–45, June 1982.

[4] P. G. Bishop, D. G. Esp, M. Barnes, P. Humphreys, and
G. Dahll. PODS — a project of diverse software. IEEE
Trans. Softw. Eng., SE-12(9):929–940, Sept. 1986.

[5] G. Booch. Object Oriented Analysis and Design with Ap-
plications. Benjamin/Cummings, Redwood City, CA, 2nd
edition, 1994.

[6] J. C. Cleaveland. Building application generators. IEEE
Software, pages 25–33, July 1988.

[7] D. E. Eckhardt and L. D. Lee. A theoretical basis for the
analysis of multiversion software subject to coincident er-
rors. IEEE Trans. Softw. Eng., SE-11(12):1511–1517, Dec.
1985.

[8] W. B. Frakes and P. B. Gandel. Classification, storage and
retrieval of reusable components. In Proc. SIGIR’89, pages
251–254, Cambridge, MA, June 1989.

[9] ISO/IEC-8652:1995. Ada Reference Manual: Language and
Standard Libraries. International Organization for Standard-
ization and International Electrotechnical Commission, Jan.
1995.

[10] R. K. Iyer and D. Tang. Experimental analysis of computer
system dependability. In D. Pradhan, editor, Fault-Tolerant
Computing: Theory and Techniques. Prentice Hall, 2nd edi-
tion, 1995.

[11] K. H. Kim and H. O. Welch. Distributed execution of recov-
ery blocks: An approach for uniform treatment of hardware
and software faults in real-time applications. IEEE Trans.
Comput., 38(5):626–636, May 1989.

[12] J. C. Knight and N. G. Leverson. An experimental evalua-
tion of the assumption of independence in multiversion pro-
gramming. IEEE Trans. Softw. Eng., SE-12(1):96–109, Jan.
1986.

[13] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley,
Reading, MA, 1994.

[14] E. H. Shokri and K. S. Tso. Ada95 object-oriented and real-
time support for development of software fault tolerance
reusable components. In Proceedings of Second Interna-
tional Workshop on Object-oriented Real-time Dependable
Systems (WORDS’96), Laguna Beach, CA, Feb. 1996.

[15] K. S. Tso, E. H. Shokri, A. T. Tai, and R. J. Dziegiel, Jr. A
reuse framework for software fault tolerance. In Proceed-
ings of AIAA Computing in Aerospace 10 Conference, pages
490–500, San Antonio, TX, Mar. 1995.

6


