
OPTNET: A Cost-Effective Optical Network for Multiprocessors *

Enrique V. Carrera and Ricardo Bianchini

COPPE Systems Engineering
Federal University of Rio de Janeiro

Rio de Janeiro, Brazil 21945970

{vinicio,ricardo}@cos.ufrj.br

Abstract

In this paper we propose the OPTNET, a novel optical network and
associated coherence protocol for scalable multiprocessors. The net-
work divides its channels into broadcast and point-to-point groups.
The broadcast channels are used for memory block request, co-
herence, and synchronization transactions, while the point-to-point
channels are utilized for memory block transfer operations. The
three main distinguishing features of the OPTNET are: a) its broad-
cast channels behave well under high contention; b) its point-to-
point channels do not require any access control mechanism; and
c) it can achieve good communication performance at a low hard-
ware cost. We use detailed execution-driven simulations of ten ap-
plications to evaluate a 16-node OPTNET-based multiprocessor. We
compare our multiprocessor against highly-efficient systems based
on the DMON and LambdaNet optical interconnects. Our results
demonstrate that our system outperforms the DMON multiproces-
sors consistently for our applications, even though the OPT’NET re-
quires no more hardware than DMON. The comparison between our
multiprocessor and the LambdaNet system shows performance dif-
ferences that average 4% in favor of the LambdaNet. However, the
LambdaNet requires a factor of p more hardware than the OPTNET,
where p is the number of computational nodes in the multiproces-
sor. Based on these results, our main conclusion is that the combi-
nation of our network and coherence protocol strikes an excellent
cost/performance ratio for scalable multiprocessors.

1 Introduction
The vast majority of parallel computers use electronic interconnec-
tion networks. However, relatively recent advances in optical tech-
nology have prompted studies on the use of optical networks in par-
allel computers [7, 51. Optical fibers exhibit extremely high band-
width and can be multiplexed to provide a large number of inde-

*This research was supported by CNPq/Brazil.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided tbat copies
are not made or distributed for protit or commercial advaotage and that
copies bear this notice and tbe full citation oo the fti page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS 98 Melbourne Australia
Copyright ACM 1998 O-89791-998498/ 7...$5.00

pendent communication channels. These characteristics can be ex-
ploited to improve the performance of a multiprocessor by simply
replacing its traditional, scalable network with an optical equivalent.
However, optical technology can usually be exploited more effec-
tively than this. In shared-memory multiprocessors, for instance, the
broadcasting capability of optical fibers can be exploited to simplify
the cache coherence hardware and protocol.

In this paper we propose the OPTNET (OPTimized OPTical NET-
work), a novel optical network and associated coherence protocol
that exploits all of these beneficial characteristics of optics in the de-
sign of a scalable multiprocessor. The network uses Wavelength Di-
vision Multiplexing (WDM) to provide independent high-bandwidth
communication channels. These WDM channels are divided into
broadcast and point-to-point groups. The broadcast channels are
used for memory block request, coherence, and synchronization
transactions, while the point-to-point channels are utilized for mem-
ory block transfer operations. Broadcasting memory request and co-
herence transactions simplifies the hardware by obviating the need
for directories. In addition, broadcasting coherence transactions op-
timizes the coherence protocol by informing processors of changes
to shared data more efficiently. Finally, our grouping of channels
improves performance by decoupling the memory write traffic from
the more time-critical memory block read operations.

Another optical network proposal, the DMON interconnect [7],
involves broadcast and point-to-point channels that also segregate
read and write operations in the multiprocessor. The two networks
are also similar in terms of their number of optical components. The
main differences between OPTNET and DMON-based multiproces-
sors are: a) our broadcast channels behave well under high con-
tention; and b) our point-to-point channels do not require any access
control mechanism and, thus, can be accessed very quickly. The
LambdaNet proposal [6] can also provide both broadcast and point-
to-point channels, but at a significant hardware cost: a factor of p
more optical hardware than our network, where p is the number of
computational nodes in the multiprocessor.

We use detailed execution-driven simulations of ten applications
to evaluate a 16-node OPTNET-based multiprocessor. We compare
our multiprocessor against systems based on the DMON and Lamb-
daNet optical interconnects. Our results demonstrate that our system
outperforms the DMON multiprocessors consistently for our appli-
cations. The comparison between our multiprocessor and the Lamb-
daNet system shows performance differences in the range of 0 to
only 12%, averaging 4%, in favor of the LambdaNet. These results

401

Figure 1: Overview of DMON.

are exceptionally favorable to our system, given the significant dif-
ference in hardware requirements between the two multiprocessors.

Based on our results and given that optical technology will likely
provide a better cost/performance ratio than electronics in the future,
we conclude that the combination of our network and coherence pro-
tocol strikes a good cost/performance ratio in most scenarios.

The remainder of this paper is organized as follows. The next
section presents some background material on WDM and describes
the DMON and LambdaNet interconnects. Section 3 describes the
architecture of our network and coherence protocol in detail. Section
4 presents our experimental methodology and application workload.
Section 5 presents the results of our base experiments and parameter
space study. Section 6 discusses the related work. Finally, section 7
summarizes our findings and concludes the paper.

2 Background

2.1 Wavelength Division Multiplexing

Through careful fabrication of optical fibers, transmitters, and re-
ceivers it is nowadays possible to build dispersion-free optical com-
munication systems with low attenuation and high bandwidth. The
maximum bandwidth achievable over an optic fiber is on the order
of Tbitsls. However, due to the fact that the hardware associated
with the end points of an optical communication system is usually
of an electronic nature, transmission rates are currently limited to
the Gbits/s level. In order to approach the full potential of optical
communication systems, multiplexing techniques must be utilized.

WDM is one such multiplexing technique. With WDM, sev-
eral independent communication channels can be implemented on
the same fiber. WDM multiplexors and demultiplexors can now be
found commercially with more than 100 channels. Due to the rapid
development of the technology used in its implementation, WDM
has become one of the most popular multiplexing techniques.

Optical networks that use WDM are called WDM networks. The
simplest way of implementing a WDM network is through a star
coupler and a set of receivers and transmitters. The coupler broad-
casts every WDM channel to the nodes connected to the network.
Nodes usually do not “listen” to all channels however, as the num-
ber of optical devices ultimately determines the cost of the network.

NI i A----- NI 1

Figure 2: Overview of LambdaNet.

2.2 DMON

The Decoupled Multichannel Optical Network (DMON) is an inter-
esting WDM network that has been proposed by Ha and Pinkston
in [7]. The network divides its p + 2 (where p is the number of
nodes in the system) channels into two groups: one group is used
for broadcasting, while the other is used for point-to-point commu-
nication between nodes. The first group is formed by two channels
shared by all nodes in the system, the control channel and the broad-
cast channel. The other p channels, called home channels, belong in
the second group of channels.

The control channel is used for distributed arbitration of all other
channels through a reservation scheme [3]. A node that wants to
transmit on one of the channels must first wait for its turn to access
the control channel and then broadcast this desire on it. The con-
trol channel itself is multiplexed using the TDMA (Time Division
Multiple Access) protocol [3].

The broadcast channel is used for broadcasting global events,
such as coherence and synchronization operations, while home
channels are used only for memory block request and reply oper-
ations. Each node can transmit on any home channel, but can only
receive from a single home channel. Each node acts as “home” (the
node responsible for providing up-to-date copies of the blocks) for
l/p of the cache blocks. A node receives requests for its home
blocks from its home channel. Block replies are sent on the re-
quester’s home channel.

Figure 1 overviews a network interface (“NY’) in the DMON ar-
chitecture, with its transmitters (labeled “TX”), receivers (“RX”), and
tunable transmitters (“77’~“). As seen in the figure, in this architec-
ture each node requires two fixed transmitters’ (one for each broad-
cast channel), a tunable transmitter (for the home channels), and
three fixed receivers (two for the broadcast channels and one for the
node’s home channel). The overall hardware cost of the DMON ar-
chitecture in terms of optical components is then 6 x p.

The Snoopy Protocol Enhanced and Extended with Directory
(SPEED) is a high-performance cache coherence protocol created to
exploit the communication features of DMON. In its invalidate ver-
sion (l-SPEED), the only version described in [7], the protocol de-

‘These fixed transmitters are not pan of the original DMON proposal.
We add them here to avoid incurring the overhead of m-tuning the tunable
transmitter all the time.

402

fines four cache and memory block states: clean, exclusive, shared,
and invalid. The protocol allows only one copy of the block to be
in exclusive or shared state. A node that caches a block in one of
these states is the owner of the block. A cache-forwarded copy of an
exclusive or shared block is received as clean by the requester. The
home node of each memory block includes a directory entry that
stores the current owner of the block. All misses to a memory block
are sent to its home and, if necessary, forwarded to the owner node.

l-SPEED also defines states that handle critical races. A critical
race is detected when a coherence operation is seen for a block that
has a pending read. I-SPEED treats the race by forcing the invali-
dation of the would-be-incoherent copy of the block right after the
pending read is completed. Further details about I-SPEED can be
found in [7].

In this paper we suggest an update-based protocol for DMON.
The protocol is very simple since all writes to shared data are sent to
their corresponding home nodes, through coalescing write buffers.
Thus, a cache miss can be satisfied immediately by the home node,
obviating the need for any directory information. Our update proto-
col also includes support for handling critical races; it simply buffers
the updates received during the pending read operation and applies
them to the block right after the read is completed.

Given that a single broadcast channel would not be able to deal
gracefully with the heavy update traffic involved in a large set of
applications, we extended DMON with an extra broadcast channel
for transferring updates. A node can transmit on only one of the
coherence channels, which is determined as a function of the node’s
identification, but can receive from both of these channels. Besides
this extra channel (and associated receivers), the hardware of the
modified DMON network is the same as presented in figure 1. Thus,
the overall hardware cost of this modified DMON architecture in
terms of optical components is then 7 x p.

2.3 LambdaNet

The LambdaNet architecture has been proposed by Goodman et al.
in [6]. The network allocates a WDM channel for each node; the
node transmits on this channel and all other nodes have fixed re-
ceivers on it. In this organization each node uses one fixed transmit-
ter andp fixed receivers, as shown in figure 2. The overall hardware
cost of the LambdaNet is then pz + p.

No arbitration is necessary for accessing transmission channels.
Each node simultaneously receives all the traffic of the entire net-
work, with a subsequent selection, by electronic circuits, of the traf-
fic destined for the node. This scheme thus allows channels to be
used for either point-to-point or broadcast communication.

Differently from DMON, the LambdaNet was not proposed with
an associated coherence protocol. The LambdaNet-based multipro-
cessor we study in this paper uses a write-update cache coherence
protocol, where write and synchronization transactions are broad-
cast to nodes, while the read traffic uses point-to-point communica-
tion between requesters and home nodes. Just as the update-based
protocol we propose for DMON, the memory modules are kept up-
to-date at all time. Again, in order to reduce the write traffic to home
nodes, we assume coalescing write buffers.

Note that the LambdaNet architecture is impractical due to its
hardware cost. Our only reason for including this scheme in our
study is to use it as a basis for comparison against the other schemes.

NI i

I

Figure 3: Overview of OPTNET Architecture.

The combination of the LambdaNet and the coherence protocol we
suggest for it represents a performance upper bound for multipro-
cessors, since the update-based protocol avoids coherence-related
misses, the LambdaNet channels do not require any medium access
protocol, and the LambdaNet hardware does not require the tunning
of transmitters or receivers.

3 OPTNET: A Cost-Effective Network

3.1 OPTNET Architecture

Each node in an OPTNET-basedmultiprocessor is extremely simple.
In fact, all of the node’s hardware components are pretty conven-
tional, except for the network interface. More specifically, the node
includes one processor, a coalescing write buffer, first and second-
level caches, local memory, and the network interface that connects
the node to the OPTNET.

Figure 3 overviews the architecture of our network. Just as
DMON, our WDM network is implemented with a star coupler
and divides the channels into two groups: one group for broadcast-
type traffic and another one for direct point-to-point communication.
Three channels, a request channel and two coherence channels, are
assigned to the first group, while the other p channels, called home
channels, are assigned to the second group.

The request channel is used for requesting memory blocks. The
response to such a request is sent by the block’s home node (the
node responsible for providing up-to-date copies of the block) on
its corresponding home channel. The coherence channels are used
for broadcasting coherence and synchronization transactions. Just
like the control channel in DMON, the request channel uses TDMA
for medium accesscontrol. The access to the coherencechannels, on
the other hand, is controlled with TDMA with variable time slots [3].
Differently from DMON, home channels do not require arbitration,
since only the home node can transmit on the node’s home channel.

Each node can transmit on the request channel, one of the coher-
ence channels (determined as a function of node identification), and
its home channel, but can receive from any of the broadcast or home
channels. Hence, each node in the OPTNET requires three fixed
transmitters (one for the request channel, one for the home channel,
and the last for one of the coherence channels), three fixed receivers

403

(for the broadcast channels), and one tunnable receiver labeled “TR”
(for the home channels). The hardware cost of the OPTNET is then
7 x p optical components.

3.2 Coherence Protocol

In order to exploit the potential benefits of our network fully, the
cache coherence protocol of the multiprocessor must be tailored to
the network. Thus, the protocol we propose is based on update co-
herence, supported by both broadcasting and point-to-point commu-
nication. The update traffic flows through the coherence channels,
while the data blocks are sent across the home channels. The request
channel carries all the memory read requests. The description that
follows details the coherence protocol in terms of the actions taken
on read and write accesses.

Reads. On a read access, the memory hierarchy is traversed from
top to bottom, so that the required word can be found as quickly
as possible. A miss in the second-level cache is handled differently
depending on the type of data read. In case the requested block is
private or maps to the local memory, the read access is treated by the
local memory, which returns the block to the processor.

If the block is shared and maps to another home node, the request
is sent to the corresponding node through the request channel and the
tunable receiver is tuned to the home node’s home channel. When
the request arrives at the home node, the home reads the block and
returns it via the home channel. The requesting node waits for the
block to be received, gets it from the network interface, and returns
it to the second-level cache.

Writes. Our multiprocessor architecture implements the release
consistency memory model [4]. Consecutive writes to the same
cache block are coalesced in the write buffer. Coalesced writes to
a private block are sent directly to the local memory through the first
and second-level caches. Coalesced writes to a shared block are al-
ways sent to one of the coherence channels in the form of an update,
again through the local caches.

Each update must be acknowledged by the corresponding block’s
home node before another update by the same node can be issued,
just so the memory modules do not require excessively long input
queues (i.e. update acks are used simply as a flow control measure).
The other nodes that cache the block simply update their local caches
accordingly upon receiving the update. When the home node sees
the update, the home inserts it into the memory’s FIFO queue, and
sends an ack through the request channel. The update acks usually
do not overload the request channel, since an ack is a short message
that fits into a single request channel slot.

Finally, our coherence protocol treats the races that might result
from decoupling read and write transactions by buffering updates
and later combining them with the block received from memory.

4 Methodology and Workload

Multiprocessor Simulation. We simulate multiprocessors based on
the OPTNET, DMON and LambdaNet interconnects. We use a de-
tailed execution-driven simulator (based on the MINT front-end [9])
of 16-node multiprocessors. Each node of the simulated machines
contains a single 200-MHz processor, a 16-entry write buffer, a 4-
Kbyte direct-mapped 1 St-level data cache with 32-byte cache blocks,

1 Latency (in
1 OPTNET 1

Operation

1. 1st~level tag check
2. 2nd~level tag check
3. Avg. TDMA delay
4. Reservation
5. Tuning delay
6. Memory request
7. Flight
8. Memory read
9. Avg. TDMA delay
10. Reservation
11. Block transfer
12. Flight
13. NI to 2nd-level
Total 2nd-level miss

1 l---

I

4
16
-
-

2’
1

44+

22
1

16
107

nrocessor cvcles)
Lambda

1
4
-
-
-
2’
1

44+
-
-

22’
1
16
91

+
DMON

1
4
16
2’
4
3
1

44+
16
2’
23
1
16
133

Table 1: 2nd-Level Read Miss Latency (in 5ns pcycles) for
OPTNET, LambdaNet, and DMON.

a 16-Kbyte direct-mapped 2nd-level data cache with 64-byte cache
blocks, local memory, and a network interface. (Note that the cache
sizes we simulate were purposedly kept small, as simulation time
limitations prevent us from using real life input sizes.)

Shared data are interleaved across the memories at the block level.
All instructions and first-level cache read hits are assumed to take 1
processor cycle (pcycle). First-level read misses stall the proces-
sor until the read request is satisfied. A second-level read hit takes
12 pcycles to complete. Writes go into the write buffer and take
1 pcycle, unless the write buffer is full, in which case the proces-
sor stalls until an entry becomes free. Reads are allowed to bypass
writes that are queued in the write buffers. A memory module can
provide the first two words requested 12 pcycles after the request is
issued. Other words are delivered at a rate of 2 words per 4 pcycles.
Memory and network contention are fully modeled.

In the update-based coherence protocols we simulate only the sec-
ondary cache is updated when an update arrives at a node; the copy
of the block in the first-level cache is invalidated. In addition, in
order to reduce the write traffic, our multiprocessors use coalescing
write buffers for all protocol implementations. A coalesced update
only carries the words that were actually modified in each block. All
the protocol implementations assume a release-consistent model.

The optical transmission rate we simulate is 5 Gbits/s, which
leads to the 2nd-level cache read miss and coherence transaction
latencies listed in tables 1 and 2, respectively. Table 2 lists the la-
tencies of the NetCache, LambdaNet, DMON with update-based co-
herence (DMON-U), and DMON with I-SPEED (DMON-I) systems
and assume 8 words written in the cache block. All numbers in the
tables are in pcycles and assume channel and memory contention-
free scenarios. The values marked with “*” and “+” are the ones that
may be increased by network and memory contention/serialization,
respectively. The total 2nd-level cache read miss latencies in table 1
show that the LambdaNet entails 18% less overhead than OPTNET
in these operations, at least in the absence of any type of contention.
Under the same conditions, the OPTNET involves 24% less over-
head than the DMON network in 2nd-level read misses. The total
coherence transaction latencies in table 2 show that the LambdaNet
entails 46% less overhead than OPTNET and DMON-I in these op-

404

I Oneration
L

OPTNET Lambda- DMONIU DMON-I
1. 2nd-level tag check 4 4 4 4
2. Write to Nl 10 10 10 2
3. Avg. TDMA delay 8’ - 16 16
4. Reservation - - 2’ 2’
5. Update/Invalidate 15 13 14 3
6. Flight 1 1 1 1
7. Avg. TDMA delay 16 - 16 16
8. Reservation 2’ 2’
9. Ack 2’ 2’ 2 2
10. Flight 1 1 1 1
11. Write - - - 8
m. . . . r-3 r), I” c-7 lotat conerence transactton 1 31 1 31 1 00) 3/

Latency (in processor cycles)

Table 2: Latency (in 5-ns pcycles) of Coherence Transactions for OP’I’NET, LambdaNet, DMON-U, and DMON-I. Assuming
8 words written in block.

-----r~----
CG Conjugate Gradient kernel
Em3d Electromagnetic wave propagation
Gauss Unblocked Gaussian Elimination

Mg 3D Poisson solver using multigrid techniques
Ocean Large-scale ocean movement simulation
Radix Integer Radix sort
Raytrace Parallel ray tracer
SOR Successive Over-Relaxation
Water Simulation of water molecules, spatial allot.
WF Warshall-Floyd shortest paths algorithm

Proeram 1 Descriotion I lnnut Size
1400 x 1400 doubles, 78148 non-zeros
8 K nodes, 5% remote, 10 iterations
256 x 256 floats
24 x 24 x 64 floats, 6 iterations
66 x 66 grid
5 12 K keys, radix 1024
teapot
256 x 256 floats, 100 iterations
5 12 molecules, 4 timesteps
384 vertices, ij connected w/ 50% chance

Table 3: Application Description and Main Input Parameters.

erations, at least in the absence of contention and assuming 8 words
written per block. Under the same conditions, the OPTNET and
DMON-I systems involve 19% less overhead than DMON-U in co-
herence transactions.

Note that in our base simulations the minimum TDMA slot du-
ration is 2 pcycles for both DMON and OPTNET networks. Thus,
each control channel slot in DMON and request channel slot in OPT-
NET are 2 pcycles long. Each coherence channel slot in the OPT-
NET is at least 2 pcycles long; the actual duration of each slot de-
pends on the number of words updated.

Workload. Our application workload consists of ten parallel pro-
grams: CG and Mg from the NAS suite [11, Em3d from UC Berke-
ley, Ocean, Radix, Raytrace, and Water from SPLASH-2 [lo], and
Gauss, SOR, and WF from the University of Rochester. Table 3 lists
the applications and their input parameters.

5 Experimental Results

5.1 Overall Performance

Figure 4 shows the speedup of our applications running on a 16-
node OPTNET-based multiprocessor. The figure demonstrates that,
except for CG and WF, our applications exhibit reasonably good
speedup levels on 16 nodes. Em3d, SOR, and Water, in particular,

achieve excellent speedup. The two extremes in speedup perfor-
mance, Em3d and WF, deserve further discussion. Em3d achieves
superlinear speedup as a result of its terrible single-node 1st and
2nd-level cache behaviors; caches are simply not effective for this
application on a single node. WF achieves poor performance on 16
nodes as a result of large barrier overheads due mostly to significant
load imbalance.

Figure 5 shows the running times of our applications again on a
16-node multiprocessor. For each application we show, from left
to right, the OPTNET, LambdaNet, DMON-U, and DMON-I per-
formances, normalized to the OPTNET results. This figure demon-
strates that DMON-U performs at least as well as DMON-I for all
applications, except Water. The performance differences between
these two systems average 1 I%, being most significant for Em3d
(16%), Gauss (16%), Ocean (43%) andRadix (14%).

As one would expect, a comparison between the LambdaNet and
DMON-U systems is always favorable to the former multiproces-
sor. Overall, the performance advantage of the LambdaNet averages
19% for our applications. SOR and Water exhibit only a small per-
formance advantage of the LambdaNet system. For the other appli-
cations, the differences range from 16% for Gauss to 28% for CG
and average 22%.

A comparison between the performance of the OPTNET and
DMON-U systems is clearly favorable to our system in all cases,
except SOR and Water for which the two systems perform similarly.

405

16

14

12

10

8

6

4

2

0
"Z 5 B

(D rh

Figure 4: Speedups of 16-Node OPTNET-Based Multipro- Figure 5: Run Times of (from left to right) OPTNET, Lamb-
cessor. daNet, DMON-U, and DMON-I.

For the other 8 applications, the performance advantageof the OPT-
NET multiprocessor ranges from 10% for Mg to 21% for Radix,
averaging 16%. Taking all applications into account, the advantage
of the OPTNET averages 14%.

Figure 5 demonstrates that the OPTNET and LambdaNet multi-
processors are essentially equivalent for 4 applications: Radix, Ray-
trace, SOR, and Water. For the other 6 applications, the performance
advantage of the LambdaNet multiprocessor is never greater than
12% and averages 8%. Taking all applications into account, the ad-
vantage of the LambdaNet averages only 4%. Given that the Lamb-
daNet requires 0(p2) optical hardware, a factor of p more hardware
than the OPTNET, we regard these as excellent results in favor of
our system.

The explanation for the performance differences presented above
is the average cost of reads and writes in the various systems for
each application. Thus, in the next two subsections we study these
operations for all systems and applications.

5.2 Performance of Reads

Figures 6 and 7 concentrate our statistics on the performance of
read operations on each of our systems. Figure 6 presents the aver-
age latency of read operations, while figure 7 presents the average
latency of 2nd-level cache read misses. All latencies are in processor
cycles. Figure 7 breaks down the average 2nd-level read miss laten-
ties into a contention-free component (“base”) and delays caused by
network contention (“network”), memory contention (“memory”),
and contention for off-processor-chip access and memory bus ac-
cess (“other”). In both figures, the bars correspond to OPTNET,
LambdaNet, DMON-U, and DMON-I, from left to right.

Figure 6 shows that the average read latency entailed by the three
update-based systems (OPTNET, LambdaNet, and DMON-U) is
lower than that of DMON-I, except in the cases of Radix and Water.
This result can be explained in part by the fact that the update-based
systems exhibit lower 2nd-level cache read miss rates than DMON-
I. The differences in miss rates are not terribly significant however,
since our applications are dominated by replacement misses. As
shown in figure 7, the most important factor in this comparison
is that read misses take longer to satisfy in DMON-based systems
than in the OPTNET and LambdaNet systems, even in the absence

1.8

1.6

0.8

0.6

of contention. Furthermore, the DMOAJ-I multiprocessor suffers
more significantly from memory and network contention than the
other systems. For instance, discarding the Radix and Water re-
sults, DMON-I exhibits overall 2nd-level read miss latencies that are
longer than the OPTNET latencies by 42% on average, while their
contention-free latencies only differ by 24%. Network and mem-
ory contention are more pronounced in the DMON-I system due to
writebacks of dirty cache blocks, the directory lookups required in
all memory requests, and the extra messages involved in forwarding
requests to the current owners of blocks.

Among the update-based systems, the LambdaNet multiprocessor
exhibits the lowest average read latency, while the DMON-U system
exhibits the highest. The average OPTNET read latency sits in be-
tween these two extremes. Discarding the Radix and Water results,
the read latency in the LambdaNet system is only 7% shorter on av-
erage than in the OPTNET multiprocessor, while in the DMON-U
multiprocessor reads are 20% more expensive on average than in the
OPTNET system.

As seen in figure 7, the LambdaNet multiprocessor is usually
more prone to contention effects than the OPTNET and DMON-U
systems, due to two characteristics of the former system: a) its read
and write transactions are not decoupled; and b) its absence of serial-
ization points for updates from different nodes leads to an enormous
update throughput. As a result of these characteristics, whenever
an application involves an excessive amount of update traffic (Radix
and Water being extreme cases), the read transactions are sIowed
down, as reads and writes compete for the same communication,
cache, and main memory resources. Nevertheless, the performance
degradation generated by contention is usually not enough to out-
weigh the very good base latencies in the LambdaNet system.

Contention affects the DMON-U and OPTNET systems in simi-
lar ways; both their contention-free and overall 2nd-level read miss
latencies differ by 24% on average. Since contention-free 2nd-level
read misses take longer to satisfy in the DMON-U system, this sys-
tem exhibits worse read behavior than its OPTNET counterpart.

5.3 Performance of Writes

Having discussed the performance of read operations in each of the
systems we study in the previous subsection, we move on to a study

406

Figure 6: Average Read Latencies of (from left to right) Figure 7: Average 2nd-Level Read Miss Latencies of (from
OPTNET, LambdaNet, DMON-U, and DMON-I. left to right) OPTNET, LambdaNet, DMON-U, and DMON-I.

of the performance of write operations. Our results show that, ex-
cept for Radix, the latency of write operations is negligible in all
systems, showing that a 16-entry write buffer is usually enough to
hide the overhead of coherence operations. In Radix writes are very
frequent (roughly a rate of one write per 5 cycles) and cannot be co-
alesced in the write buffers, causing the buffers to stall the execution
frequently. In addition, the write buffer flush overheads are negligi-
ble as a percentage of the overall execution time, even in the case of
Radix. The only exception is Ocean running on DMON-I, where the
write flush overhead represents 11.3% of the execution time.

These results suggest that the overhead of coherence operations
is not a serious performance concern in most cases, even for the
update-based systems which stress the communication system with
a large number of updates. However, this is only the case because
these systems include multiple coherence broadcast channels. In-
creasing the number of coherence channels has a significant impact
on the medium access delay and on the amount of serialization im-
posed on coherence transactions by different nodes. As an example
of this impact, consider a system with 16 nodes and a single TDMA
coherence channel. In such a system, a node would be delayed an
average 8 TDMA slots before getting access to the coherence chan-
nel. Furthermore, only one coherence transaction could be started
during any slot. On the other hand, with two coherence channels,
the same node would only be delayed an average 4 TDMA slots
before starting its coherence transaction. Moreover, two coherence
transactions could be started in parallel during any slot.

To quantify this effect in the case of the OPTNET system, con-
sider figures 8 and 9. The figures show the running time of each
of our applications on 16 and 32-node OPTNET systems, respec-
tively, assuming 1, 2, and 4 coherence channels. The bars in the
figure are broken down into busy time and read, write stall, and syn-
chronization (including write buffer flush) overheads. All bars are
normalized to the l-channel results.

Two main observations can be made from these figures. The first
is that performance can be significantly improved by using more
than one coherence channel for several applications. Performance
improvements come primarily from improvements in write perfor-
mance, i.e. reduced write stall times and write buffer flush over-
heads. Note however that these improvements sometimes cause a
significant increase in read latency, as in the cases of Radix and Wa-

ter, as a result of increased contention.

The second observation is that two coherence channels are
enough to get most of the benefit achievable by utilizing multiple
channels, at least up to 32-node multiprocessors. Given that the
gains achievable by increasing the number of update channels de-
crease exponentially, we believe that two coherence channels should
deliver a better cost/performance ratio for machines with up to 64 or
128 nodes.

5.4 Impact of Architectural Parameters

We evaluated the impact of several of our simulation assumptions
(the size of 2nd-level caches, the transmission rate, and the memory
block read latency) in order to understand the behavior of the OPT-
NET architecture more fully. In summary, we find that these pa-
rameters do have a significant effect on performance. However, this
effect is only quantitative, i.e. varying the parameters does not qual-
itatively change the trends observed and the outcome of the compar-
isons made in sections 5.1, 5.2, and 5.3. The complete study of the
impact of our simulation assumptions is not presented here due to
space limitations; more details can be found in [2].

6 Related Work

A common approach to using optical communication in computer
networks is through WDM networks [3]. The use of this type of
networks has become widespread as a result of recent advances in
tunable transmitters and receivers and integrated optics technology.
Optical networks with OTDM (Optical Time Division Multiplexing)
have been proposed as an alternative to WDM networks, e.g. [8].
However, OTDM technology is not yet mature. Our work focuses
on WDM technology due to its immediate availability, but nothing
in OPTNET is strictly dependent on WDM.

Optical networks with WDM have been a part of other scalable
parallel computer designs. Ghose et al. [5] proposed a WDM-
based optical bus called Optimul to explore the benefits of the con-
current operation of multiple channels for both shared-memory and
message-passing parallel computers. The architecture of Optimul
is similar to that of the LambdaNet. Our comparison of OPTNET

407

1

0.8

0.6

0.4

0.2

0

1.2

1

0.8

0.6

0.4

0.2

0

Figure 8: Run Times on 16-Node OPTNET System with
(from left to right) 1,2, and 4 Update Channels.

and LambdaNet-based systems indicates that our network should
also have a better cost/performance ratio than Optimul, since: a)
the performance differences between OF’TNET and Optimul sys-
tems should be even smaller than between the OFTNET and Lamb-
daNet systems; and b) the optical hardware cost of Optimul is only
a constant factor better than that of the LambdaNet.

Ha and Pinkston [7] have proposed the DMON network and the
DMON-I system studied in this paper. Our performance analysis has
shown that the OPTNET multiprocessor outperforms the DMON-
based systems in most cases. However, DMON-based systems have
an advantage over OPTNET systems: they allow latency tolerance
techniques based on multiple outstanding read requests; the OFT-
NET systems, as presented here, do not. This limitation results from
the star coupler subnetwork having a single tunable receiver that
must be tuned to a single home channel on a read access. Multiple
outstanding read requests could be implemented on top of our net-
work, if it were extended with a larger number of tunable receivers.

7 Conclusions

In this paper we proposed the OFTNET, a novel optical network
and associated coherence protocol for scalable multiprocessors.
Through a large set of detailed simulations, we showed that an
OPTNET-based multiprocessor outperforms DMON-based systems
consistently, even though the OPTNET requires no more hardware
than DMON. In addition, a comparison between our system and a
LambdaNet-based multiprocessor shows performance differences in
the range of 0 to 12% in favor of the LambdaNet. We find this result
to be extremely favorable to our system, given that the LambdaNet
requires a factor of p more hardware than the OPTNET, where p is
the number of nodes in the multiprocessor. Based on these results,
we conclude that the combination of our network and coherence pro-
tocol strikes an excellent cost/performance ratio for multiprocessors.

Acknowledgements

The authors would like to thank Timothy Pinkston and Joon-Ho
Ha for their careful evaluation of our work and for discussions that
helped improve this paper significantly.

Figure 9: Run Times on 32-Node OPTNET System with
(from left to right) 1,2, and 4 Update Channels.

References
[l] D. Bailey et al. The NAS Parallel Benchmarks. Technical Report

RNR-94-007, NASA Ames Research Center, March 1994.

[2] E. V. Carrera and R. Bianchini. OPTNET: A Cost-Effective Opti-
cal Network for Multiprocessors. Technical Report Tech. Report ES-
457/97, COPPE Systems Engineering, Federal University of Rio de
Janeiro, December 1997.

[3] P W. Dowd aad J. Chu. Photonic Architectures for Distributed Shared
Memory Multiprocessors. In Proceedings of the Ist International
Workshop on Massively Parallel Processing using Optical Interconnec-
tions, pages 151-161, April 1994.

[4] K. Gharachorloo, D. Lenoski, J. Laudon, P Gibbons, A. Gupta, and
J. L. Hennessy. Memory Consistency and Event Ordering in Scal-
able Shared-Memory Multiprocessors. In Proceedings of the 17th An-
nualInternationalSymposiumon ComputerArchitecture, pages 15-26,
May 1990.

[5] K. Ghose, R. K. Horsell, aad N. Singhvi. Hybrid Multiprocessing
in OPTIMUL: A Multiprocessor for Distributed and Shared Memory
Multiprocessing with WDM Optical Fiber Interconnections. In Pro-
ceedings of the 1994 International Conference on Parallel Processing,
August 1994.

[6] M. S. Goodman et al. The LAMBDANBT Multiwavelength Network:
Architecture, Applications, and Demonstrations. IEEE Journal on Se-
lected Areas in Communications, 8(6):995-1004, August 1990.

[7] J.-H. Ha and T. M. Pinkston. SPEED DMON: Cache Coherence on
an Optical Multichannel Interconnect Architecture. Journal ofParallel
andDistributed Computing, 41(1):78-91, 1997.

[8] A. G. Nowatzyk and P R. Pmcnal. Are Crossbars Really Dead? The
Case for Optical Multiprocessor Interconnect Systems. In Proceedings
of the 22ndinternational Symposium on Computer Architecture, pages
106-l 15, June 1995.

[9] J. E. Veenstra and R. J. Fowler. MINT: A Front End for Efficient Sim-
ulation of Shared-Memory Multiprocessors. In Proceedings of the 2nd
International Workshopon Modeling, Analysisand Simulation of Com-
puter and Telecommunication Systems (MASCOTS ‘94). 1994.

[lo] S. C. Woo, M. Ohara, E. Tome, J. P Singh, aad A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological Consider-
ations. In Proceedings of the 22nd International Symposium on Com-
purer Architecture, pages 24-36, May 1995.

408

