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Abstract 

In this paper we propose the OPTNET, a novel optical network and 
associated coherence protocol for scalable multiprocessors. The net- 
work divides its channels into broadcast and point-to-point groups. 
The broadcast channels are used for memory block request, co- 
herence, and synchronization transactions, while the point-to-point 
channels are utilized for memory block transfer operations. The 
three main distinguishing features of the OPTNET are: a) its broad- 
cast channels behave well under high contention; b) its point-to- 
point channels do not require any access control mechanism; and 
c) it can achieve good communication performance at a low hard- 
ware cost. We use detailed execution-driven simulations of ten ap- 
plications to evaluate a 16-node OPTNET-based multiprocessor. We 
compare our multiprocessor against highly-efficient systems based 
on the DMON and LambdaNet optical interconnects. Our results 
demonstrate that our system outperforms the DMON multiproces- 
sors consistently for our applications, even though the OPT’NET re- 
quires no more hardware than DMON. The comparison between our 
multiprocessor and the LambdaNet system shows performance dif- 
ferences that average 4% in favor of the LambdaNet. However, the 
LambdaNet requires a factor of p more hardware than the OPTNET, 
where p is the number of computational nodes in the multiproces- 
sor. Based on these results, our main conclusion is that the combi- 
nation of our network and coherence protocol strikes an excellent 
cost/performance ratio for scalable multiprocessors. 

1 Introduction 
The vast majority of parallel computers use electronic interconnec- 
tion networks. However, relatively recent advances in optical tech- 
nology have prompted studies on the use of optical networks in par- 
allel computers [7, 51. Optical fibers exhibit extremely high band- 
width and can be multiplexed to provide a large number of inde- 
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pendent communication channels. These characteristics can be ex- 
ploited to improve the performance of a multiprocessor by simply 
replacing its traditional, scalable network with an optical equivalent. 
However, optical technology can usually be exploited more effec- 
tively than this. In shared-memory multiprocessors, for instance, the 
broadcasting capability of optical fibers can be exploited to simplify 
the cache coherence hardware and protocol. 

In this paper we propose the OPTNET (OPTimized OPTical NET- 
work), a novel optical network and associated coherence protocol 
that exploits all of these beneficial characteristics of optics in the de- 
sign of a scalable multiprocessor. The network uses Wavelength Di- 
vision Multiplexing (WDM) to provide independent high-bandwidth 
communication channels. These WDM channels are divided into 
broadcast and point-to-point groups. The broadcast channels are 
used for memory block request, coherence, and synchronization 
transactions, while the point-to-point channels are utilized for mem- 
ory block transfer operations. Broadcasting memory request and co- 
herence transactions simplifies the hardware by obviating the need 
for directories. In addition, broadcasting coherence transactions op- 
timizes the coherence protocol by informing processors of changes 
to shared data more efficiently. Finally, our grouping of channels 
improves performance by decoupling the memory write traffic from 
the more time-critical memory block read operations. 

Another optical network proposal, the DMON interconnect [7], 
involves broadcast and point-to-point channels that also segregate 
read and write operations in the multiprocessor. The two networks 
are also similar in terms of their number of optical components. The 
main differences between OPTNET and DMON-based multiproces- 
sors are: a) our broadcast channels behave well under high con- 
tention; and b) our point-to-point channels do not require any access 
control mechanism and, thus, can be accessed very quickly. The 
LambdaNet proposal [6] can also provide both broadcast and point- 
to-point channels, but at a significant hardware cost: a factor of p 
more optical hardware than our network, where p is the number of 
computational nodes in the multiprocessor. 

We use detailed execution-driven simulations of ten applications 
to evaluate a 16-node OPTNET-based multiprocessor. We compare 
our multiprocessor against systems based on the DMON and Lamb- 
daNet optical interconnects. Our results demonstrate that our system 
outperforms the DMON multiprocessors consistently for our appli- 
cations. The comparison between our multiprocessor and the Lamb- 
daNet system shows performance differences in the range of 0 to 
only 12%, averaging 4%, in favor of the LambdaNet. These results 
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Figure 1: Overview of DMON. 

are exceptionally favorable to our system, given the significant dif- 
ference in hardware requirements between the two multiprocessors. 

Based on our results and given that optical technology will likely 
provide a better cost/performance ratio than electronics in the future, 
we conclude that the combination of our network and coherence pro- 
tocol strikes a good cost/performance ratio in most scenarios. 

The remainder of this paper is organized as follows. The next 
section presents some background material on WDM and describes 
the DMON and LambdaNet interconnects. Section 3 describes the 
architecture of our network and coherence protocol in detail. Section 
4 presents our experimental methodology and application workload. 
Section 5 presents the results of our base experiments and parameter 
space study. Section 6 discusses the related work. Finally, section 7 
summarizes our findings and concludes the paper. 

2 Background 

2.1 Wavelength Division Multiplexing 

Through careful fabrication of optical fibers, transmitters, and re- 
ceivers it is nowadays possible to build dispersion-free optical com- 
munication systems with low attenuation and high bandwidth. The 
maximum bandwidth achievable over an optic fiber is on the order 
of Tbitsls. However, due to the fact that the hardware associated 
with the end points of an optical communication system is usually 
of an electronic nature, transmission rates are currently limited to 
the Gbits/s level. In order to approach the full potential of optical 
communication systems, multiplexing techniques must be utilized. 

WDM is one such multiplexing technique. With WDM, sev- 
eral independent communication channels can be implemented on 
the same fiber. WDM multiplexors and demultiplexors can now be 
found commercially with more than 100 channels. Due to the rapid 
development of the technology used in its implementation, WDM 
has become one of the most popular multiplexing techniques. 

Optical networks that use WDM are called WDM networks. The 
simplest way of implementing a WDM network is through a star 
coupler and a set of receivers and transmitters. The coupler broad- 
casts every WDM channel to the nodes connected to the network. 
Nodes usually do not “listen” to all channels however, as the num- 
ber of optical devices ultimately determines the cost of the network. 
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Figure 2: Overview of LambdaNet. 

2.2 DMON 

The Decoupled Multichannel Optical Network (DMON) is an inter- 
esting WDM network that has been proposed by Ha and Pinkston 
in [7]. The network divides its p + 2 (where p is the number of 
nodes in the system) channels into two groups: one group is used 
for broadcasting, while the other is used for point-to-point commu- 
nication between nodes. The first group is formed by two channels 
shared by all nodes in the system, the control channel and the broad- 
cast channel. The other p channels, called home channels, belong in 
the second group of channels. 

The control channel is used for distributed arbitration of all other 
channels through a reservation scheme [3]. A node that wants to 
transmit on one of the channels must first wait for its turn to access 
the control channel and then broadcast this desire on it. The con- 
trol channel itself is multiplexed using the TDMA (Time Division 
Multiple Access) protocol [3]. 

The broadcast channel is used for broadcasting global events, 
such as coherence and synchronization operations, while home 
channels are used only for memory block request and reply oper- 
ations. Each node can transmit on any home channel, but can only 
receive from a single home channel. Each node acts as “home” (the 
node responsible for providing up-to-date copies of the blocks) for 
l/p of the cache blocks. A node receives requests for its home 
blocks from its home channel. Block replies are sent on the re- 
quester’s home channel. 

Figure 1 overviews a network interface (“NY’) in the DMON ar- 
chitecture, with its transmitters (labeled “TX”), receivers (“RX”), and 
tunable transmitters (“77’~“). As seen in the figure, in this architec- 
ture each node requires two fixed transmitters’ (one for each broad- 
cast channel), a tunable transmitter (for the home channels), and 
three fixed receivers (two for the broadcast channels and one for the 
node’s home channel). The overall hardware cost of the DMON ar- 
chitecture in terms of optical components is then 6 x p. 

The Snoopy Protocol Enhanced and Extended with Directory 
(SPEED) is a high-performance cache coherence protocol created to 
exploit the communication features of DMON. In its invalidate ver- 
sion (l-SPEED), the only version described in [7], the protocol de- 

‘These fixed transmitters are not pan of the original DMON proposal. 
We add them here to avoid incurring the overhead of m-tuning the tunable 
transmitter all the time. 
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fines four cache and memory block states: clean, exclusive, shared, 
and invalid. The protocol allows only one copy of the block to be 
in exclusive or shared state. A node that caches a block in one of 
these states is the owner of the block. A cache-forwarded copy of an 
exclusive or shared block is received as clean by the requester. The 
home node of each memory block includes a directory entry that 
stores the current owner of the block. All misses to a memory block 
are sent to its home and, if necessary, forwarded to the owner node. 

l-SPEED also defines states that handle critical races. A critical 
race is detected when a coherence operation is seen for a block that 
has a pending read. I-SPEED treats the race by forcing the invali- 
dation of the would-be-incoherent copy of the block right after the 
pending read is completed. Further details about I-SPEED can be 
found in [7]. 

In this paper we suggest an update-based protocol for DMON. 
The protocol is very simple since all writes to shared data are sent to 
their corresponding home nodes, through coalescing write buffers. 
Thus, a cache miss can be satisfied immediately by the home node, 
obviating the need for any directory information. Our update proto- 
col also includes support for handling critical races; it simply buffers 
the updates received during the pending read operation and applies 
them to the block right after the read is completed. 

Given that a single broadcast channel would not be able to deal 
gracefully with the heavy update traffic involved in a large set of 
applications, we extended DMON with an extra broadcast channel 
for transferring updates. A node can transmit on only one of the 
coherence channels, which is determined as a function of the node’s 
identification, but can receive from both of these channels. Besides 
this extra channel (and associated receivers), the hardware of the 
modified DMON network is the same as presented in figure 1. Thus, 
the overall hardware cost of this modified DMON architecture in 
terms of optical components is then 7 x p. 

2.3 LambdaNet 

The LambdaNet architecture has been proposed by Goodman et al. 
in [6]. The network allocates a WDM channel for each node; the 
node transmits on this channel and all other nodes have fixed re- 
ceivers on it. In this organization each node uses one fixed transmit- 
ter andp fixed receivers, as shown in figure 2. The overall hardware 
cost of the LambdaNet is then pz + p. 

No arbitration is necessary for accessing transmission channels. 
Each node simultaneously receives all the traffic of the entire net- 
work, with a subsequent selection, by electronic circuits, of the traf- 
fic destined for the node. This scheme thus allows channels to be 
used for either point-to-point or broadcast communication. 

Differently from DMON, the LambdaNet was not proposed with 
an associated coherence protocol. The LambdaNet-based multipro- 
cessor we study in this paper uses a write-update cache coherence 
protocol, where write and synchronization transactions are broad- 
cast to nodes, while the read traffic uses point-to-point communica- 
tion between requesters and home nodes. Just as the update-based 
protocol we propose for DMON, the memory modules are kept up- 
to-date at all time. Again, in order to reduce the write traffic to home 
nodes, we assume coalescing write buffers. 

Note that the LambdaNet architecture is impractical due to its 
hardware cost. Our only reason for including this scheme in our 
study is to use it as a basis for comparison against the other schemes. 
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Figure 3: Overview of OPTNET Architecture. 

The combination of the LambdaNet and the coherence protocol we 
suggest for it represents a performance upper bound for multipro- 
cessors, since the update-based protocol avoids coherence-related 
misses, the LambdaNet channels do not require any medium access 
protocol, and the LambdaNet hardware does not require the tunning 
of transmitters or receivers. 

3 OPTNET: A Cost-Effective Network 

3.1 OPTNET Architecture 

Each node in an OPTNET-basedmultiprocessor is extremely simple. 
In fact, all of the node’s hardware components are pretty conven- 
tional, except for the network interface. More specifically, the node 
includes one processor, a coalescing write buffer, first and second- 
level caches, local memory, and the network interface that connects 
the node to the OPTNET. 

Figure 3 overviews the architecture of our network. Just as 
DMON, our WDM network is implemented with a star coupler 
and divides the channels into two groups: one group for broadcast- 
type traffic and another one for direct point-to-point communication. 
Three channels, a request channel and two coherence channels, are 
assigned to the first group, while the other p channels, called home 
channels, are assigned to the second group. 

The request channel is used for requesting memory blocks. The 
response to such a request is sent by the block’s home node (the 
node responsible for providing up-to-date copies of the block) on 
its corresponding home channel. The coherence channels are used 
for broadcasting coherence and synchronization transactions. Just 
like the control channel in DMON, the request channel uses TDMA 
for medium accesscontrol. The access to the coherencechannels, on 
the other hand, is controlled with TDMA with variable time slots [3]. 
Differently from DMON, home channels do not require arbitration, 
since only the home node can transmit on the node’s home channel. 

Each node can transmit on the request channel, one of the coher- 
ence channels (determined as a function of node identification), and 
its home channel, but can receive from any of the broadcast or home 
channels. Hence, each node in the OPTNET requires three fixed 
transmitters (one for the request channel, one for the home channel, 
and the last for one of the coherence channels), three fixed receivers 
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(for the broadcast channels), and one tunnable receiver labeled “TR” 
(for the home channels). The hardware cost of the OPTNET is then 
7 x p optical components. 

3.2 Coherence Protocol 

In order to exploit the potential benefits of our network fully, the 
cache coherence protocol of the multiprocessor must be tailored to 
the network. Thus, the protocol we propose is based on update co- 
herence, supported by both broadcasting and point-to-point commu- 
nication. The update traffic flows through the coherence channels, 
while the data blocks are sent across the home channels. The request 
channel carries all the memory read requests. The description that 
follows details the coherence protocol in terms of the actions taken 
on read and write accesses. 

Reads. On a read access, the memory hierarchy is traversed from 
top to bottom, so that the required word can be found as quickly 
as possible. A miss in the second-level cache is handled differently 
depending on the type of data read. In case the requested block is 
private or maps to the local memory, the read access is treated by the 
local memory, which returns the block to the processor. 

If the block is shared and maps to another home node, the request 
is sent to the corresponding node through the request channel and the 
tunable receiver is tuned to the home node’s home channel. When 
the request arrives at the home node, the home reads the block and 
returns it via the home channel. The requesting node waits for the 
block to be received, gets it from the network interface, and returns 
it to the second-level cache. 

Writes. Our multiprocessor architecture implements the release 
consistency memory model [4]. Consecutive writes to the same 
cache block are coalesced in the write buffer. Coalesced writes to 
a private block are sent directly to the local memory through the first 
and second-level caches. Coalesced writes to a shared block are al- 
ways sent to one of the coherence channels in the form of an update, 
again through the local caches. 

Each update must be acknowledged by the corresponding block’s 
home node before another update by the same node can be issued, 
just so the memory modules do not require excessively long input 
queues (i.e. update acks are used simply as a flow control measure). 
The other nodes that cache the block simply update their local caches 
accordingly upon receiving the update. When the home node sees 
the update, the home inserts it into the memory’s FIFO queue, and 
sends an ack through the request channel. The update acks usually 
do not overload the request channel, since an ack is a short message 
that fits into a single request channel slot. 

Finally, our coherence protocol treats the races that might result 
from decoupling read and write transactions by buffering updates 
and later combining them with the block received from memory. 

4 Methodology and Workload 

Multiprocessor Simulation. We simulate multiprocessors based on 
the OPTNET, DMON and LambdaNet interconnects. We use a de- 
tailed execution-driven simulator (based on the MINT front-end [9]) 
of 16-node multiprocessors. Each node of the simulated machines 
contains a single 200-MHz processor, a 16-entry write buffer, a 4- 
Kbyte direct-mapped 1 St-level data cache with 32-byte cache blocks, 

1 Latency (in 
1 OPTNET 1 

Operation 

1. 1st~level tag check 
2. 2nd~level tag check 
3. Avg. TDMA delay 
4. Reservation 
5. Tuning delay 
6. Memory request 
7. Flight 
8. Memory read 
9. Avg. TDMA delay 
10. Reservation 
11. Block transfer 
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16 
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Table 1: 2nd-Level Read Miss Latency (in 5ns pcycles) for 
OPTNET, LambdaNet, and DMON. 

a 16-Kbyte direct-mapped 2nd-level data cache with 64-byte cache 
blocks, local memory, and a network interface. (Note that the cache 
sizes we simulate were purposedly kept small, as simulation time 
limitations prevent us from using real life input sizes.) 

Shared data are interleaved across the memories at the block level. 
All instructions and first-level cache read hits are assumed to take 1 
processor cycle (pcycle). First-level read misses stall the proces- 
sor until the read request is satisfied. A second-level read hit takes 
12 pcycles to complete. Writes go into the write buffer and take 
1 pcycle, unless the write buffer is full, in which case the proces- 
sor stalls until an entry becomes free. Reads are allowed to bypass 
writes that are queued in the write buffers. A memory module can 
provide the first two words requested 12 pcycles after the request is 
issued. Other words are delivered at a rate of 2 words per 4 pcycles. 
Memory and network contention are fully modeled. 

In the update-based coherence protocols we simulate only the sec- 
ondary cache is updated when an update arrives at a node; the copy 
of the block in the first-level cache is invalidated. In addition, in 
order to reduce the write traffic, our multiprocessors use coalescing 
write buffers for all protocol implementations. A coalesced update 
only carries the words that were actually modified in each block. All 
the protocol implementations assume a release-consistent model. 

The optical transmission rate we simulate is 5 Gbits/s, which 
leads to the 2nd-level cache read miss and coherence transaction 
latencies listed in tables 1 and 2, respectively. Table 2 lists the la- 
tencies of the NetCache, LambdaNet, DMON with update-based co- 
herence (DMON-U), and DMON with I-SPEED (DMON-I) systems 
and assume 8 words written in the cache block. All numbers in the 
tables are in pcycles and assume channel and memory contention- 
free scenarios. The values marked with “*” and “+” are the ones that 
may be increased by network and memory contention/serialization, 
respectively. The total 2nd-level cache read miss latencies in table 1 
show that the LambdaNet entails 18% less overhead than OPTNET 
in these operations, at least in the absence of any type of contention. 
Under the same conditions, the OPTNET involves 24% less over- 
head than the DMON network in 2nd-level read misses. The total 
coherence transaction latencies in table 2 show that the LambdaNet 
entails 46% less overhead than OPTNET and DMON-I in these op- 
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I Oneration 
L 

OPTNET Lambda- DMONIU DMON-I 
1. 2nd-level tag check 4 4 4 4 
2. Write to Nl 10 10 10 2 
3. Avg. TDMA delay 8’ - 16 16 
4. Reservation - - 2’ 2’ 
5. Update/Invalidate 15 13 14 3 
6. Flight 1 1 1 1 
7. Avg. TDMA delay 16 - 16 16 
8. Reservation 2’ 2’ 
9. Ack 2’ 2’ 2 2 
10. Flight 1 1 1 1 
11. Write - - - 8 
m. . . . r-3 r), I” c-7 lotat conerence transactton 1 31 1 31 1 00 ) 3/ 

Latency (in processor cycles) 

Table 2: Latency (in 5-ns pcycles) of Coherence Transactions for OP’I’NET, LambdaNet, DMON-U, and DMON-I. Assuming 
8 words written in block. 

-----r~---- 
CG Conjugate Gradient kernel 
Em3d Electromagnetic wave propagation 
Gauss Unblocked Gaussian Elimination 

Mg 3D Poisson solver using multigrid techniques 
Ocean Large-scale ocean movement simulation 
Radix Integer Radix sort 
Raytrace Parallel ray tracer 
SOR Successive Over-Relaxation 
Water Simulation of water molecules, spatial allot. 
WF Warshall-Floyd shortest paths algorithm 

Proeram 1 Descriotion I lnnut Size 
1400 x 1400 doubles, 78148 non-zeros 
8 K nodes, 5% remote, 10 iterations 
256 x 256 floats 
24 x 24 x 64 floats, 6 iterations 
66 x 66 grid 
5 12 K keys, radix 1024 
teapot 
256 x 256 floats, 100 iterations 
5 12 molecules, 4 timesteps 
384 vertices, ij connected w/ 50% chance 

Table 3: Application Description and Main Input Parameters. 

erations, at least in the absence of contention and assuming 8 words 
written per block. Under the same conditions, the OPTNET and 
DMON-I systems involve 19% less overhead than DMON-U in co- 
herence transactions. 

Note that in our base simulations the minimum TDMA slot du- 
ration is 2 pcycles for both DMON and OPTNET networks. Thus, 
each control channel slot in DMON and request channel slot in OPT- 
NET are 2 pcycles long. Each coherence channel slot in the OPT- 
NET is at least 2 pcycles long; the actual duration of each slot de- 
pends on the number of words updated. 

Workload. Our application workload consists of ten parallel pro- 
grams: CG and Mg from the NAS suite [ 11, Em3d from UC Berke- 
ley, Ocean, Radix, Raytrace, and Water from SPLASH-2 [lo], and 
Gauss, SOR, and WF from the University of Rochester. Table 3 lists 
the applications and their input parameters. 

5 Experimental Results 

5.1 Overall Performance 

Figure 4 shows the speedup of our applications running on a 16- 
node OPTNET-based multiprocessor. The figure demonstrates that, 
except for CG and WF, our applications exhibit reasonably good 
speedup levels on 16 nodes. Em3d, SOR, and Water, in particular, 

achieve excellent speedup. The two extremes in speedup perfor- 
mance, Em3d and WF, deserve further discussion. Em3d achieves 
superlinear speedup as a result of its terrible single-node 1st and 
2nd-level cache behaviors; caches are simply not effective for this 
application on a single node. WF achieves poor performance on 16 
nodes as a result of large barrier overheads due mostly to significant 
load imbalance. 

Figure 5 shows the running times of our applications again on a 
16-node multiprocessor. For each application we show, from left 
to right, the OPTNET, LambdaNet, DMON-U, and DMON-I per- 
formances, normalized to the OPTNET results. This figure demon- 
strates that DMON-U performs at least as well as DMON-I for all 
applications, except Water. The performance differences between 
these two systems average 1 I%, being most significant for Em3d 
(16%), Gauss (16%), Ocean (43%) andRadix (14%). 

As one would expect, a comparison between the LambdaNet and 
DMON-U systems is always favorable to the former multiproces- 
sor. Overall, the performance advantage of the LambdaNet averages 
19% for our applications. SOR and Water exhibit only a small per- 
formance advantage of the LambdaNet system. For the other appli- 
cations, the differences range from 16% for Gauss to 28% for CG 
and average 22%. 

A comparison between the performance of the OPTNET and 
DMON-U systems is clearly favorable to our system in all cases, 
except SOR and Water for which the two systems perform similarly. 
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Figure 4: Speedups of 16-Node OPTNET-Based Multipro- Figure 5: Run Times of (from left to right) OPTNET, Lamb- 
cessor. daNet, DMON-U, and DMON-I. 

For the other 8 applications, the performance advantageof the OPT- 
NET multiprocessor ranges from 10% for Mg to 21% for Radix, 
averaging 16%. Taking all applications into account, the advantage 
of the OPTNET averages 14%. 

Figure 5 demonstrates that the OPTNET and LambdaNet multi- 
processors are essentially equivalent for 4 applications: Radix, Ray- 
trace, SOR, and Water. For the other 6 applications, the performance 
advantage of the LambdaNet multiprocessor is never greater than 
12% and averages 8%. Taking all applications into account, the ad- 
vantage of the LambdaNet averages only 4%. Given that the Lamb- 
daNet requires 0(p2 ) optical hardware, a factor of p more hardware 
than the OPTNET, we regard these as excellent results in favor of 
our system. 

The explanation for the performance differences presented above 
is the average cost of reads and writes in the various systems for 
each application. Thus, in the next two subsections we study these 
operations for all systems and applications. 

5.2 Performance of Reads 

Figures 6 and 7 concentrate our statistics on the performance of 
read operations on each of our systems. Figure 6 presents the aver- 
age latency of read operations, while figure 7 presents the average 
latency of 2nd-level cache read misses. All latencies are in processor 
cycles. Figure 7 breaks down the average 2nd-level read miss laten- 
ties into a contention-free component (“base”) and delays caused by 
network contention (“network”), memory contention (“memory”), 
and contention for off-processor-chip access and memory bus ac- 
cess (“other”). In both figures, the bars correspond to OPTNET, 
LambdaNet, DMON-U, and DMON-I, from left to right. 

Figure 6 shows that the average read latency entailed by the three 
update-based systems (OPTNET, LambdaNet, and DMON-U) is 
lower than that of DMON-I, except in the cases of Radix and Water. 
This result can be explained in part by the fact that the update-based 
systems exhibit lower 2nd-level cache read miss rates than DMON- 
I. The differences in miss rates are not terribly significant however, 
since our applications are dominated by replacement misses. As 
shown in figure 7, the most important factor in this comparison 
is that read misses take longer to satisfy in DMON-based systems 
than in the OPTNET and LambdaNet systems, even in the absence 

1.8 

1.6 

0.8 

0.6 

of contention. Furthermore, the DMOAJ-I multiprocessor suffers 
more significantly from memory and network contention than the 
other systems. For instance, discarding the Radix and Water re- 
sults, DMON-I exhibits overall 2nd-level read miss latencies that are 
longer than the OPTNET latencies by 42% on average, while their 
contention-free latencies only differ by 24%. Network and mem- 
ory contention are more pronounced in the DMON-I system due to 
writebacks of dirty cache blocks, the directory lookups required in 
all memory requests, and the extra messages involved in forwarding 
requests to the current owners of blocks. 

Among the update-based systems, the LambdaNet multiprocessor 
exhibits the lowest average read latency, while the DMON-U system 
exhibits the highest. The average OPTNET read latency sits in be- 
tween these two extremes. Discarding the Radix and Water results, 
the read latency in the LambdaNet system is only 7% shorter on av- 
erage than in the OPTNET multiprocessor, while in the DMON-U 
multiprocessor reads are 20% more expensive on average than in the 
OPTNET system. 

As seen in figure 7, the LambdaNet multiprocessor is usually 
more prone to contention effects than the OPTNET and DMON-U 
systems, due to two characteristics of the former system: a) its read 
and write transactions are not decoupled; and b) its absence of serial- 
ization points for updates from different nodes leads to an enormous 
update throughput. As a result of these characteristics, whenever 
an application involves an excessive amount of update traffic (Radix 
and Water being extreme cases), the read transactions are sIowed 
down, as reads and writes compete for the same communication, 
cache, and main memory resources. Nevertheless, the performance 
degradation generated by contention is usually not enough to out- 
weigh the very good base latencies in the LambdaNet system. 

Contention affects the DMON-U and OPTNET systems in simi- 
lar ways; both their contention-free and overall 2nd-level read miss 
latencies differ by 24% on average. Since contention-free 2nd-level 
read misses take longer to satisfy in the DMON-U system, this sys- 
tem exhibits worse read behavior than its OPTNET counterpart. 

5.3 Performance of Writes 

Having discussed the performance of read operations in each of the 
systems we study in the previous subsection, we move on to a study 
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Figure 6: Average Read Latencies of (from left to right) Figure 7: Average 2nd-Level Read Miss Latencies of (from 
OPTNET, LambdaNet, DMON-U, and DMON-I. left to right) OPTNET, LambdaNet, DMON-U, and DMON-I. 

of the performance of write operations. Our results show that, ex- 
cept for Radix, the latency of write operations is negligible in all 
systems, showing that a 16-entry write buffer is usually enough to 
hide the overhead of coherence operations. In Radix writes are very 
frequent (roughly a rate of one write per 5 cycles) and cannot be co- 
alesced in the write buffers, causing the buffers to stall the execution 
frequently. In addition, the write buffer flush overheads are negligi- 
ble as a percentage of the overall execution time, even in the case of 
Radix. The only exception is Ocean running on DMON-I, where the 
write flush overhead represents 11.3% of the execution time. 

These results suggest that the overhead of coherence operations 
is not a serious performance concern in most cases, even for the 
update-based systems which stress the communication system with 
a large number of updates. However, this is only the case because 
these systems include multiple coherence broadcast channels. In- 
creasing the number of coherence channels has a significant impact 
on the medium access delay and on the amount of serialization im- 
posed on coherence transactions by different nodes. As an example 
of this impact, consider a system with 16 nodes and a single TDMA 
coherence channel. In such a system, a node would be delayed an 
average 8 TDMA slots before getting access to the coherence chan- 
nel. Furthermore, only one coherence transaction could be started 
during any slot. On the other hand, with two coherence channels, 
the same node would only be delayed an average 4 TDMA slots 
before starting its coherence transaction. Moreover, two coherence 
transactions could be started in parallel during any slot. 

To quantify this effect in the case of the OPTNET system, con- 
sider figures 8 and 9. The figures show the running time of each 
of our applications on 16 and 32-node OPTNET systems, respec- 
tively, assuming 1, 2, and 4 coherence channels. The bars in the 
figure are broken down into busy time and read, write stall, and syn- 
chronization (including write buffer flush) overheads. All bars are 
normalized to the l-channel results. 

Two main observations can be made from these figures. The first 
is that performance can be significantly improved by using more 
than one coherence channel for several applications. Performance 
improvements come primarily from improvements in write perfor- 
mance, i.e. reduced write stall times and write buffer flush over- 
heads. Note however that these improvements sometimes cause a 
significant increase in read latency, as in the cases of Radix and Wa- 

ter, as a result of increased contention. 

The second observation is that two coherence channels are 
enough to get most of the benefit achievable by utilizing multiple 
channels, at least up to 32-node multiprocessors. Given that the 
gains achievable by increasing the number of update channels de- 
crease exponentially, we believe that two coherence channels should 
deliver a better cost/performance ratio for machines with up to 64 or 
128 nodes. 

5.4 Impact of Architectural Parameters 

We evaluated the impact of several of our simulation assumptions 
(the size of 2nd-level caches, the transmission rate, and the memory 
block read latency) in order to understand the behavior of the OPT- 
NET architecture more fully. In summary, we find that these pa- 
rameters do have a significant effect on performance. However, this 
effect is only quantitative, i.e. varying the parameters does not qual- 
itatively change the trends observed and the outcome of the compar- 
isons made in sections 5.1, 5.2, and 5.3. The complete study of the 
impact of our simulation assumptions is not presented here due to 
space limitations; more details can be found in [2]. 

6 Related Work 

A common approach to using optical communication in computer 
networks is through WDM networks [3]. The use of this type of 
networks has become widespread as a result of recent advances in 
tunable transmitters and receivers and integrated optics technology. 
Optical networks with OTDM (Optical Time Division Multiplexing) 
have been proposed as an alternative to WDM networks, e.g. [8]. 
However, OTDM technology is not yet mature. Our work focuses 
on WDM technology due to its immediate availability, but nothing 
in OPTNET is strictly dependent on WDM. 

Optical networks with WDM have been a part of other scalable 
parallel computer designs. Ghose et al. [5] proposed a WDM- 
based optical bus called Optimul to explore the benefits of the con- 
current operation of multiple channels for both shared-memory and 
message-passing parallel computers. The architecture of Optimul 
is similar to that of the LambdaNet. Our comparison of OPTNET 
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Figure 8: Run Times on 16-Node OPTNET System with 
(from left to right) 1,2, and 4 Update Channels. 

and LambdaNet-based systems indicates that our network should 
also have a better cost/performance ratio than Optimul, since: a) 
the performance differences between OF’TNET and Optimul sys- 
tems should be even smaller than between the OFTNET and Lamb- 
daNet systems; and b) the optical hardware cost of Optimul is only 
a constant factor better than that of the LambdaNet. 

Ha and Pinkston [7] have proposed the DMON network and the 
DMON-I system studied in this paper. Our performance analysis has 
shown that the OPTNET multiprocessor outperforms the DMON- 
based systems in most cases. However, DMON-based systems have 
an advantage over OPTNET systems: they allow latency tolerance 
techniques based on multiple outstanding read requests; the OFT- 
NET systems, as presented here, do not. This limitation results from 
the star coupler subnetwork having a single tunable receiver that 
must be tuned to a single home channel on a read access. Multiple 
outstanding read requests could be implemented on top of our net- 
work, if it were extended with a larger number of tunable receivers. 

7 Conclusions 

In this paper we proposed the OFTNET, a novel optical network 
and associated coherence protocol for scalable multiprocessors. 
Through a large set of detailed simulations, we showed that an 
OPTNET-based multiprocessor outperforms DMON-based systems 
consistently, even though the OPTNET requires no more hardware 
than DMON. In addition, a comparison between our system and a 
LambdaNet-based multiprocessor shows performance differences in 
the range of 0 to 12% in favor of the LambdaNet. We find this result 
to be extremely favorable to our system, given that the LambdaNet 
requires a factor of p more hardware than the OPTNET, where p is 
the number of nodes in the multiprocessor. Based on these results, 
we conclude that the combination of our network and coherence pro- 
tocol strikes an excellent cost/performance ratio for multiprocessors. 
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