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Abstract

The purpose of this paper is to propose a new fast

execution scheme of FORTRAN programs. The proposed

scheme enables the fast initiation of macrotask when ita data

dependence are satisfied even if the control flow has not been

reached. The previous schemes to parallelize a program

including conditional branches have a number of problems - 1)

Though the theoretical speedup ratio is up to N when N

conditional branches are jumped on either a VLIW or a

superscalstr machine, the number of N is restricted up to the

number of ALUs on a chip, 2) Since conventional control

schemes use a few processors to control macrotasks, the

overhead to control them is large. The proposed scheme solves

these problems - 1) The proposed scheme enables speculative

execution between coarse grain tasks, i.e., macro tasks, on

multiprocessors by jumping many conditional branches, 2) A

distributed control scheme is proposed and implemented on the

EM-4 multiprocessor to decrease the control overhead of

macrotasks. Preliminary evaluations show that the control

overhead of the proposed scheme is smaller than that of the

other control schemes. Moreover, it is confirmed that the

distributed control can be implemented by using software when

the average macrotssk execution time is larger than 14.4ps on

the EM-4 multiprocessor.

Keywords: Compiler, Distributed Control, Alacrotask,

J4ultiprocessor, Parallel Processing, Speculation,

Speculative Execution

1. Introduction
This paper proposes a macrotask-level unlimited

speculative execution, which executes coarse grain tasks,

called macrotasks, on multiprocessors with speculation. A

macrotask is initiated when its data dependence are satisfied

regardless of its control dependence’ satisfaction. Previous

works [RiFo72] [NiFi84] [LaWi92] reported that the speedup

ratio is 12 to 630 times in comparison with conventional

execution schemes without speculation when nonnumerical

applications are executed.

Since conventional execution schemes keep both control

dependence and data dependence, a statement cannot be
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initiated before the control flow is reached even if the input

data are available. For example, S2 cannot be initiated before

the conditional branch at S 1 is executed to result in “taken.”

If (A) then S1
B=C*D S2

endif

However, if the data referenced at S2, C and D, are available

before the execution of S1, S2 can be executed before the

completion of S 1 with speculation. After the execution of S 1,

S2 is validated according to the result at S 1. The number of

ignored conditional branches is called “speculation depth.”

When both the speculation depth and the computational

resource are infinite, that is called oracle rnorfel[NiFi84],

the speedup ratio can attain up to 630 times [LaWi92].

Speculative execution schemes [LeSm84] [AcKT86]

[SmLH90][ChLS92] [SmLH92] have been studied mainly on a

VLIW or a superscalsr processor. Though the theoretical

speedup ratio is up to N when the speculation depth is N, N is

restricted up to the number of ALUS in the processor. That

results in limited speedup with speculation. Therefore,

speculation on multiprocessors, which have many ALUs, is

required to attain high performance. Speculative execution

schemes on multiprocessors [B aGa84] [ThGH93], however,

cannot extract full panllelism from a program.

The problems are both that a) a limited kind of loops is

executed with speculation, and that b) the speculation path is

restricted to result in limited speedup.

Banerjee and Gajski have proposed the speculative

execution scheme [BaGa84] of Boolean recurrence

loops [BaGa84] on the specialized multiprocessor, which

consists of a special hardware called a Boolean recurrence

solver. Though their paper is the first proposed paper of

speculation on multiprocessors, only Boolean recurrence

loops including only one conditional branch are executed

with speculation.

Theobald, Gao and Hendren have proposed the speculative

execution model[ThGH93] on multiprocessors, which

performs speculation down only one path per branch to avoid

increasing the number of program states. The model restricts

the speculation depth to n. These restrictions, however, result

in restricting the speedup ratio of speculation. As Urt has

mentioned in [Uht92], the required computational resource

will not explode when both the data dependence and control

dependence are concerned. The main point of [Uht92] is that

all the statements cannot be initiated even if control

dependence are ignored, because some statements have data

dependence that have not been satisfied. Besides that, Urt
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mentions that the control overhead to manipulate the initiation

of statements exists. Therefore, the restrictions on speculation

path proposed in [ThGH93] will be useless once the model is

implemented on real multiprocessors.

This paper solves these problems by both a’) generalizing

the speculation and b’) avoiding the restriction on speculation

path.

In order to generalize the speculation on multiprocessors,

we propose a macrotask-level speculative execution scheme.

The macrotask, a set of statements, is a coarse grain task that is

a unit of speculation. Although general parallelizing schemes

among macrotasks have been proposed in [HoIK90] [GiPo92],

the advantages are 1) the proposed scheme performs

speculation, 2) the macrotask is created so as to increase the

effectiveness of the speculation, and 3) the overhead to control

macrotasks is reduced.

Moreover, the proposed scheme avoids the restriction on

the speculation path. The speculation depth is dynamically

determined depending on both the data dependence and the

initiating overhead of a macrotask. When the initiating

overhead is small, the speculation depth is eventually

increased.

In the next section, the problems of speculative execution

are reviewed and their solutions are described. Our execution

models are described in Section 3. The creation scheme of

macrotasks is explained in Section 4. A distributed control

scheme is proposed and implemented on the EM-4

multiprocessor[SYHK89] in Section 5. The experimental

results and their ramifications are presented in Section 6. The

final section discusses the conclusions that may be drawn from

this study, and describes our plans for future research.

2. Related Work and Our Approach

The basic purpose of speculation is to speedup program

execution by ruining some code segments before it is known

whether they are actually reached. The problems of speculative

execution are:

a) Most schemes [LeSm84] [AcKT86] [SmLH90] [ChLS92]

[SmLH92] have been studied on a VLIW or superscalar

processor. Though the theoretical maximum speedup ratio is N

when the speculation depth is N, the number of N is restricted

up to the number of ALUS in a prmessor.

b) Speculative execution schemes on multiprocessors cannot

be used with general programs, or they restrict the speedup

ratio of speculation, since they handle a limited kind of

loops[BaGa84], or restrict the speculation path[ThGH93].

We solve these problems by adopting the following

approaches.

a’) The speculation both inter and intra processors is

performed to exploit full parallelism in a program.

b‘ ) We adopt a macrotask-level speculative execution to

generalize the speculation. Moreover, the speculation path is

not restricted so that the speculation depth is determined at

runtime depending on both the data dependence and the

initiating overhead of a macrotask.

Although general parallelization schemes among

macrotasks have been proposed in [HoIK90] [GiPo92], the

schemes cannot be used directly with speculation since they

adopt the centralized control that results in another problem:

c) The centralized control uses one or a few processors to

control the macrotasks by updating the macrotask control

table in which their execution conditions are stored.

Therefore, the scheme increases the control overhead in

proportion to the number of running macrotasks because the

number of states in the macrotask control table increases in

proportion to the number of running macrotasks.

The solution of the above problem is as follows.

c’) A distributed control is proposed to decrease the

macrotask control overhead. Each macrotask broadcasts and

snoops the signals indicating determined branch directions,

i.e., selected paths. The macrotask decides by itself whether

to continue or to discard the execution when the macrotask

receives the signal. Thus, the control overhead does not

depend on the number of running macrotasks.

3. Background
In this section, the programming model ancl the platiorm

are described. The definitions of basictask, macrotask, and

control dependence are also described.

3.1 Programming Model

The program used in this paper must satisfy the following

conditions:

1) The flow graph[AhSU86] of the program should be

reducible[AhSU86], i.e., it has no jumps into a 1oop.

2) No subroutine calls exist, i.e., sub-programs should be

expanded in line.

3) The conditional branches handling exceptions, such as

divide by zero, are previously marked out to skip the

following speculative execution because such speculation

results in execution errors.

4) Data used in a program are stored in a shared memory or a

distributed shared memory.

3.2 Platform

This paper assumes that a multiprocessor supports two

mechanisms: a broadcasting mechanism and a dynamic task

allocation mechanism. The broadcasting mechanism is used

to broadcast the signals indicating the results of the

conditional branches. The macrotask should be allocated

dynamically to the processor.

3.3 Definition of Basictask and Macrotask

The basictask is defined as the code segment of a program

that has only one entry point of control flow at the top of the

segment. Thus, the smallest basictask consists of one

statement. The macrotask is a set of basictasks that has only

one entry point of control flow at its top. They may have

plural exit points of control flow in them.

3.4 Definition of Control Dependence

Ncde y is control dependent on node x iff both node x and

node y on the control flow graph satisfy the following two

conditions.
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cl) Node y does not post-dominate node x.

c2) There exist paths P from node x to node y. Node y post-

dominates all the nodes in P except node x and m-de y.

The above definition shows that the node y is control

dependent on node x, when the path from every node z to exit

node includes node y while every path from node x to exit node

does not include node y, where node z is the node on the path

from node x to node y.

4. Creation of Macrotasks

This section describes the algorithms to create macrotasks

and shows the experimental results.

4.1 Macrotask for Speculation

Macrotasks are created both to 1) prevent side-effects that

result from double racing of the same variable, and to 2) reduce

the macrotask control overhead by enlarging their size.

1) Consider MT2 and h4T3 in Fig. 1(a), which define the same

variable “a. ” If both M T2 and MT3 are initiated with

speculation, the value of the variable “ a“ cannot be guaranteed

to be safe, this can be called a “side-e ffect.” To prevent side-

effects from arising, the macrotask referencing the value “ a“ is

duplicated as shown in Fig. 1(b) so that data dependence

between macrotasks are determined regardless of the

conditional branch. After duplication, “variable renaming” is

performed.

2) To enlarge the size of a macrotask, the basictasks are

merged into one macrotask unless the effectiveness of

speculation is lost after merging.

m

(a) original
Fig. 1 Duplicated macrotasks for preventing side effects.

4.2 Steps of Macrotask Creation

We can make macrotasks by adopting the following 4

steps.

1) Create baaictask(BT) using HTG[GiPo92].

2) Create control flow graph, control dependence graph, and

data dependence graph [GiPo92].

3) Duplicate basictasks to prevent side-effects.

4) Merge basictasks to create larger macrotask.

4.2.1 Creation of Basictask(BT) using HTG

A program is restructured into the hierarchical task

graph(HTG) [GiPo92] to make the program to be a directed

acyclic graph. The HTG is shown as HTG=(HV, HE) with unique

nodes START and STOP belonging to HV such that there exists a

path from START to every node in HV and a path from every

node to STOP. Each node in HV is one of the following type:

a) simple node representing a task, i.e., basic block, that has

no sub tasks,

b) compound node representing a task that consists of other

tasks in an HTG, or

c) loop node representing a task that is a loop whose

iteration body is an HTG.

An arc he~ HE indicates control flow between nodes

hv~ HV. An example of HTG is shown in Fig.2(a). The nodes,

where at the same hierarchy level, form basictasks at that

level. Fig.2(a) shows the basictasks (shown as BT) at the top

hierarchy level.

4.2.2 Creation of CFG, CDG, and DDG[GiPo92]

A control flow graph is a directed graph CFG=( V, CFE)

with unique nodes START, STOPE V. A node VE V indicates the

bssictask. A directed arc c~e(u, V)E CFE indicates the control

flow from BTu to BTv.

A control dependence graph is a directed graph C!DG=(V,

CDE) with labeled arcs. A node vc V shows a basictask. A

directed arc cde(u, V)E CDE shows that B Tv is control

dependent on BTu. Thus, it is decided in BTu whether BTv is

reached. A label u-a placed next to the arc cde(u, V)C CDE

indicates that BTu decides the branch direction to BTa on the

CFG. The label may have the value of true or false. For

example, the label u-a has the value of true when the control

flow reaches cde(u, v). On the other side, the label has the

value of false if the control flow does not reach cde(u, v).

(a) HTG(HierarctdcalTask Gr.mh) (b)CFG(Control Ffow Graph).,— wifh data &cendence

,%W ‘&,ut
o

(c) CDG(Contrcd De&ndence Grmh) (d)DDG(Data Dependence G~ph ).
v FDDSCV) DNCV> v Fmv> W.-l
1 - 1,10 6 s 1,2,5,6,10

2 1 1,2,5,10 7 5 1 7 10
3 2 1,2,3,5,10 ;8 3.7 ~,2.5, a.10
4 2 1,2,4,5,10 9 1.9.10
5 2 1,2,5,10 10 a 1,10

(e) FDDS(V) and DN(v) of (c)(d)
Fig.2 HTG, CFG, CDG, and DDG,

330



A data dependence graph is a directed graph DDG=(V, DDE),

where an arc dde(u, V)E DDE shows the data dependence from

B TM to BTv. There are three kinds of data dependence; flow

dependence(read after write), anti-dependence(write after read),

and output dependence(write after write). They are shown by

using fdde(u, v), adde(u, v), and odde(u, v), respectively.

These examples are shown in Fig.2(b)(c)(d).

4.2.3 Duplication of Basictasks to Prevent

Side-effects

The basictasks are duplicated so that the data dependence

are determined regardless of the direction of conditional

branch. Since both the anti-dependence and the output

dependence can be removed by performing “variable

renaming,” only the flow dependence is concerned. Both anti-

dependence and output dependence are removed after the

duplication.

The duplicating condition of node v is FDDS(V) ~ DN(v),

where VE V in DDG, FDDS(V)={ u I fdde(u, V)E DDE}, and the

DN(v) is the set of nodes that are determined to be executed

whenever node v is executed. FDDS(V) ~ DN(v) indicates that the

flow dependence to node v cannot be determined when node v

is determined to be executed. DN( v) is led from DN(v)={x I x

DOM v, xc V] + {y I y POSTDOM v, ye V}, where DOM and

POSTDOM indicates “dominate” and “post-dominate”,

respectively. Node x dominates node v iff every path in CFG

from START to node v contains node x [AhSU86]. A node always

dominates itself. Node y post-dominates node v iff every path

in CFG from node v to STOP (not including node .x) contains

node y PeOW87].

The foIlowing is the definition of the calculation between

labels and the steps to duplicate node v.

The calculation between labels uses one Boolean value and

logical primitives, A(and) and v(or). The label a-b has the

value of true when the destination is decided to be node b at

node a. Otherwise, the label a-b has the value of false. Every

path cde(ai,ai+l) has the label ai-ci , which is true when the

path p(v) is selected, where path p(v)=azo,al,..,an=v>,a,= V. The

set of labels belonging to the path p(v) is shown by

L@(v)) ={ai-ci, cde(ai,ai+l) has label ai-ci, <ai,ai+l>Gp(v)]. The

set of the incoming paths to node v is shown by P(v)= {p(v) I

p(v)=caO,al,. .,an=v> ,ai~ V}. The definite control condition

CC(v), which guarantees the reachable control flow to node v,

is defined as every label belonging to L(p(v)),3p(v)E P(v) has

value of true. In the case of Fig.2, CC(8) =(1-2 A5-6A6-8)V( 1-

2A5-7A7-8). The negative condition of CC(v) indicated by

~, which guarantees that the control flow does not reach

node v, is defined as every label a-b belonging to

L(p(v)),Vp(v)E P(v) has the value of false. In the case of Fig.2,

KQD=(Mv5-LM-4)AUQV5-3VM). When the number’ of

branch destinations at node a is two, node b and node c, Q& is

shown as &= CC(a)Aa-c . By using the above relationship,

CXX3) becomes CC[81=1-9V(1-2A5 -7 A7-10)V(1-2A5-6A6- 1O).

Tab. 1 shows the definition of the symbols appearing in

the above discussion. The duplication steps are shown in

Tab.2. The latter explains the steps with an exalmple of Fig.2.

Tab. 1 Definition of Symbols

da’e(u,v) ; the w of data dependence from nude u to node v on the DDG

fdde(u,v) ={ dde(u,v) [ data dependence is flow dependence}

adde (u,v) ={dde(u.v) / data dependence is anti-deptmdewe}
odde (u,v) ={dde(u,v) [ data dependence is output dependence}

VN(02ie) ; variable nameof thedde

cde(u,v) ; the arc of control dependence from node u to node v cm the CDG

p(v) =@,aJ ,..,a~=v>,aj G V, where node @ has no ccle

;a@htonodev ontbeCDG
P(v) =@(V) I P(V)=~09al..1an=v>.aj ~W

;theeetofpathe tonodevonthe CIX3

L(p(v)) ={a/-cj I ccfe(a~,aj+l) has label Oi-cj,<aj,aj+]>Lp( v)]

; the Setof labels belonging to p(v)
DN(v) ={.xlx ItOM V, .r=v,v= V} + {yly~S~M V, y=v,v=v}

; the set of nodes that cue executed whenever the node v is selcztcd
DDS(V) =[u I dde(u,v)] ; actof source nodes of Ue(u,v)
FDDS(V) ={u I fdde(u,v)} ; setof source nodes offdde(u.v)

cc(v) every label belonging to LO(V)), =p(v) G P(v) is true ; the cnndition

to guaranti the reaching of control dependence to node v

!XXi!l =a-b ~L@(v)) hecornea false for Vp(v) 6P(v); the condition
to guarantee the unreaching of control depncknce to node v

Tab.2 Steps to duplicate basictasks

Step 1)

Step 2)

step3)

Step 4)

Step 5)

Step 6)

Step 7)

Step 8)

Step 9)

Step 10)

Step 11)

Calculate FDDS(V) and DN(v). For 5 v, FDDS(v)&DN(v), the
following steps are applied. When no ncxks satisfy FDDS(v)~DN(v ),
go to SteP 8).

Calculate NDS(V)=FDDS(Y) – {DN(v)flFDDS(v)).
Then, for ~ u GNDS(V), apply the following steps.

Calculste CC(u), CC@, end CC(Y).

D]scard node v from bath CDG and DDG. Create two cluplicated nodes
( v’,v” ) on both CDG and DEG.

Add the control depcndemx?arc satisfying CC(V’)=CC(V)A CC(U) to node

J ou ClXl, Add the conbol dependcme arc satisfying CC(V’’)=CC(V)A
.CC(d to node v“ on CDG.

CC(r) is indicated by using labels. CC(X)=(a!dr]l Aau$uA.. Aal(no
-blm[])V(m-bziA,. Aaz[nz>bwulV...V(a~l-hA.. Aa~t~}b~w),
where and-or is reduced to be minimum Every “or item” shows a path to
node x on ClXi. Every” and item” shows a label of its path. Thus, add
m path to ncde .xon CDG. Add the label L(pi(.t))={a,l- b,!,aii-fm,..,a@~

b,mo}to each path, where m is the number of “or item”. Besides that, add
the dummy node so that the contiol dependence arc outputs from node a
when the label is a-b. The dummy nodes are used onfy fnr indicating tbe
condtion to satisfy the control dependence of node x

Add uW(U,!J) to node v’ on DDG wItfr the exception when CC(U)A
CC(V’) is always true far Vu G DDS(V). Add dde(u,i’) to node v“ on
DDG with the exception when CC(U)ACC(V”) is alwaysjake far
VU GDDS(V),

Add dok(v’,w) and oW(v”, w) for V w G { w I Wv,w) ~ DDE}.

goto Step 1).

Discarding non reachable fddtz discard Vfdde c ~dde(u,v) I 3 w ~ V,
w+ u, w=#v, VN(fdde( u,v))=VN@de(w,v))=VN(odde(u,w)) } from DDG.

Discarding the duplicated rrod~
For 3VG { v I 31u~V, U+V, DDS(V)=DDS(U), both u and v have the

samecode which are duplicated fromthe samenode}.
V we {W I dde(v,w)}, add dde(u,w) on DIN and discard dde(v ,w).

Add the control dependmce arc satisfying CC(U)=CC(V)V CC(u)on
CDG. After that, discard node v from both DDG and CDG.
Repeat the .Wep9) until no v exist.

Discarding the unnecessary dde. Dkcard Vdde~ { dde(u,v) I U+V.
fdde(u,*)fdd<*,v) exlte}from DDG, where ‘~dde(u,*)fdde(*,v)” shows a
flow dependence from node u to node v via at least one otk node.

Variable Renaming Rename VN(adde(w,v)) for Vv~ { v I ~w~ V,
w+v,adde(w,v)}. Rename VN(odde(w,v)) for VVG {v I 3wGV, w#v,
odd< W,V)}, Them,all of the adde and odde are discarded
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Firstly, Step 2) is applied to lead the duplication target

nodes {8, 10} shown in Fig.2(e). Then, Step 2) is applied to

one of the nodes, node 8, to lead NDS(V). Then, we have

NDS(8)={ 3,7] that shows the data dependence from both node

3 and node 7 to node 8 are uncertain. Step 3) is applied to the

nodes belonging to NDS(8). Firstly, Step 3) is applied to

node 3. Then, we have CC(3)= 1-2A2-3, ~= 1-9v(1-2A2-4),

CC(8) =(1-2 A5-6A6-8)V(1-2A5 -7 A7-8). After applying Step

4) end Step 5), we have CC(8’)=CC(8)ACC (3)=( I-2 A2-3A5 -

6A6-8)v(1-2A2-3 A5-7A7-8), CC(8’’)=CC(8)ACC( 3~=(l-2A2-

4A5-6A6-8)v(1-2 A2-4A5-7A7-8), where nodes 8’ and 8“ are

the duplicated nodes. After the duplication, control dependence

arcs for nodes 8’ and 8“ are added. Step 6) adds the data

dependence arcs to them shown in Fig.3. The Steps 2) to 7)

are applied until no nodes v satisfying FDDS(V)Q DN(v) exist.

Finally, we have the CDG and DDG shown Fig.4.

Next, Step 8) is applied to discard the useless data

dependence. For example, ~dde(3,8’) is discarded when

@de(3,8), f2dde(7,8’), and odde(3,7) show the same variable,

because the variable is redefined at node 7. Since DDS(8) and

DDS(8”) become identical after Step 8), node 8’ and node 8’

are merged into one node shown as node & after applying Step

9). In the same way, node 10 and node 10’ are merged into

node 10’. After applying Step 10), adde (2,8’) and

adde(2,8””) are discarded. Step 11) renames the variables to

discard odde(3,7) and adde(2,8’”). Moreover, the variables in

the duplicated nodes (8’,8’’’,8’’’’,10,10’’,10’” ,10’’”) are

renamed to avoid side-effects. Finally, we have CDG and DDG

shown in Fig.5.

4.2.4 Creation of Macrotask
Basictasks may be merged into one macrotaak to enlarge

the size, when the following basictask has both data

dependence and control dependence from the preceding

basictask, because the following basictask cannot be initiated

before the completion of the preceding basictask. The

necessary and sufficient condition that keeps speculation

effective is unchanging of the satisfaction time of data

dependence, because the initiation time of macrotask is

delayed if the satisfaction time of data dependence is delayed.

Besides that, the merged macrotaak must have only one entry

point of cordxol flow, which is defined in 3.3.

Firstly, the data dependence both to Bl”a and to B7’b must

satisfy at least one of two conditions to guarantee the

unchanging of the satisfaction time of data dependence:

DDS@Ta)=DDS(BTb) (1)

3dde(BTa#Tb),VBTx,BTx~ {BT I BT+BTaJITE DDS(BTb)}

=xide(BTx,*)dde(*,B7’a) (2)

where dde(BTx,*)dde(*,B Z’a) shows that the data

dependence from BTx to BTa exists through any BT.

Equation (1) guarantees the data dependence both to Bra

and BTb are identical. Equation(2) guarantees that the data

dependence to BTb are satisfied when the BTa completes its

execution. This means the satisfaction time of the merged two

basictasks becomes BTa’s satisfaction time.

1-2

(a) CDG(Control Dependence Graph)

-flow

(b)DDG(Data Depxknce Graph)

Fig.3 CDG & DDG after duplicating node 8

——
(a) CDG(Control Dependewe Graph)

flow
anti
mtput

(b)DDG(Dsts fipenda-m Graph)

Fig.4 CDG & DDG afta applying the duplicating BT steps 1) - 7).

1-2

m~r -2 <~~’ “ 1?

22 2222.:-2A

2-32-32-3 242-3 -4 ;?’-’””:”: 2412

MT3
(a) CDG(ControI DependenceGraph)
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Secondly, the control dependence both to BTa and to BTb

must satisfy at least one of two conditions to guarantee the

merged basictasks to be a macrotask:

CC(BT’a)=CC(BTb) (3)

CC(BTa)A{a-x]=C-C(BTb) (4)

where {a-x] shows a partial set of the labels

determined whether true or fake in BTa.

Equation (3) guarantees the control dependence both to

BTa and to BTb are identical. Equation (4) guarantees that the

control dependence to BTb are guaranteed to be satisfied by

both the control dependence of B Ta and the control

dependence satisfied in BTa.

Therefore, the conditions to merge two baaictasks are that

both one of (l)(2) and one of (3)(4) are satisfied. We have

four combinations of the conditions. An example is shown in

Fig.5 that shows the 5 merged macrotasks out of 15 basictasks.

4.3 Experimental Results of Macrotask Creation

The programs used in this experimentation are shown in

Tab.3, Four scientific calculation sub-programs are used.

Firstly, these programs are restructured into HTG’s. Then,

baaictasks are converted to macrotasks at each hierarchy level.

Three of four programs have two hierarchy levels and the other

has three hierarchy levels.

The number of basictasks and macrotasks are shown in

Tab.3. Since the total program size increases after the

macrotask creation because some basictasks are copied to

prevent side-effects, the sizes of pro~ams before and after the

macrotask creation are also shown. This experimentation

shows that the size of macrotasks is about three times larger

than that of basictasks at the bottom hierarchy level. At the

next hierarchy level, we have larger macrotasks. Thus, it is

confirmed that the proposed scheme able to increase the size of

macrotasks to decrease the macrotask control overhead.

Table 3 A Commrison of the size of Basicktask and Macrotask

original #of B’I- 133 63 143 74
#of lineslBT 3.0 2.8 2.4 3.7
#of total liics 589 269 612 280

bottom#ofMT 71 32 63 26

after
level #of liicslkil- 8.3 8.4 9.7 10 8

creatingM #of MT 17 3 33 13
MT level #of liica I MT 34.6 90.0 18.5 71.6

3rd #of MT 4
level #of limes\ MT /“ / 70.0

5. Distributed Control Scheme of
Macrotasks

In this section, a new control scheme of macrotasks is

proposed to reduce the control overhead. The scheme is used at

each hierarchy level described in 4.2.1.

5.1 The Distributed Control Scheme

The proposed distributed control scheme initiates the

macrotask when its input data dependence are satisfied. The

outline is shown in Flg.6. Each running macrotask, which has

its own assumed path, snoops the broadcasted control signals

indicating the selected paths on conditional branches. When

the macrotask decides the assumed path is not selected, it

discards the execution, while it continues the execution when

the assumed path is selected. Therefore, each macrotask can

determine the next state by itself, that makes no overhead

depending on the number of macrotasks.

(l)Source MT creates the new MT wherr the new MT has one data –

dependence from the source MT (2)The data matching mwlranism creates

the new MT when the all the data dependence are satisfied. (3)Every MT

brmdcasts the branch direction. (4) Every MT controls itself to sek.ct or to

discard depending on the broadcasted control signals.
Flg.6 A distributed control scheme.

The following four mechanisms are indispensable to

implement the proposed scheme:

1) Data matching mechanism is used to guarantee all the data

are defined when a newly initiated macrotask has data

dependence from many other macrotasks.

2) Broadcast mechanism is used to broadcast the signals

indicating the completion of the macrotask and the selected

paths.

3) Dynamic task allocation is used to allocate the newly

initiated macrotask to the low loaded processor.

4) Processor control mechanism is used to determine the next

state of the running macrotasks by snooping the control

signals.

We have implemented the proposed scheme on the EM-4

multiprocessor [SYHK89]. In the implementation, we use the

mechanisms of the EM-4 to decrease the control overhead; (1)

direct matching mechanism[YaSK91] is used for the data

matching, (2) circular omega network [YaSK91] is used as the

broadcast mechanism, and (3) a MLPE packet, detecting the

load-minimum PE [YaSK91], is used for dynamic load

balancing. As for the processor contxol mechanism, we have

implemented it by software.

5.2 Initiation of Macrotask Execution

The initiating condition of a macrotask is that all the data

referenced in the macrotask are defined. The following are the

details.

1) The macrotask with no data dependence from other

macrotasks is able to be initiated at any time. A dummy

macrotask is created to initiate such macrotasks.

2) The macrotask with data dependence only from one
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macrotask is able to be initiated by its source macrotask which

has the initiation code set.

3) The macrotask with data dependence from many macrotasks

is able to be initiated after guaranteeing all the data

dependence are satisfied. The data matching mechanism is used

to wait for all the data definitions and to initiate the macrotask.

5.3 Control Scheme of Macrotask

The macrotask is controlled by using three parameters:

level number L, assumed control path P, and maximum

speculation depth N. Every running macrotask, having P and L,

makes a decision whether to continue or to discard the

execution, after comparing the assumed control path P and the

broadcasted control signaL

The level number L shows the number of determined branch

directions, that is set to zero at the beginning of the execution.

The assumed control path P shows the path from the root

macrotask whose control flow is determined. The assumed path

P consists of the branch direction T, F, and *, that represents

“true”, “false,” and “don’t care” respectively. The root

macrotask has null assumed path. The other macrotasks have

plural assumed paths from the root macrotask. The maximum

speculation depth N, which comes from the hardware resource

limitation, is used to limit the speculation depth.

In the example shown in Fig.7, MTi is the root macrotask.

A4Tk, which has P=FT and L=L, is on speculation, where the

conditional branch in MTi is the Lth branch. When MTn is data

dependent only on MTk, MTk is able to initiate MTn, which has

the same level number L=L and the assumed path P=(MTk’s

assumed path)+ (Path from MTk to MTn). The level number L

remains the same when the root macrotssk doea not change.

The execution sequence is described as follows. As shown

in Fig.8, the control signal consisting of (level number L,

assumed path P + branch direction) is broadcasted when the

branch condition is determined. For example, the control

signal (L, T) is broadcasted when the branch condition is

determined as true at the root macrotask whose level is L. On

the other side, the signal (L,FTF) is broadcasted when the

branch condition is determined as false at the speculated

macrotask whose level is L and assumed path P= FT. The

control signal (L,FTF) shows that the far left side of FTF is

the Lth branch and the false is determined on the assumption

that the path P=FT will be selected.

The received control signal is shown as follows: the level

number is Lr, the number of Boolean in the (assumed path P +

branch direction) is nr, and the kth Boolean form the far left

side of (assumed path P + branch direction) is Pr(k), where

l<k.9+. h the same way, the strings Lm, nm, Pm(k) are defied

for the same value in the macrotask running on the processor.

When the assumed paths of the macrotask running on the

processor have the path corresponding to the branch direction

Pr(nr) of the received control signal, the processor executes

the following 5 steps. Otherwise, the received control signal

is discarded. That is, when LmeLr+nr<Lm+nm is satisfied, the

processor executes the following Step 1) to 5). Lr+nr- 1

shows the level number of Pr(nr) . Lm+nm- 1 shows the level

number of Pm(nJ. When Lr+nr- lcLm is satisfied, the received

control signal is useless because Pr(nr) corresponds the

definite path (not an assumed path) of the running macrotask.

When Lm+nm - 1<Lr+nr- 1 is satisfied, the received control

signal is useless because Pr(nr) corresponds the future path

beyond the assumed path of the running macrotask.
level number

@>~~
AL............................

~=~~~,as-edpath+brmch d.don)

nr level=~q-1

A Control flow - Datatlow ● Predicate

FIg.7 Assumed path and level number.

e- -,,.:J,, level number L

- u
broadcast (L,T’) broadcast (L,FTF)

(a) rootMT (b) other MT

control signal=(level number, assumed patkbranch direction )

I=------ .. —-.—_—
level=Lm Step I) level=~+tim-l

m (levelh. essmmdpath)

(a) comparison between the control signal end ammnedpath in MT

EziziiKq::::::’”)
Match!

MTn
assmned path FTF sTT

level number L control signal (L, FTT)

Differ!

(b) an ewntpl. of updating the assumedpath
l+g.9 An Updating oi the assumed path.

Fig.8 Broadcasted control signal
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Every macrotask keeps the past definite path up to the

maximum length N-1. The past definite path is used to compare

with the assumed path of the received control signal when

Lr4m. Since L#Zr+nr and the maximum number of nr is N, we

have Lm-L@. Thus, the length N-1 is enough.

Step 2) Comparison of Premise Condition

As shown in Flg.9, P,(k) corresponds to Pm(k+(Lr-LJ).

Pr(k) and Pm(k+(Lr-Lm)) are compared in the scope of I<k<r+- 1,

where they are same in the case of (T, T),(F,F),(*,F), (*, T),

(*,*), (F,*) or (T,*). Only in case of (F’,*) and (T,*), the

assumed path of the macrotask is duplicated and following

steps are applied to the duplicated path because Pm(k+(Lr-Lm))

is not fixed though Pr(k) ia fixed as T or F. When Vk, l<k<~- 1,

P,(k) is the same as Pm(k+(Lr-Lm)), the latter steps are applied

because it is confiimed that the received control signal and the

assumed path are on the same path. Otherwise, the received

control signal is discarded.

Step 2) Comparison of Branch Direction

Pr(nr) is compared with the corresponding assumed path

Pm(nr+(Lr-Lm)). If they are same, Pm(n,+(Lr-Lm)) is checked as

Ts or Fs, that shows the “selection” of the corresponding

assumed path Pm(nr+(Lr-Lm)). The macrotask, however,

discards speculation when they are different. An example is

shown in Fig.9(b).

Step 3) Updating the Level

The assumed paths from Pm(l) to Pm(j) are discarded when

every Pm(k), 1< k<j is one of Ts and Fs, where 3j, l<j<n~. After

discarding, the level number is incremented by j, because the

branch directions to jth level have been confirmed. When the

nm becomes zero, the macrotaak is now a root macrotask.

Step 4) Initiating Subsequent Macrotasks

A new macrotask is initiated by its source macrotask, a

dummy macrotaak, or a data matching mechanism described in

5.2, when the length of the assumed path, e.g. the length of

FTFTT is 5, is less than the maximum speculation depth N.

Since the subsequent macrotask whose assumed paths have

been invalidated by the previous control signals is not

initiated, the speculation depth is determined dynamically

depending on both the macrotask control overhead and data

dependence. That means the speculation depth increases when

the macrotask control overhead ia small and there exist small

number of data dependence.

step 5) Reclaim of Level Numbers

Level numbers must be reclaimed to avoid the exhaustion

of level numbers because the maximum level number is limited

by hardware resource. The maximum level number is shown as

L ~X. The level numbers are divided into hvo groups: O to Lmid

~d Lmid+ 1 to L ~X, where Lmid is the middle number of Lmax.

The flag included in the control signal, indicating “the reclaim

of the level numbers to Lmid,” is checked when the root

macrotask broadcasts the control signal with the level number

Lmid+ 1. Every processor receiving the control signal with the

checked flag sends an acknowledge signal to the predefine

processor after confirming that all the level numbers of

running macrotasks in its processor exceed the number

Lmid+ 1. Then, the predefitted processor broadcasts the signal,

indicating that the level numbers O to Lmid are available for

use, after receiving all the acknowledgements. After that,

every processor is again able to use the level numbers from O

to Lmid. In this way, the level numbers are reclaimed and

reused. Since the level numbers are reclaimed half by half, the

macrotasks are executed without interruption.

5.4 Comparison with Centralized Control

The control signal is sent as “the processor executing a

macrotask = the control processor = the target processor to

control” when the centralized control is adopted. The control

signal of the distributed control, however, is sent as “the

processor executing a macrotask ~ all the processors.” When

a new macrotask is initiated, the control signal is sent as “the

macrotask including the initiation code set to create a new

macrotask a the target processor to assign the macrotask.”

The macrotask control overhead is defined as the time from

sending a control signal at a macrotask until controlling the

other macrotasks. The macrotaak control overhead is shown

in Tab.4, where CC and Cd show the centralized control

overhead and distributed control overhead respectively. T 1

shows the communication delay of one to one

communication. Tb shows the communication delay of

broadcasting. The value of CC increases in proportion to the

number of running macrotasks as described in 2.. The value of

Cd, however, is constant regardless of the number of running

macrotasks.

Table 4 A comparison of the cenmdized control and the proposed
dk.tributed control.

Centralized Control Dktributed Control

Macrotask Cd+Tl@r case of creating MT)
Control 2Tl&

Overhead
‘rb+Cd(iII caseof discarding MT

andupdating the level)

Tl: one to one communication delay (3.3ps in EM-4)
T& broadcasting comrrnication delay (26.@s in EM4)

@ cenhalized control overhead ( m the number of MT)
Cd: distributed control Ovahead (constant)

6. Evaluations

The distributed control has been implemented on the EM-

4 multiprocessor[SYHK89] to evaluate the decrease of the

macrotask control overhead.

6.1 EM-4 multiprocessor and implementation

The EM-4 multiprocessor[ SYHK89] consists of 80

processing elements whose machine clock cycle is 12.5MHz.

The single chip processor called EMC-R has the fast

synchronous communication mechanism between threads.

The instruction is completed in one cycle except load, store,

multiplier, and divide. The interconnection network adopts

circular omega topology whose performance is

60.9 Mbytes/see per link.

The macrotask control mechanism is written in software

using EM-C, a parallel extension of C language with thread

communication libraries. The centralized control uses three

processors to control the remaining 77 processors. The
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distributed control, however, is implemented on all the

processors that receive and send the control signals. Fig. 10

shows the outline of the implementation of the distributed

control onto the EM-4. The distributed control is programmed

by 7 threads; three of them are used for controlling macrotasks,

the rest four of them are the threads of macrotask themselves.

These 7 threads are allocated to every processor. In this

implementation, the maximum speculation depth N is 32, the

maximum number of level Lmax is 223-1. The value of T ~ is

3.3vs and Tb is 26.4vs, which is the processor to processor

communication time and the broadcast time, respectively.

“’:..,-+pE
“.-... _ n

I level update
~ard K

*

,3 I.atus U(

disc
a I

Macrol

L allocation)

Fig. 10 An implementation of the distributed control on the EM-4

6.2 Workload

The evaluated program is shown in Fig. 11. The program

includes a Boolean recurrence loop. The data dependence

remains continuously when the same direction is selected at

each iteration. However, it breaka once the another direction is

selected. The macrotasks are created by using the proposed

macrotask creation scheme.

(a)Bcmlean Recu
loop

from BT2 (b) expanded graph of (a)

filg. 11 Workload.

6.3 Speculation with Various Task Size

We assume that 1) every BT has the same task size,

0.96 Vsx TaskSize, in which the dummy calculation is

performed, 2) a 32bit data is transformed between BT’s when

they have data dependence, 3) the number of iteration is 10,

and 4) the conditional branches are selected in the sequence of

BTI ,BT2,BTI,BT3,BTI ,BT2,... The theoretical speedup ratio

with no overhead on this sequence is 6.67.

The speedup ratio is shown in Fig. 12. The speedup curve of

the proposed distributed control scheme is sharper than that of

the centralized control scheme. This observation shows there

is a small overhead to control macrotaaka. The speedup ratioa

of both execution schemes, however, are less than 1.0 when

TaskSize is less than 15. That means the control overhead is

larger than the time shortened by the speculation when

TaskSize is less than 15, i.e., 14.4ps.

Since the average execution time of macrotasks at the

bottom hiermchy level in Tab.3 is between 7 us and 9WS, it is

still small to hide the control overhead. However, the average

execution time of macrotasks at second hierarchy level is

between 150ws and 300ps when the programs are executed

with the matz-ix whose size is 10, because the macrotasks at

second hierarchy level include loops. Therefore, the software

implementation of the distributed control is able to be

adopted when the macrotasks at second or higher hierarchy

levels are controlled. The macrotasks at the bottom hierarchy

level, however, should be controlled by hardware to hide the

control overhead when the average execution time of

macrotasks is less than 14.4/.M.

7 - The maximum speedup (theoretical)=6.67...........................................................................

6 .
Distributed Control

5 -

Speedup

2

1

() ~-
200

TaskSize (1 T%?tiize=O!&”p s)

Fig. 12 Spe-edup versus TaskSize.

6.4 Speculation with Various Numbers of

Macrotasks
The number of iteration is varied to change the number of

running macrotasks. We assume that 1) TaskSize is fixed at

50, 2) a 32bit data is transformed between BT’s when they

have data dependence, 3) the number of iteration is varied

from 5 to 30 times, and 4) the selected path ia same as that in

6.3. The number of running macrotasks is calculated by 4

macrotasks x the number of iteration.

Since both MT2 and MT4 at each iteration have no input

data dependence, these macrotasks are initiated with

speculation at the beginning. Although the theoretical

speedup ratio with no overhead is (the number of iteration) x

0.67, the macrotask creation overhead at the beginning

bounds the maximum speculation depth to 10, i.e., the

maximum speedup ratio is 6.67. That means MT2 and MT4 at

iteration 11 will be created after the determination of the

conditional branch at iteration 1. The result is shown in

Fig.13.

The speedup ratio increases when the iteration number is

less than 10 with both the schemes, because the speculation

depth increases in proportion to the number of iterations. The

situation changes after exceeding 10 iteration times. The

speedup ratio decreases with the centralized control, while the

ratio holds the same level with the distributed control. This
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observation shows that the macrotask control overhead of the

centralized control increases in proportion to the number of

running macrotasks as shown in Tab.4. Therefore, the speedup

ratio of the centralized control decreases when the number of

iteration increases, after the iteration 10. However, the speedup

ratio of the distributed control holds the same level because the

macrotask control overhead is independent on the number of

running macrotasks.

3

I

Dkxributed Control

2.5
,~

Speedup 2

I

~;”+

1.5
❑’

\
Centralized Control n

Q-.
the number of iterations

Fig. 13 Speedup versus the number of iterations(TaskSiz-50).

7. Conclusions

In this paper, we propose the unlimited speculative

execution that enables the speculation inter processors to

exploit rich parallelism. The scheme uses two new mechanisms

: the macrotask creation and the distributed control.

The advantages of the macrotask creation are 1 )

preventing side-effects, and 2) decreasing the control overhead

of macrotasks by enlarging the size of macrotask. The

preliminary experiments show that the scheme is able to

enlarge the size about 3 times larger than that of basictask.

The distributed control achieves small overhead to control

macrotasks. The scheme has been implemented on the EM-4

multiprocessor[ SYHK89] by using software. The preliminary

evaluation shows that the macrotask control overhead is

smaller than that of other macrotask control schemes.

Moreover, it is confirmed that the software implementation is

able to be adopted when the macrotasks at second or higher

hierarchy levels are controlled. However, the evaluation shows

that the hardware to control macrotasks is necessary to control

macrotasks at the bottom hierarchy level of HTG when the

average execution time of macrotasks is less than 14.4p.s,

because the software implementation still has large overhead.

Thus, we are now estimating the control overhead when the

control hardware is available. Furthermore, we are considering

a macrotask scheduling algorithm to use point-to-point

signaling, which decreases the control overhead, instead of

broadcasting.

Our goal is to perform speculation on multiprocessors by

using the dkitributed control, and to produce an automatic

compiler, regenerating an original program to the program

divided into macrotasks. We are now constructing its HPF

compiler.
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