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Excessive power consumption is widely considered as a major impediment to designing future
microprocessors. With the continued scaling down of threshold voltages, the power consumed due
to leaky memory cells in on-chip caches will constitute a significant portion of the processor’s power
budget. This work focuses on reducing the leakage energy consumed in the instruction cache using
a compiler-directed approach.

We present and analyze two compiler-based strategies termed as conservative and optimistic.
The conservative approach does not put a cache line into a low leakage mode until it is certain that
the current instruction in it is dead. On the other hand, the optimistic approach places a cache
line in low leakage mode if it detects that the next access to the instruction will occur only after a
long gap. We evaluate different optimization alternatives by combining the compiler strategies with
state-preserving and state-destroying leakage control mechanisms. We also evaluate the sensitivity
of these optimizations to different high-level compiler transformations, energy parameters, and soft
errors.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache Memories;
D.3.4 [Programming Languages]: Processors—Compilers, Optimization

General Terms: Design, Performance, Reliability

Additional Key Words and Phrases: Leakage power, cache design, compiler optimizations

1. INTRODUCTION

With the increasing number of transistors employed in current microprocessors
and the continued reduction in threshold voltages of these transistors, leakage
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energy consumption has become a major concern [Butts and Sohi 2000]. As
dense cache memories constitute a significant portion of the transistor budget
of current microprocessors, leakage optimization for cache memories is of par-
ticular importance. It has been estimated that leakage energy accounts for 30%
of L1 cache energy and 70% of L2 cache energy for a 0.13 micron process [Powell
et al. 2001].

There have been several efforts [Azizi et al. 2002; Cao et al. 2002; der Meer
and Staveren 2000; Hu et al. 2002; Kawaguchi et al. 2000; Kim et al. 2002;
Kuroda and Sakurai 1996; Li et al. 2002; Mutoh et al. 1995; Powell et al. 2001;
Zhou et al. 2001] spanning from the circuit level to the architectural level at
reducing the cache leakage energy. Circuit mechanisms include adaptive sub-
strate biasing, dynamic supply scaling, and supply gating. Many of the circuit
techniques have been exploited at the architectural level to control leakage at
the cache bank and cache line granularities. The supply gating mechanism was
applied at bank level granularity in Powell et al. [2001] to dynamically vary
the size of the active portion of the cache. The cache miss rates were used to
adapt the cache sizes in order to reduce leakage power consumption. The sup-
ply gating mechanism was employed at the finer granularity of cache line in
Kaxiras et al. [2001]. This technique monitors the periods of inactivity in cache
lines by associating saturating counters with them. In Zhou et al. [2001], only
the data array of a cache is placed in a low power mode while the tag array is
still in active mode. This helps to dynamically adjust the turn-off interval to
ensure that performance closely tracks the performance of an equivalent cache
without sleep mode. Another approach to leakage control at the cache line gran-
ularity involves the reduction of supply voltages to idle cache lines [Flautner
et al. 2002]. Specifically, all cache lines are periodically placed in a leakage-
controlled mode by scaling down their supply voltage. This implementation
also chooses higher threshold voltages for the access transistors to minimize
the bitline leakage. In contrast to other approaches, Heo et al. [2002] focus
on reducing bitline leakage by leaving bitlines of banks that are not accessed
open.

Most prior approaches have focused on utilizing hardware monitoring to
manage the leakage-control modes of the caches. These techniques transition
to leakage control modes after fixed periods or fixed periods of inactivity. They
incur the energy penalty for decaying to the low leakage mode only after fixed
periods. The approaches that dynamically change the turn-off periods attempt
to address this problem. In contrast to these hardware-centric approaches, in
this work, we propose a compiler-based leakage optimization strategy for in-
struction caches. This approach identifies the last use of the instructions and
places the corresponding cache lines that contain them into a low leakage mode.
The idea of instruction-based leakage control was suggested in Kaxiras et al.
[2001] for data caches based on profiling. Their work also identified the need
for compiler analysis in such an instruction-based approach. In this work, we
present and analyze two compiler-based strategies termed as conservative and
optimistic. The conservative approach does not put a cache line into a low leak-
age mode until it is certain that the current instruction in it is dead. On the
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other hand, the optimistic approach places a cache line in low leakage mode
if it detects that the next access to the instruction will occur only after a long
gap.

This paper makes the following contributions:

—We present both conservative and optimistic compiler strategies and evalu-
ate different alternatives by combining these strategies with state-preserving
and state-destroying leakage control mechanisms. We also show how state-
preserving and state-destroying mechanisms can be combined by a compiler
strategy to further increase energy savings over conservative and optimistic
algorithms. We augment the supply voltage scaling technique proposed
in Flautner et al. [2002] to dynamically support transitions between state-
preserving and state-destroying modes. The state-preserving mode retains
data but consumes more leakage energy as compared to the state-destroying
mode.

—We compare the effectiveness of the proposed strategies with the recently
proposed drowsy cache schemes [Flautner et al. 2002] using 0.07 micron tech-
nology [ber]. Our results show that compiler-based strategies are competitive
with a pure hardware-based approach, and in most cases, they exhibit better
cache energy and energy-delay product behaviors.

—We illustrate the impact of high-level compiler optimizations on the effective-
ness of our leakage saving strategies. In particular, we point at the energy-
performance trade-offs when optimizations that target data locality are ap-
plied.

—We show the trade-off between potential leakage reduction achievable and
the soft-error rate due to the proposed leakage control mechanisms. While
traditional metrics for comparing energy-reduction schemes have only in-
cluded performance and energy-related metrics, reducing the supply voltage
in the memory cells also makes them susceptible to soft errors. Our goal here
is to quantify as to how long a cache line can be kept in a state-preserving
mode without sacrificing reliability.

A compiler-based leakage optimization strategy such as ours makes sense in
a VLIW environment (which is the focus of our work in this paper) where the
compiler has control of instruction execution order. Using the Trimaran infras-
tructure [Tri ], we demonstrate in this paper that it is possible to significantly
optimize instruction cache leakage energy using compiler analysis.

The rest of this paper is organized as follows. Section 2 introduces the re-
quired circuit and compiler support for implementing our optimizations. Sec-
tion 3 presents detailed evaluation of the energy and performance metrics of
our approaches. A hybrid approach that combines state-preserving and state-
destroying modes is explained in Section 4. The influence of compiler optimiza-
tions on the effectiveness of the leakage-control mechanisms is explored in
Section 5. Section 6 analyzes the impact of using low-leakage control on the
reliability of data stored in the cache. Finally, we present our conclusions in
Section 7 and give future research directions.
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2. OUR APPROACH

2.1 Circuit Support

We rely on the dynamic scaling of the supply voltages to reduce the leakage
current in the cache memories. As supply voltage to the cache cells reduces, the
leakage current reduces significantly due to short-channel effects. The choice of
the supply voltage influences whether the data are retained or not. When the
normal supply voltage of 1.0 V is reduced below 0.3 V (for a 0.07 micron process),
we observe that the data in the cells are no longer retained. Thus, we select a
0.3 V supply voltage for the state-preserving leakage control mode. However, if
state preservation is not a consideration, we switch the supply voltage to 0 V
to gain more reduction in energy. Except for our hybrid scheme (discussed in
Section 4) that requires dynamic selection between data-preserving and data-
destroying modes, we use a similar circuit to that proposed in Flautner et al.
[2002]. Each cache line is augmented with a power status bit that is used to
control the appropriate voltage selection for the cell. A global control signal is
used to set the power status and, consequently, set the voltages of all cache
lines to 0.3 V (0.0 V) to place them in a state-preserving (state-destroying)
leakage control mode. Whenever a cache line is accessed, its supply voltage is
first switched to the normal voltage of 1.0 V before access is permitted. This
is achieved by using the wordline trigger to reset the power status bit and by
preventing the access until the supply voltage settles by gating the wordline.
The gating must be performed as data can be corrupted when accessing the
cache when the supply voltage is low. In our experiments, all cache lines are in
the leakage-control mode before their first use for all strategies.

For the hybrid scheme, we augment this circuit as shown in Figure 1 to
dynamically transition between active, state-preserving, and state-destroying
modes. The power supply to the cache lines is set to 1.0 V, 0.3 V, or 0 V, re-
spectively, for the three modes when using caches designed with 0.07 micron
Berkeley predictive technology [ber]. Each cache line has a two-bit power sta-
tus register indicating the mode (00-Active; 01- State-Preserving; 11- State-
Destroying) in which it is placed. There are two global control signals (Set0,
Set1) for changing the states. When a cache line in either state-preserving or
state-destroying mode is accessed, the access is delayed until the supply voltage
recovers to 1.0 V. When an access occurs, the status register bits are automat-
ically set to zero. There are two special instructions that are used to place the
cache lines into a state-preserving mode or state-destroying mode. The least
significant bits (B0) of all the power status registers are globally set when the
state-preserving transition instruction is executed. Note that this permits all
cache lines in a state-destroying mode to remain in that mode even when the
state-preserving instruction is executed. Similarly, the two bits (B0 and B1)
of all the power status registers are set when the state-destroying transition
instruction is executed.

It must be observed that our approach relies on a specific instruction to place
cache lines in state-preserving or state-destroying mode. This is in contrast to
the approach used in Flautner et al. [2002] where a periodic timer is used
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Fig. 1. Leakage control circuitry.

to place all cache lines in a state-preserving (drowsy) mode. We refer to the
variants of the scheme proposed in Flautner et al. [2002] as Kill-M (where
the content of the cache line is destroyed) and Drowsy-M (where the content of
the cache line is preserved). Here, M is the periodic timer interval in cycles. In
Section 3, we present a detailed comparison of our compiler-based strategies
with Kill-M and Drowsy-M. In this paper, we refer to strategies Kill-M and
Drowsy-M as the fixed period strategies.

The access transistors in our SRAM cells use a higher threshold voltage of
0.3 V as compared to the other SRAM transistors that use a threshold voltage
of 0.2 V. This is performed to keep the contribution of the bitline leakage to a
minimum. Our leakage results do not account for any gate leakage. There are
efforts at designing high-k dielectrics to mitigate gate leakage. High-k dielectric
films can permit a thicker insulation layer to reduce gate leakage significantly
while keeping capacitance constant [Cataldo 2001]. Further, all techniques
would have similar gate leakage behavior. We consider the impact of soft errors
due to our voltage scaling approach later in Section 6.

2.2 Compiler Support

In order to exploit the state-destroying and state-preserving leakage con-
trol mechanisms explained above, our compiler implements two different ap-
proaches for turning off instruction cache lines. The first approach, called the
conservative strategy, does not turn off an instruction cache line unless it knows
for sure that the current instruction that resides in that line is dead (i.e., will
not be referenced for the remaining part of the execution). The second ap-
proach is called the optimistic strategy and turns off a cache line even if the
current instruction instance in it is not dead yet. This might be a viable option
if there is a large gap between two successive visits to the cache line. In the
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Fig. 2. A code fragment that contains three loops.

following discussion, we explain the implementations of these two strategies in
detail.

The conservative strategy is based on determining the last usage of instruc-
tions. In other words, it tries to detect the use of the last instance of each
instruction. Once this last use is detected, the corresponding cache line can be
turned off. While it is possible to turn off the cache line immediately after the
last use, such a strategy would not be very effective, because it would result
in significant code expansion due to the large number of turnoff instructions
inserted in the code. Also, such frequent turnoff instructions themselves would
consume considerable dynamic energy. Consequently, in this work, we turnoff
instructions at the loop granularity level. More specifically, when we exit a loop
and we know for sure that this loop will not be visited again, we turnoff the
cache lines that hold the instructions belonging to the loop (including those in
the loop body as well as those used to implement the loop control code itself).
While ideally we would want to issue turnoffs only for the cache lines that hold
the instructions in the loop, identifying these cache lines is costly (i.e., it either
requires some type of circuit support that itself would consume energy, or a
software support that would be very slow). As a result, in this work, when we
exit the loop, we turnoff all cache lines. While this has the drawback of turning
off the cache lines that hold the instructions sandwiched between the inner and
outer loops of a nest (and lead to reactivation costs for such lines), the impact
of this in practice is not too much as typically there are not many instructions
sandwiched between nested loops. Turning off all cache lines also eliminates
the complexity of selectively turning off a cache line in a set-associative cache
and problems associated with multiple instructions from different loops being
stored in a single cache line.

The idea behind the conservative strategy is illustrated in Figure 2 for a case
that contains three loops, two of which are nested within the third one. Assume
that once the outer loop is exited, this fragment is not visited again during
execution. Here, Loop Body-I and Loop Body-II refer to the loop bodies of the
inner loops. In the conservative strategy, when we exit Loop Body-I (i.e., the loop
that contains it), we cannot turnoff the cache lines occupied by it; because, there
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is an outer loop that will re-visit this loop body; in other words, the instructions
in Loop Body-I are not dead yet. The same argument holds when we exit Loop
Body-II. However, when we exit the outer loop, the conservative strategy turns
off all the cache lines that hold the instructions of this code fragment (i.e.,
all instructions in all three loops). As mentioned above, we in fact turnoff all
the cache lines for implementation efficiency. It is clear that this strategy may
not perform well if there is a large outermost loop that encloses a majority of
the instructions in the code. In such cases, the cache lines occupied by the said
instructions will not be turned off until the outermost loop finishes its execution.
And, when this occurs, it might be too late to save any leakage energy. For
example, if there is an outermost loop (in the application being optimized) that
encloses the entire code (e.g., a convergence test in some array applications),
this strategy will not generate very good results as it will have little opportunity
to turnoff cache lines.

The optimistic strategy tries to remedy this drawback of the conservative
scheme by turning off the cache lines optimistically. What we mean by op-
timism here is that the cache lines are turned off even if we know that the
corresponding instruction instance(s) will be visited again, but the hope is that
the gap (in cycles) between successive executions of a given instruction is large
enough so that significant amount of energy can be saved. Obviously, an im-
portant question here is how to make sure at compile time (i.e., statically) that
there will be a large gap between successive executions of the same instruction.
Here, as in the conservative case, we work on a loop granularity. When we exit
a loop, we turnoff the instructions in the loop body if either that loop will not
be visited again (as in the conservative case) or the loop will be re-visited but
there will be execution of another loop between the last and the next visit. Re-
turning to the code fragment in Figure 2, when we exit Loop Body-I, we turnoff
the instructions in it. This is because before Loop Body-I is visited again, the
execution should proceed with another loop (the one with Loop Body-II), and we
optimistically assume that this latter loop will take long time to finish.1 Sim-
ilarly, when we exit Loop Body-II, we turnoff the corresponding instructions.
Obviously, this strategy is more aggressive (in turning off the cache lines) than
the conservative strategy. The downside is that in each iteration of the outer
loop in Figure 2, we need to re-activate the cache lines that hold Loop Body-I
and Loop Body-II. The energy overhead of such a re-activation depends on the
leakage saving mode employed. Also, since each reactivation incurs a perfor-
mance penalty, the overall execution time impact due to the optimistic strategy
can be expected to be much higher than that due to the conservative strat-
egy. This will be particularly felt when the state-destroying leakage control
mechanism is employed (since it takes longer to come back to normal oper-
ation from state-destroying than state-preserving mode due to the L2 cache
latency).

1While a more sophisticated approach would employ profile data to check whether that loop really
takes long time, in our current implementation we do not perform such checks. Instead, a reliance
is placed upon the observation that most loops (even those in nonarray applications) take a long
time to execute.
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Table I. Four Different Implementation Choices Depending on the Leakage
Control Mechanism (Mode) Used and the Compiler Strategy Employed

Strategies Conservative Optimistic

State-Destroying Cons-Kill (Strategy I) Opti-Kill (Strategy II)
State-Preserving Cons-Drowsy (Strategy IV) Opti-Drowsy (Strategy III)

If there are code fragments that are not enclosed by any loops, our current im-
plementation treats each such fragment as if it is within a loop that iterates only
once. It should be emphasized, however, that both our strategies turnoff cache
lines considering the instruction execution patterns. Since a typical cache line
can accommodate several instructions during the course of execution, turning
off a cache line may later lead to re-activation of the same cache line if another
instruction wants to use it. This re-activation has both performance and energy
penalty which should also be accounted for. Note that as the instruction cache
gets bigger this problem will be of less importance. This is because in a larger
cache we can expect fewer cache line sharing among instructions.

2.3 Alternative Strategies

Since we have two different compiler strategies (conservative and optimistic)
and two different leakage-saving mechanisms (state-preserving and state-
destroying), clearly, we have four different implementation choices. These
choices are summarized in Table I. Among the choices we have, Strategy Cons-
Drowsy (IV) does not make much sense since being conservative means that
we do not turnoff cache lines unless we are sure that the instructions are dead.
Therefore, there is not much point in employing a state-preserving leakage
control mechanism. Consequently, in the rest of this paper, we focus only on
the remaining three strategies: Cons-Kill (I), Opti-Kill (II), and Opti-Drowsy
(III), and compare them with fixed period strategies Kill-M and Drowsy-M
[Flautner et al. 2002]. Note that while one can select the best M value for a
given application, it is possible that each application (and even different parts
of the same application) demands a different M value. In contrast to fixed
period strategies, our compiler strategies can automatically tune the turnoff
periods within different phases of the program and also based on the differ-
ent characteristics of each program. Furthermore, the compiler strategies can
even select the appropriate low-leakage mode if there is underlying circuit
support.

3. EXPERIMENTS

3.1 Benchmarks and Simulation Platform

We target improving leakage energy consumption of the instruction cache in a
state-of-the-art VLIW processor. The results reported on here are obtained us-
ing a Trimaran-based compiler/simulation infrastructure. Trimaran provides
a vehicle for implementation and experimentation in state-of-the-art research
in compiler techniques for instruction level parallelism (ILP) [Tri]. A program
flows through IMPACT, Elcor, and the cycle-level simulator. IMPACT applies
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Table II. Default Parameters Used in Our Simulations

Parameter Value

Feature size 0.07 micron
Supply voltage 1.0 V
L1 instruction cache 16 KB direct-mapped cache
L1 instruction cache latency 1 cycle
L1 data cache 32 KB 2-way cache
L1 data cache latency 1 cycle
Unified L2 cache 512 KB 4-way cache
L2 cache latency 10 cycles
Memory latency 100 cycles
Clock speed 1 GHz
L1 cache line size 32 bytes
L2 cache line size 64 bytes
L1 cache line leakage energy 0.33 pJ/cycle
L1 state-preserving mode cache line leakage energy 0.01 pJ/cycle
L1 state-destroying mode cache line leakage energy 0.00 pJ/cycle
L1 state-transition (dynamic) energy 2.4 pJ/transition
L1 state-transition latency from state-preserving mode 1 cycle
L1 state-transition latency from state-destroying mode 1 cycle (plus miss latency)
L1 dynamic energy per access 0.11 nJ
L2 dynamic energy per access 0.58 nJ

machine-independent classical optimizations and transformations to the source
program, whereas Elcor is responsible for machine-dependent optimizations
and scheduling. Our conservative and optimistic algorithms are implemented
in Elcor, and after all other optimizations have been performed. The increase
in compilation time due to our algorithms was around 15% on average (when
all benchmark codes are considered). Further, the increase in code size due to
the inserted turnoff instructions is less than 5% across all benchmarks and
strategies. The cycle-level simulator was augmented with a cache model and
modified to recognize the power-mode control instructions for changing the sup-
ply voltages to the cache lines. The VLIW configuration used in our experiments
has four IALUs (integer ALUs), two FPALUs (floating-point ALUs), one LD/ST
(load/store) unit and one branch unit. Other system parameters used for our de-
fault setting are provided in Table II. The energy values reported are based on
circuit simulation. In our evaluations, we performed experiments with both ba-
sic block scheduling [Muchnick 1997] and superblock scheduling [Chang et al.
1991]; since we did not observe too much difference in trends, we report here
only the basic block based scheduling results.

To evaluate the effectiveness of our algorithms, we used a suite of ten pro-
grams from different benchmark sets. The salient characteristics of these codes
are given in Table III. The benchmark source is indicated in the second column.
The third column in this table gives the number of code lines, and the fourth col-
umn gives the input used for running the benchmark. The total execution cycles
and the original instruction cache energy consumption are provided in the last
two columns. In selecting these programs, we paid attention to ensure diversity.
Compress and li are integer codes with mostly irregular access patterns. idea,
mpeg2dec, polyphase, and rawdaudio are typical media applications. The last
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Table III. Benchmark Codes Used in Our Evaluations. The Last Column Also Contains the
Percentage Contribution of leakage to Overall Instruction Cache Energy. Note That No Leakage

Control Mechanism is Employed in Obtaining This Data

Benchmark Source Lines Input Exec Cycles ICache Energy (nJ)

129.compress SpecInt95 1939 test.in 42,784,111 13,627,628 (53%)
139.li SpecInt95 7597 train.lsp 918,252,701 230,649,411 (67%)
idea Mediabench 1232 / 335,180 97,343 (58%)
mpeg2dec Mediabench 9832 mei16v2.m2v 140,735,320 46,702,867 (51%)
paraffins Trimaran 388 / 523,363 111,058 (79%)
polyphase Mediabench 542 polyphase.IN 587,442 181,888 (54%)
rawdaudio Mediabench 314 clinton.adpcm 7,479,483 2,870,793 (44%)
adi Livermore 46 274.68 MB 1,490,229 435,725 (58%)
btrix Specfp92 135 202.53 MB 270,56,699 6,337,571 (72%)
vpenta Specfp92 114 14.42 MB 141,445,594 29,645,742 (81%)

three benchmarks (adi, btrix, and vpenta) and paraffins, on the other hand,
represent array-intensive applications.

Note that our focus in this paper is on optimizing the leakage energy con-
sumed in the instruction cache. In doing so, however, our strategies can also
incur several energy (and performance) overheads. For example, there is a dy-
namic energy overhead in the instruction cache due to turning on/off a cache
line placed into a leakage-control mode. Also, there is a dynamic energy over-
head (in the datapath and for fetching) due to executing turnoff instructions.
Since some of our strategies increase execution cycles, the extra leakage energy
consumption (in the instruction cache and other components) might also be an
issue. In our presentation, where significant, we quantify these overheads to
illustrate the energy behavior at larger level (not just in the instruction cache).
In the rest of this section, when we mention energy we mean the leakage energy
consumed by the instruction cache plus any extra (dynamic) energy that occurs
as a result of cache line turnoffs/ons and due to any additional L1 instruction
cache accesses. In other words, in our results, we include the overheads asso-
ciated with our optimization strategy. This extra energy might be important
as some of the strategies evaluated here can incur large performance penalties
and significant number of cache line turn-ons. As mentioned earlier, we also
compare our optimization strategies with fixed period strategies: Kill-M and
Drowsy-M; we experiment with two M values: 2K and 4K.

3.2 Cache Life-Time Analysis

We present in Figure 3 the percentage time that cache lines spend in leakage
control mode for different optimization strategies. That is, each bar in Figure 3
represents the average number of cache lines that are turned off, averaged
across all execution cycles. One thing to note in this graph is that, for some ver-
sions, this time is very high. Specifically, the average percentage of time that
cache lines are in a leakage control mode for Cons-Kill, Opti-Kill, Opti-Drowsy,
Kill-2K, Drowsy-2K, Kill-4K, and Drowsy-4K are 40.83%, 85.61%, 86.21%,
86.10%, 79.83%, 81.61%, and 77.09%, respectively. These numbers indicate that
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Fig. 3. Percentage of times where cache lines are in leakage control mode.

our strategies are very effective in exploiting the idleness of cache lines for po-
tential leakage energy savings. What this means is that we may not need a
finer-granularity turnoff strategy (e.g., one that works on instruction granu-
larity) as such a strategy would increase the number of turn-ons significantly
without significantly improving the leakage behavior over some of the strategies
evaluated here. It should be noted, however, that to perform direct comparison
between different strategies based on the results presented in Figure 3 is not
conclusive. This is due to two main factors. First, for a given benchmark code,
different versions might take different execution times to complete. Second, dif-
ferent versions sometimes use different leakage control modes and incur differ-
ent energy overheads. For example, strategies Cons-Kill and Opti-Kill destroy
the data in cache lines, while strategy Opti-Drowsy maintains data. Conse-
quently, it is important to consider energy and performance profiles as well.

3.3 Energy and Performance Results

Figure 4 shows the energy consumptions of the strategies (given as fractions of
the energy consumption of strategy Cons-Kill). Note that though not given in the
graph, strategy Cons-Kill improves the energy consumption of the original code
(without any leakage control but discounting the leakage of unused cache lines)
by 40% on an average (ranging from 1% for mpeg2dec to 84% for btrix). One can
make several observations from this figure. First, strategy Cons-Kill does not
perform well as compared to other optimization strategies. In fact, it generates
the worst results in most benchmarks. Second, one can see that strategies Opti-
Drowsy and Opti-Kill (in some cases) generate very good energy results. In
fact, in 8 of our 10 benchmarks one of these two strategies provide the best
energy consumption. Third, in some benchmarks, most notably vpenta, the fixed
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Fig. 4. Normalized (with respect to Strategy Cons-Kill (I)) energy consumption with different
leakage saving strategies.

period strategies generate the best energy behavior. Now, let us try to explain
the behavior of these different strategies, starting with our strategies. We can
measure the magnitude of energy benefits of a given optimization strategy
considering three factors: (1) how soon it turns off cache lines; (2) what leakage
control mechanism it uses; (3) whether the energy overheads overwhelm the
potential leakage savings. Strategy Cons-Kill does not perform well because it
acts very late in turning off cache lines. Recall that it does not turnoff a cache
line unless it is sure that the corresponding instruction is really dead. And,
when this occurs it might be well too late to save any leakage energy. While
Opti-Kill turns off cache lines quickly and employs state destroying mode to
provide significant reduction in leakage energy, the energy cost of frequent
extra writes to the instruction cache (when the instructions need to be fetched
again from L2) nullifies this benefit in most of the benchmarks. Strategy Opti-
Drowsy also turns off cache lines quickly (after each inner loop); however, it uses
state-preserving leakage mode. In contrast to Opti-Kill, this scheme does not
have the additional overhead of instruction cache misses. Moreover, strategy
Opti-Drowsy can obtain most of the leakage savings provided by strategy Opti-
Kill (due to the small difference in their leakage values).

We turn our attention now to fixed period schemes. Their energy behavior
compared to our strategies depends to a large extent on the execution time of the
loops. For example, if a given loop takes too long to finish, even our strategies
Opti-Kill and Opti-Drowsy will not achieve very good results as it will take a
long time before they can turnoff the corresponding cache lines. However, the
fixed period strategies can turnoff the cache lines in such a loop (maybe several
times depending on the execution time). As an example, consider the following
program fragment:
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for (...)
{

S1;
S2;
...
Sk;
...
Sm;

}.

In this fragment, we have a loop with m statements in it (we assume that
none of these statements themselves are loops). Suppose that statement Sk
is experiencing several data cache misses. Consequently, it is going to take
some time for the execution to move to statement S(k+1). In such a case, our
strategies will not be able to turnoff the cache lines that hold the instructions
in statements S1, S2, . . . , S(k-1) as they are loop based (i.e., they cannot turnoff
cache lines before exiting the loop). Examples of such loops occur in vpenta.
In comparison, a fixed period scheme can turnoff the said cache lines once
the period (M) is reached. On the other hand, for a loop with short execution
time, our approaches can turnoff cache lines as soon as it finishes its execution
whereas the fixed period schemes wait for the fixed period to elapse. Returning
to the loop fragment above, if we assume that none of statements S1, S2, . . . , Sm
experience significant data memory stalls, the loop might end very quickly. In
this case, our strategies will turnoff the cache lines while a fixed period scheme
will still wait for the duration of the period. Also, note that when the duration
of a single iteration is short but the loop has a long execution time, additional
turnoffs in the fixed period strategies do not benefit much as the dynamic energy
overhead amortizes any leakage savings.

Figure 5 divides the energy consumption in the instruction cache into dif-
ferent components for strategies Opti-Kill and Opti-Drowsy. For strategy Opti-
Kill, each bar is divided into three parts: the leakage energy consumed dur-
ing normal operation, the dynamic energy incurred in transitioning to and
from state-destroying mode, and the dynamic energy consumed in the in-
struction cache due to additional cache misses. We see that in most of the
benchmarks, the dynamic energy overhead due to extra misses constitutes
a large percentage of the energy consumption, which explains the poor be-
havior of this strategy. Also, note that the leakage energy consumed in state-
destroying mode is zero. For strategy Opti-Drowsy, each bar is divided into
three parts: the leakage energy consumed during normal operation, the dy-
namic energy incurred in transitioning to and from state-preserving mode,
and the leakage energy consumed in the state-preserving mode. It should
be observed that the state-transition overhead is small and a considerable
portion of the energy is expended when cache lines are in state-preserving
mode.

We also need to emphasize that the strategies that kill the data in cache lines
prematurely (i.e., before the corresponding instructions are dead) can also cause
extra dynamic energy consumption in L2 cache and off-chip memory. Although
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Fig. 5. Energy breakdown for Strategy Opti-Kill (II) and Strategy Opti-Drowsy (III).

in this work we focus on on-chip energy consumption, it is also important to
know the magnitude of this off-chip energy. Figure 6 gives the extra dynamic
energy consumption in the off-chip L2 and memory. It should be seen that among
our strategies only Opti-Kill can cause extra off-chip energy consumption. This
is because Strategy Cons-Kill kills the contents of a cache line if and only if
it is already dead and Strategy Opti-Drowsy only employs state-preserving
mode. Therefore, strategy Opti-Drowsy becomes even more preferable when
considering off-chip L2 and memory energy.

Obviously, energy behavior is only a part of the picture. To have a fair
evaluation of all strategies considered, we need to look at their performance
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Fig. 6. Extra dynamic energy consumption in off-chip L2 and memory. Only the strategies that
employ state-destroying mode incur this penalty.

Fig. 7. Normalized (with respect to Strategy Cons-Kill) number of execution cycles with different
leakage saving strategies.

behavior as well. The normalized execution cycles with our base configura-
tion are presented in Figure 7. All values are normalized with respect to that
of strategy Cons-Kill (I). Two factors influencing the performance penalty are
the number of cache lines turned on and the number of cycles spent per turn-
on. The second factor is dependent on whether the cache line was in state-
preserving or state-destroying mode before turn on. On the average, the number
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Fig. 8. Energy-delay (with respect to Strategy Cons-Kill) products with different leakage saving
strategies.

of turn-ons for strategies Cons-Kill, Opti-Kill, Opti-Drowsy, Kill-2K, Drowsy-
2K, Kill-4K and Drowsy-4K are 1448, 22,77,7521, 22,777,521, 14,096,265,
10,968,055, 10,086,726, and 7,428,348, respectively. The number of turn-ons
in our schemes is typically larger than that of the fixed period schemes (except
Cons-Kill). Note that the performance penalty for the same number of turn-ons
for Opti-Kill is much larger than that of Opti-Drowsy due to L2 access laten-
cies. This clearly shows the trade-off between energy savings and performance
overhead.

The energy-delay product helps to balance the benefits in energy savings
with any potential degradation in performance. Figure 8 shows the normalized
energy-delay products for our applications. We see that strategy Opti-Drowsy is
very successful. This is because in many cases its percentage energy benefits are
higher than its performance losses, and also it strikes a good balance between
performance and energy. We observe that the average normalized energy-delay
product for Opti-Drowsy is 0.47 that is 13% better than that of the best fixed-
period scheme (Drowsy-2K—0.54) for the considered applications.

Our use of energy-delay product in this paper should be interpreted with
care. The energy in our energy-delay product considers only the leakage energy
in the instruction cache and extra dynamic energy consumed within the chip
in applying our leakage-control mechanisms. While the overall system energy
would be a more useful metric, it is difficult to estimate the leakage of other
parts of the chip using our current infrastructure. Further, leakage optimiza-
tions can also be applied to the other components (e.g., Zhang et al. [2001]) to
mitigate any adverse impact due to performance loss.

In order to provide an insight as to how the leakage in other components
would affect our results, we assume that the instruction cache, data cache, and
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Fig. 9. Energy-delay (with respect to Strategy Cons-Kill) products for the entire processor with
different leakage saving strategies.

datapath contribute equally to the total chip leakage energy before applying
any optimizations. In addition, the data cache are assumed to use an aggres-
sive leakage control mechanism [Flautner et al. 2002], and the datapath are
assumed to use the leakage optimizations proposed in Zhang et al. [2001].
Our results shown in Figure 9 indicate that our compiler scheme Opti-Drowsy
works best for five (instead of seven without considering the leakage in the rest
of the components) out of ten benchmarks in terms of energy-delay product,
considering the whole chip leakage energy consumption. This is because the
increased execution cycles due to the performance loss increase the leakage
energy in other components of the processor. The objective of this experiment
was to illustrate the influence of modeling leakage in the other components,
and the results will dependent on the accurate quantification of the leakage.

3.4 Sensitivity to Energy-Related Parameters

In this section, we study how these strategies are affected when some energy
parameters are modified. In particular, we focus on four parameters: the leak-
age reduction factor in the state-preserving leakage control mode, the dynamic
energy per access, leakage energy consumption in active mode, and the state-
transition latency.

These parameters will typically be affected when the technology changes, and
new techniques are used for manufacturing in the near future. As the popularity
of using low Vt transistors for circuit implementation and the exponentially
increasing impact of new types of leakage source such as gate leakage [Doyle
et al. 2002; Guindi and Najm 2003; Lee et al. 2003], there are more challenges
in controlling leakage that may reduce the effectiveness of the leakage energy
reduction in drowsy mode (state-preserving). In this sensitivity analysis, we
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Fig. 10. Impact of larger energy consumption in the state-preserving state on energy-delay prod-
ucts (normalized with respect to Strategy Cons-Kill).

increase the leakage energy consumption in drowsy mode to simulate this trend.
While leakage energy is projected to account for 70% of the total cache energy in
70 nm technology [Flautner et al. 2002], it is expected to increase even further
as feature sizes become smaller. We capture this trend by increasing the ratio of
leakage energy to that of the dynamic energy by scaling values used for dynamic
and leakage energies. This ratio may be influenced differently for technologies
such as SOI (silicon on insulator) where the leakage (subthreshold leakage)
energy can be dramatically reduced [Das and Brown 2003]. We also explore
this scenario by reducing the leakage energy.

For brevity, we focus on energy-delay product as it includes the impacts of
both energy and execution time. Figure 10 shows the normalized energy-delay
products when the leakage energy consumption in the state-preserving mode
is increased to 0.04 pJ (from 0.01 pJ) per cycle per cache line (i.e., around 12%
of the leakage energy in the normal operation mode). We perform this vari-
ation in order to model cases where there is need for less aggressive scaling
of state-preserving supply voltages to provide more resilience to soft errors
and also to consider speculative technologies in which new sources of leakage
other than subthreshold leakage may be significant. We see that this penalizes
the strategies that employ the state-preserving mode. Consequently, among
our strategies, Opti-Kill starts to outperform Opti-Drowsy in energy-delay be-
havior for five benchmarks as opposed to only two benchmarks in the default
configuration. Similarly, we observe that the Kill-M schemes become compet-
itive with the Drowsy-M schemes, outperforming them in seven benchmarks
(as opposed to one benchmark in the original case). Thus, the different schemes
need to be chosen with attention to underlying circuit technology and desired
reliability.
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Fig. 11. Impact of more efficient dynamic energy consumption circuitry (normalized with respect
to Strategy Cons-Kill).

The state-destroying schemes incur the penalty of additional L1 writes due
to premature turn-offs. Thus, the dynamic energy of an instruction cache access
is critical in deciding the trade-off between different schemes. We reduce the
default dynamic energy per cache access by half to model variations in the
relative importance of dynamic and leakage energy in different technologies
and show the corresponding energy-delay products in Figure 11. We observe
that Opti-Kill and Kill-M modes become more desirable as compared to the
original configuration.

To investigate the impact of reduction in absolute leakage current due to
technologies such as SOI, we scale the leakage energy consumption of an ac-
tive cache line down to the half of the originally assumed value, 0.33 pJ / 2 =
0.165 pJ, with all other simulation parameters unchanged. Figure 12 shows
the new normalized energy-delay products for all the schemes. We observe that
the normalized values for strategies other than Cons-Kill are increasing, which
means that the relative effectiveness of the leakage control schemes is decreas-
ing compared to the conservative strategy Cons-Kill. Especially, for schemes us-
ing state-destroying mechanism, the product values increase much faster than
those for schemes using state-preserving mechanism that indicates that the
state-preserving mechanism will be much more preferable in new technologies.

We also experimented with the sensitivity to the variation in the sizing of
switches used to select the power supply to the cache line. When larger switches
are used, the dynamic energy expended in switching from one supply voltage
to another becomes larger as compared to using smaller switches. However,
smaller switches also require more time for the new supply voltage to settle
and incur a larger performance penalty for getting back from a leakage control
mode to normal mode.
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Fig. 12. Impact of smaller leakage energy consumption in the active state (normalized with respect
to Strategy Cons-Kill).

3.5 Impact of Instruction Cache Capacity

The effectiveness of our leakage optimization strategies is impacted when the
capacity of the instruction cache is modified. This is because our strategies
turnoff cache lines by detecting when instructions are dead (or will not be ac-
cessed for long durations of time). As explained earlier, even our most conser-
vative strategy (Cons-Kill) is optimistic in this respect. This is because there
might be multiple instructions mapping into the same cache line. This, in turn,
reduces the cache line interaccess times, thereby diminishing the effectiveness
of the strategies. However, when the instruction cache capacity is increased,
there will be fewer instructions that map into a given cache line, and conse-
quently, we can expect better returns from leakage optimization. To illustrate
this, we present in Figure 13 the leakage energy consumption using a 64 KB
instruction cache as compared to our default 16 KB instruction cache results
for strategies Opti-Kill and Opti-Drowsy. Each bar in this graph corresponds to
the energy consumption with a 64 KB cache divided by the energy consumed
with a 16 KB cache. We observe that due to the reduced conflicts Opti-Drowsy
takes advantage of the larger cache for all benchmarks. However, for Opti-Kill,
the overhead of additional instruction cache misses increases when moving
from 16 KB cache to 64 KB cache (from 0.11 nJ to 0.16 nJ per access). Thus, in
two benchmarks, it consumes larger leakage energy (including dynamic energy
overheads) with the 64 KB instruction cache.

4. HYBRID STRATEGY

Our leakage optimizations evaluated so far use either state-preserving mech-
anism or state-destroying mechanism exclusively. It is also possible to employ
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Fig. 13. Normalized energy consumption of a 64 KB instruction cache as compared to default
configuration.

these two mechanisms under the same optimization strategy. That is, a leak-
age optimization strategy can use these mechanisms selectively. In this sec-
tion, we discuss such a hybrid strategy and quantify its capability of saving
leakage.

Our hybrid strategy proceeds as follows. When exiting a loop, if this loop is
not going to be accessed again, the hybrid strategy turns off the associated cache
lines using the state-destroying mechanism. On the other hand, if the loop will
be visited again, it just places the cache lines into leakage control mode using
the state-preserving strategy. Later in execution, when this loop finishes its last
execution, the cache lines are turned off via the state-destroying mechanism. In
other words, depending on whether the loop will be re-visited or not, the hybrid
scheme chooses the appropriate leakage control mechanism.

The energy-delay product profile of the hybrid strategy is illustrated in
Figure 14. Each bar is normalized with respect to the strategy that gener-
ated the best (excluding hybrid) energy-delay result (as far as that bench-
mark is concerned). One can observe from these results that in three bench-
marks (compress, li, and mpeg2dec), hybrid and Opti-Drowsy generate the
same energy-delay product. In polyphase and vpenta, hybrid is outperformed
by Kill-4K and Drowsy-4K. However, in the remaining five benchmarks, hybrid
generates the best results. Note that the hybrid scheme, however, involves ex-
tra circuit overheads for the additional supply voltage to choose dynamically
between state-destroying and state-preserving modes. Strategy Opti-Drowsy
performs well considering that the overhead of the additional (third) supply
voltage distribution was not factored in the evaluation of the hybrid scheme.
All other schemes discussed so far only use two supply voltages per cache
line.
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Fig. 14. Normalized energy-delay product for the hybrid strategy.

5. IMPACT OF COMPILER OPTIMIZATIONS

While evaluating a given leakage control mechanism, it is also critical to quan-
tify its behavior under different code optimizations. This is important not only
because many compiler optimizations (especially those targeting at improving
data locality) can modify the instruction execution order (sequence) dramati-
cally leading to significantly different energy picture, but also because if we can
characterize the impact of such optimizations on the effectiveness of the pro-
posed mechanism, this information can be fed-back to compiler writers, leading
to better (e.g., energy-aware) compilation strategies.

In this section, we first give a qualitative assessment of two frequently used
loop transformation strategies, loop fission (distribution) and loop fusion. The
loop distribution transformation cuts the body of a for-loop statement in two
parts [Wolfe 1996]. The first statement of the second part specifies the cut
position. It is generally used for enhancing iteration-level parallelism (by plac-
ing statements with dependence sources into one loop and the ones with de-
pendence sinks into the other), for improving instruction cache behavior (by
breaking a very large loop body into smaller, manageable sub-bodies with bet-
ter instruction cache locality), and even for improving data cache locality (by
separating the statements that access arrays that would create conflicts in the
data cache). Different optimizing compilers can employ this transformation for
one or more of these reasons. A typical loop distribution algorithm that targets
parallelism would proceed as follows. The dependence graph is structured into
strongly connected components, each of which is recursively analyzed with an
incremented dependence level. Each strongly connected component can then be
checked to see whether it can be parallelized. Depending on whether the target
architecture has a vector facility or not, it may be possible to replace parallel
loops that have more than one assignment statement in their bodies by a set
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Fig. 15. (a) A code fragment with a loop. (b) The distributed version of (a). (c) The instruction cache
layout for (a). (d) The instruction cache layout for (d).

of single assignment loops. These simple loops can then be replaced by vector
instructions by the code generator.

As an example, let us consider the fragment shown in Figure 15(a). If we dis-
tribute the outermost loop over the two groups of statements (denoted Body-I
and Body-II in the figure), we obtain the fragment depicted in Figure 15(b).
Figures 15(c) and (d), on the other hand, illustrate how the instructions in
the fragments in Figures 15(a) and (b), respectively, would map to the instruc-
tion cache. The figure is used only for illustrative purposes and masks the
details. In Figures 15(c) and (d), Header is the loop control code. Note that in
the distributed version, Header is duplicated. Now, let us try to understand how
this optimization would influence the effectiveness of our leakage optimization
strategies. First, let us focus on Figure 15(c). During execution all three blocks
(Header, Body-I, and Body-II) need to be accessed very frequently, and there
will be little opportunity (or energy benefit) in placing the cache lines in ques-
tion into leakage control mode. If we consider the picture in Figure 15(d), on
the other hand, when we are executing the first loop only the first Header and
Body-I need to be activated. The second Header and Body-II can be kept in a
leakage saving mode. Similarly, when we move to the second loop, during ex-
ecution, only the second Header and Body-II need to be activated. Therefore,
at any given time, the distributed alternative leads to the activation of fewer
cache lines. However, the number of cache lines occupied by the code is one part
of the big picture. Since we are focusing on the leakage energy consumption, we
also need to consider the execution time. If, in this code fragment, data cache lo-
cality is a problem, then the first alternative (without distribution) might have
shorter execution time if loop distribution destroys data cache locality. Conse-
quently, although the alternative in Figure 15(d) will occupy fewer cache lines
at a given time, it will keep those cache lines in the active mode for a longer
duration of time. Consequently, there is a trade-off here between the number
of cache lines occupied and the time duration during which they are active.

A similar trade-off exists when we consider another loop-level optimization:
loop fusion. This optimization is the reverse of loop distribution. Specifically,
it takes two neighboring loops and combines their loop bodies into a single
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Fig. 16. Instruction cache leakage energy impact of optimizations on vpenta. All values are nor-
malized with respect to the case without power management.

loop (e.g., going from the code in Figure 15(b) to the code in Figure 15(a)). It
is generally used for enhancing data cache locality by bringing the statements
that access the same set of data to the same loop [Wolfe 1996]. In our context,
applying this optimization will increase the number of cache lines active at a
given time. On the other hand, it might also reduce the time duration during
which these cache lines are active.

In fact, the preceding discussion can be generalized to other data locality opti-
mizations as well. Many optimizations that target at enhancing data cache per-
formance increase code size (i.e., they reduce instruction reuse). Consequently,
during the course of execution, at any given time, larger number of cache lines
will be active (as a result of the optimization). However, if successful, these op-
timizations will also reduce the number of execution cycles (hence, the cycles in
which the cache lines are active). Iteration space tiling [Lam et al. 1991; Wolfe
1996] is a typical example of that. In tiling, a loop is broken into two loops, and
the order of accesses within the array is modified. In most cases, this also leads
to a larger code size and reduced instruction reuse. In this section, we evaluate
the impact of several data locality-oriented compiler optimizations using two
of our applications.

Figures 16 and 17 show, respectively, the instruction cache leakage energy
and performance behavior of different versions of vpenta. When we consider the
performance behavior, we see that the tiled version generates the best code. In
fact, the tiled code outperforms all the other versions in all leakage optimization
strategies experimented. An interesting result here is that the distributed (loop-
fissioned) version outperforms the original code. This is because placing arrays
with conflicting references into separate loops reduces L2 conflict misses. When
we look at the energy results, we see that loop distributed version has the best
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Fig. 17. Performance impact of optimizations on vpenta. Y -axis is expressed in million cycles.

energy behavior. This is because, as compared to the other optimized versions,
at any given time the distributed version has fewer number of active cache lines.
As a matter of fact, its energy behavior is so good that when one looks at the
energy-delay product results, it was observed that in six of seven optimization
strategies, it outperforms the tiled version.

Next, we focus on adi. As can be seen from the results given in Figure 19, only
loop fusion is useful for adi.2 When we look at the (instruction cache) energy
results (Figure 18), however, the picture changes. As compared to the original
code, the fused code incurs much larger energy consumption (except for strategy
Opti-Kill). This is because at each iteration of the fused loops we need to activate
more cache lines (i.e., cache lines are not held in the leakage control modes for
a long enough duration of time). In contrast, the loop distributed version has a
very good instruction cache energy consumption. To see the combined impact
of both energy and performance, we also evaluated the energy-delay products
for this benchmark. We found that as far as the fused version is concerned,
the energy losses cancel out the performance benefits in most cases, and the
fused code and the original code exhibit very similar energy-delay behaviors.
This trade-off clearly emphasizes the importance of considering both energy
and performance in deciding whether to apply a compiler optimization or not.
We also observed that in four strategies the loop distributed version has the
best energy-delay product (as a result of its good energy behavior).

2It should be mentioned that we are not trying to come up with the most appropriate use of these
compiler optimizations. There might be several reasons why a compiler optimization may not
perform as expected. For example, selection of tile size is very critical for the effectiveness of loop
tiling [Lam et al. 1991]. A wrong tile size can lead to increased execution time. Similarly, unrolling
factor is a very critical parameter in loop unrolling [Carr et al. 1996]. In this work, we have used
these optimizations without trying to tune their parameters.
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Fig. 18. Instruction cache leakage energy impact of optimizations on adi. All values are normalized
with respect to the case without power management.

Fig. 19. Performance impact of optimizations on adi.

6. INFLUENCE ON SOFT ERROR RATES

Technology scaling has made it important for one to consider reliability along
with energy and performance optimizations. Further, many energy optimiza-
tions have a negative impact on reliability of the system. While the previous
sections have looked at the influence of our technique on energy and perfor-
mance behavior, it also has implications on reliability. Consequently, in this

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, March 2004.



Reducing Instruction Cache Energy Consumption • 29

Fig. 20. Leakage energy versus Qcritical variation with supply scaling.

section, we examine the effect of reducing supply voltages for leakage energy
savings on soft error rate (SER) in the caches.

Soft errors [Hareland et al. ; Hazucha and Svensson 2000; Seifert et al. 2001;
Sivakumar et al. 2002] are circuit errors caused due to excess charge carriers in-
duced primarily by external radiations. Radiation directly or indirectly induces
a localized ionization capable of upsetting internal data states. Thus, soft er-
rors are undesirable for memory elements as they flip the bit values stored.
For a soft error to occur at a specific node in a circuit, the collected charge Q
at that particular node should be more then a value defined as critical charge,
Q critical. This concept of critical charge is generally used to estimate the sensi-
tivity of SER. In Hazucha and Svensson [2000], a method to estimate the soft
error rate in CMOS SRAM circuits was developed. The model was verified for
600 nm design and was scalable. In this model, an exponential dependence of
SER on critical charge was shown as SER α Nflux.CS.exp(Qs/Q critical), (α de-
notes proportional to) where Nflux is the intensity of the neutron flux, CS is the
area of the cross section of the node, and Qs is the charge collection efficiency
(it is strongly dependent on doping). Q critical is proportional to the node capac-
itance and the supply voltage and can also represented as Q critical = ∫ Tf

0 Id δt,
where Id is the drain current induced by the ion, Tf is the flipping time which is
defined as the point in time when the feedback mechanism of the back-to-back
inverter will take over from the incident ion’s current. To investigate the effect
on Q critical due to change in the supply voltage, the parasitic capacitance was
extracted from the layout of the SRAM cell used in our cache line. The particle
strikes were modeled with a piecewise linear current waveform to account for
funneling and diffusion charge collection. Q critical was calculated by numerically
integrating the drain current obtained through circuit simulation for different
supply voltages. The corresponding Tf was found by simulation.

The results of the simulation are plotted in Figure 20. The Q critical has lin-
ear relation with the supply voltage. The leakage of the SRAM array was also
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Fig. 21. Soft error rate (per bit) variation with supply scaling. Soft error rates are normalized with
respect to the soft error rate at 1 V operation.

simulated using the same cell for different supply voltages. These results are
also shown in Figure 20. It can be seen that even though there is a large re-
duction in leakage energy but there is a correspond loss of immunity to soft
errors. Now for the same circuit and different supply voltages all parameters
influencing SER are the same except Q critical. This impact on SER is shown in
Figure 21. Here we can see that for the same circuit and neutron flux, there
is an exponential increase in the SER for reduction in supply voltage. Thus,
leakage energy savings need to be balanced with concerns of reliability.

In order to investigate this further, let us consider a single SRAM cell from
our cache. Its SER expressed in FIT/bit is 2.5E−05 (Failures in time, FIT, unit
expresses the number of errors in 109 h). This implies that there is one error/bit
for every 4E+13 h of operation at 1.0 V supply voltage. Now considering the
same cell operating at the state-preserving mode at VDD=0.3 V and using the
observations from Figure 21, we find that the error rate increases to one error
per 2000 hours of operation. This would imply that a 32 byte cache line can
have one soft error for every 7.8 h of operation. While a single bit error can
be easily handled using ECC hardware commonly found in many current off-
chip memory systems, multiple error bits can pose a serious problem. A single
particle strike upsetting multiple bits can be avoided by intelligent interleaving
of the cache line bits. However, two successive strikes on the same cache line
can still be a problem. Since a word is checked and corrected only when it
is read, if there are two or more particle strikes between two successive read
operations, they may cause multiple bit errors. A simple solution to this problem
is to periodically read all the bits of the memory forcefully or to periodically
invalidated certain cache lines that are not used often. In fact, the second option
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is attractive as the state-destroying mode of power control may be preferable
to state-preserving when the duration between accesses for the cache line are
many hours.

Thus, we anticipate that this leakage control mode will be viable even con-
sidering the adverse impact of soft errors. Our simulation results also reiterate
earlier observations performed in Flautner et al. [2002] that the cells in state-
preserving leakage mode are stable when adjacent bitlines or wordlines are
swinging.

7. CONCLUSIONS AND FUTURE WORK

This work presents a new approach to controlling leakage energy using the
compiler to insert power mode instructions that control the supply voltage for
the cache lines. This work is in contrast to prior techniques that have focused on
hardware-based schemes. Also, one of our approaches dynamically chooses be-
tween state-preserving and state-destroying leakage modes. The experimental
evaluation using a set of benchmarks indicates that the proposed compiler-
based approach is competitive in terms of energy and energy delay as com-
pared to one of the recently proposed hardware-based leakage control schemes.
Further, our analysis reveals that compiler optimizations can have a significant
impact on the effectiveness of the leakage control mechanisms. Finally, we quan-
titatively evaluated the increased soft error rates due to the voltage scaling tech-
nique used in our state-preserving leakage control mechanisms and conclude
that soft error rates will potentially not impede the adoption of this technique.

As part of our future work, we plan to devise compiler optimizations to in-
crease effectiveness of leakage control modes. The current work on instruction
caches can also be extended to data caches. We are in the process of extending
the compiler-based strategy for controlling leakage in the data cache. Further,
we plan to integrate the hardware-based and compiler-based strategies in a
unified optimization framework.
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