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[17] C.G. Cassandras and S. Lafortulreroduction to Discrete Event Sys- for FMS [11], [22] with artificial intelligence (Al) problem-solving
tems Norwell, MA: Kluwer, 1999. methods as a reasoning paradigm appears promising.

[18] Y. Li and W. M. Wonham, “Deadlock issues in supervisory control of : :
discrete event systems,” Proc. Conf. Inf. Sci. Syst1988, pp. 57-63. In this paper, we extend the work begun in [12], [13], and [15] by

[19] P. J. G. Ramadge and W. M. Wonham, “The control of discrete eveRf€senting a limited-selection limited-backtracking algorithm called
systems,’Proc. IEEE vol. 77, pp. 81-98, 1989. DLSS" which stands for PN-based dynamic local stage seafcfhe

[20] M.R. Garey and D. S. Johnso@pmputers and Intractability: A Guide ajm is to reduce the scope of evaluation of tealgorithm so that we

t1097tge Theory of NP-CompletenessSan Francisco, CA: Freeman, jay apply a more exhaustive local search and to enhance the usefulness
' of an admissible heuristic function [12] based on the PN model. To en-

hance the power of the algorithm in selecting promising paths, we also

propose a branching scheme for DI!S&lled controlled generator

of successors (CGS) [16] that avoids the generation of both schedule

permutations caused lgoncurrenttransitions and certain nonactive

schedules [10].

The research thus aims to provide effective decision modules inte-
grated with knowledge-based architectures that employ a PN as a rep-
resentation paradigm [7], e.g., hybrid methodologies based in random
optimization such as [14].

Hybrid Heuristic Search for the Scheduling of Flexible
Manufacturing Systems Using Petri Nets

Antonio Reyes Moro, Hongnian Yu, and Gerry Kelleher

Abstract—The combination of Petri nets (PNs) as an analysis tool for dis-
crete-event dynamic systems and artificial intelligence heuristic search has Il. BACKGROUND
been shown to be a promising way to solve flexible manufacturing systems
(FMS) scheduling problems. However, the NP hard nature of the problem A. Problem Formulation
obscures the PN capability of reasoning about the behavior of the system. . ) )
In this paper, two techniques to alleviate this drawback are presented: a A number of jobs are to be processed in the system. Each job has
systematic method to avoid the generation of futile paths within the search several process plans and each plan is a sequence of temporarily re-
graph and a novel hybrid stage-search algorithm. The new algorithm is  |ated tasks ordered by the technological constraints. Each task can be

based on the application ofA™ guided by a PN-basedheuristic within a - . -
limited local search frame. An optimization policy is applied to maintain, processed in several ways. Each alternative may require one or several

under evaluation, only the most promising paths. For each system state, 'eésources. The following assumptions are taken.

the algorithm is able to decide whether an enabled operation should be ap- « Each machine can process at most one task at a time and no pre-
plied and to maintain this decision until new information forces reconsider- emotion is allowed

ation. This eliminates permutation paths and useless scheduling sequences. P )

Experimental results show that the algorithm’s cost does not grow expo- * Each task consumes a single subpart and produces only a single
nentially with the size of the problem. Comparison with previous work is subpart (there is no assembling).
given to show the superiority of our approach and the potential oPN-based « For the scope of the paper, we have limited our results to the case
heuristic search. where an infinite buffer policy applies in the system. However,
Index Terms—Flexible manufacturing systems, heuristic search, Petri different storage models can be applied as presented in [13].
net, scheduling. » Machine tool loading and setup are considered negligible.
Details of the problem formulation and the PN modeling are given in

. INTRODUCTION [12].

A flexible manufacturing system (FMS) usually consists of several i L
numerically controlled manufacturing machines and automated mae- Scheduling of FMS Based on a Heuristic Search Over PN
rial handling systems that transport work pieces between machines Fiyctures

tool systems. In a facility with routing flexibility, each product can be Several works have addressed the combination of PN simulation ca-
manufactured via one of several available routes. The scheduling ofibilities and Al-based systematic search within the PN reachability
FMS is the process of determining the allocation of parts to machingsph to solve FMS scheduling problems. The Beam search (BS) algo-
and the sequence of operations so that the constraints of the systengiiig as online decision support is implemented in [17] and the Branch
met and performance criteria are optimized. & Bound (B&B) search is employed in [6]. More recently, iaformed
Motivated by the need to develop models that factor in the full cong&.B to generate deadlock-free schedules has been implemented in [1].
plexity of the FMS, yet are efficient enough to obtain good solutions, The L1 algorithm in [5] adapts tha* to PN structures to perform
the recent integration of Petri nets (PNs) [7] as a representation tgmhS scheduling. L1 bases its strategy on maintaining a list of candidate
markings for further exploration. The selection of the next marking to
explore is based on a heuristic functié}/ ) that is calculated from
the following expressionf(M) = g(M) + h(M). g(M) represents
Manuscript received August 31, 2000; revised May 9, 2001. This papgfe makespan of the partial schedule determined so far. On the other
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Consequently, a typical problem observed is the difficulty in ba|Rule 1: i Bottom level has been| [Rule 2: if relevant information is found,
ancing the control of the search effort with the potential of PN to guic|complerely explored, = advance = consider nodes at bottom+1
a heuristic search process [5]. An immediate solution is to add a deg|?¢ #dow- as irreversible decisions and

. . . . advance the window.

first (DF) search component to the heuristic function, thus making| it sizegportom) = 0 then

pureA™ to quickly progress to a solution [5], [21]. The main problem i top = top + 1; if size(top) > move-at then

that the tuning of the balance between the makespan estimation corr bottom = bottom + 1, Reject markings in bottom-Level.
nent ofh(34) and the DF search component is difficult and the searc ;‘Z;:;"i’ Zoltiom .

might produce unexpected results, obscuring the PN capability of re ’
soning about the behavior of the system. i

An alternate solution comes from applying admissible PN-based &4 1.
timates to guide the search while controlling the search effort with an
incomplete algorithm. Actually, limiting the backtracking capability of Rule 3: if a new marking m s created for level I....
abest-firstA*-alike search algorithm has already been considered by If sizel) <max-nodes()) then
some authors that combine PN modeling with heuristic search. dscif fin) < W(;;;IT“‘;; marking m in SE

In [_2], [_19], and [21], a I_|m|tat|or_1 of _the candidate _markln_gs for ex- - include marking m in SF
ploration is proposed by simply rejecting those markings with the max- reject WORST (1)
imum cost off (M ). However, these works still consider the applica- else reject marking.
tion of weak heuristic functions that include a DF component. Never-
theless, the main problem with this approach employing an admissible
heuristic function is that the backtracking capability of the algorithriig- 2.  Rule 3: the heuristic selection of markings for exploration of SF.
is seriously limited due to the existence of a large number of equally
promising markings. therefore SF contains a total of top—bottom levels. A lévedn only

An approach that may solve this can be found in [3], where, atontain a maximum ofnax_nodes(l) markings ofdepth(M) = 1.
though the approach does not limit the number of candidate markingse number of markings currently allocated in this level is expressed
it removes those markings beyond a maximal depth from the currest siz¢/).
marking that is being explored. A more elaborated approach is followedSF limits the application ofi* in two ways:
in [12] where a hybrid search algorithm based on relaxation of the eval- . {he packtracking capability is constrained to markings whose
uation scope gf al”is proppsed. However, this dpe; not fu!ly prevent  gepth is equal to or bigger tharbattom-levelalue;
the exponential explosion if an admissible heuristic function is used. . podes of depth equal totap-levelconstant can be generated but
This is due to the fact that, even limiting backtracking, the number of ot explored.
podes grows expon.er]t.ially at each level, thus considering laage Hence, a markingd/ is only included in SF ifdepth(M) €
imal depthsare prohibitive. o _ top-bottom] and an inclusion criterion is applied at each level of SF.

The algorithm that we descr_lbe in the next sectlor_1 _[dyqam c 2) Introducing Irrevocable Decisions: Dynamics of SISF pro-
look-ahead stage search (DL9aims to overcome these difficulties. , o5 4 hounded safety frame within which to apply a heuristic best-first
DLSS' has its basis in concepts of look-ahead algorithms such &S, ¢, that considers the markings at the bottom level as irrevocable
BS [S] and adap_tatlons of well-known game search algorithms {Rcisions. But the search must progress toward a final marking, repre-
real-time scheduling [4]. It also follows the philosophy of the stageghnting a solution to the problem. The advance of SF will be determined

Rules 1 and 2.

search method [9]. by two rules. A first rule (Rule 1) advances the search windows when
the bottom level is empty. A second rule (Rule 2) allows the search to
lll. DYNAMIC LOOK-AHEAD STAGE SEARCH (DLSS") progress DF when a number of markings are found at the top level.

These are shown in Fig. 1.

o ) . . 3) Inclusion Criterion: The second dynamic aspect of SF is the
The heuristic functiomircr [12] employed in DLSS is an ad- e yristic selection of markings for exploration of SF. This strategy is

missible one [9] and solves an alternate problem: the mlnlmlzatl%mememed as rule 3. The idea is to use the estimate fungtion

of the total machine utilization, which represent an Lb for the actuag the inclusion criterion. For each levasf SF, markings are ordered

A. Heuristic Functiomrcr

makespan. in the increasing magnitude ¢fm ). Any newly obtained marking:
) o can be included into a level if the level is not yet completed. If the level
B. DLSS Description is completed, the marking will be included only if a markimg with

The aim of DLSS is to implements am* strategy that employs f(m’) > f(m) is already included. In this case, the marking with
hrer but avoiding the exponential generation of heuristically equallye greatest value of(m'’) will be rejected for exploration and dis-
valued markings as the search progresses AThgearch is constrained carded. This marking:” for each level is WORS(T) shown in Fig. 2.
by a number of markings that are contained in structure called the4) Improving the Selection Criteria: CGSlt is worth noting that
Search Frame (SF) which is conceptually identified with the OPEBLSS' represents a dramatic decision in terms of rejection of paths by
list in the A™ algorithm. The number of markings that this frame cathe inclusion rule. It is important that markings representing different
contain is limited; thus avoiding exponential grown. SF changes dyaths to achieve the same schedule permutations and futile paths do
namically both in: 1) contents and 2) search limits: not compete to be included in SF. In the origingl algorithm, the

1) Dynamics of SF:Each markingM in the reachability tree is test for similar markings solved this problem satisfactorily. However,
associated with the number of transitions that have been fired. TRIESS" seriously affects the application of such a test since the number
value is equivalent to the depth 8f in the search treeiepth(A). of markings stored is limited.
In our modeling paradigm, since operations are represented by transifo overcome such a drawback, we propose a branching scheme
tions, depth( M) also matches with the number of operations that hafer DLSS" that avoids the generation of both schedule permutations
been scheduled. We have organized SF into levels; each level is lab&adsed by concurrent transitions and certain nonactive schedules [10].
with a number that represents a depth in the PN reachability graph aadchedule is called active if no operation can be completed earlier by
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1) while Agenda(M) is not empty

smallest value of 1.

marking...
Agenda(M’) = &; '

(2) for every pair (t,1') enabled in M

goto (2)
goto (1)

select an unconsidered element (t,r) in Agenda(M) yielding the

Obtain the marking M’ which resuits from firing t in M.
Check whether M’ is the goal marking and perform tests for similar

if r'> 0 then add (') to Agenda(M")
else if ' = 0 then include (t,r') in Agenda(M') only if the
pair (t,1') is after the pair (t,r) in Agenda(M).

Fig. 3. Branching algorithm.

SF ={ Mo}
Explored = &
(1) while SFis not empty do
Apply Rule 1 ; If the bottom level is exhausted then advance SF
Remove marking M from SF with the smallest ff{M) and depth(M) < top.
Put M in the Explored List
(2) for every new marking M’ generated using CGS and HST do
if M’ is the goal marking exit with success.
else-if M’ pass the test for similar markings of cb-NET A* then
Call Rule 3 for marking M’
Apply Rule 2 ; If move_at markings have been found then
advance SF
goto (2)
goto (1)

Fig. 4. DLSS algorithm.

apply. For every new marking, Rule 3 is applied to see if inclusion in
SF is possible. Finally, Rule 2 is checked to see if SF must advance.

IV. EXPERIMENTAL RESULTS

The performance in terms of quality of the solution and execution
time of DLSS is controlled in our experiments by the three parameters
Toplevel Max_nodes, and Movat. Tuning guidelines can easily be
deduced from the role of each parameter in rules 1-3 of DLSS

The initial value oftop_level (which we refer aJop.leve)) controls
the scope of recovery of the algorithm. As we incre@splevel we
increase the ability of DLLSto recover from unpromising paths. This
means that DLLS is more robust against deadlocks or catastrophic
scheduling decisions caused by bad estimations of the heuristic func-
tion.

altering processing sequences on machines and not delaying any oth@fr . _nodes(1) controls the search effort by limiting the scope of
operation. Obviously, the optimum solution is an active schedule. Thiglection of the algorithm. Increasingaxnodesvalues, we allow
branching scheme is called the controlled generator of successo[$.S* to explore a larger number of promising schedules in parallel.

(CGS) and is explained as follows.

In our experiments, we consider the same value for each level which

Associated with any state of the search graph represented bys @eferred adviax nodes

marking M, we define a list calledigenda( M) that contains the set

Moveat serves as an indicative of how much one can trust the

of transitions that are enabled &f and still can be fired to generate heuristic function. Notice that irrevocable decisions are made when

a new branchi/’. Notice thatAgenda(M) C E for the general case

with, being E’ the set of transitions enabled /8.

Agenda contains pairs of the formt,») with ¢ an enabled
transition andr = c¢(M,t) the cost of firing¢ under M, i.e.,
the elapsed time fot to become enabled id/. The elements in
Agendaare ordered by the increasing magnitude sof Initially

Agenda(M) = {(¢,0);Vt enabled inM, }. The standard branching
procedure consisting of firing all the enabled transitions at the curre/Qt
marking under exploration is substituted by the procedures shown in

Fig. 3.

at leastMoveat markings are explored dfoplevel Consequently,

a lower setting oMoveat with respect taMax_nodesis appropriate
only if we consider our heuristic function to be a very good one.
Higher settings oMove at are needed if we consider that our heuristic
function is not very well informed, thus making DLS®xplore a
larger number of the promising markings contained in SF.

Empirical Study of Computational Costs of DLSS

Since the number of nodes in the search window is limited, we can

That is, a transitiont enabled af\/ can be decided not to be fired €xpect that the computational cost of the algorithm to be polynomial
in order to introduce a tactical delay so other transitions can be fir8 the number of operations to schedule.

instead. To avoid the generation of futile paths (nonactive scheduleden FMS descriptions consisting of three machines, five jobs and

and schedule permutation of concurrent transitions), the transition Wiilr tasks per job were generated. The degree of flexibility (alternate

not be reconsidered until it becomes enabled again, which means {R4iting) and the operation cost were randomly generated for each

a change is observed in the input transitions representing resourcegroblem. Thirty problem sets were obtained by increasing the number
With this strategy, it is possible to achieve a useful search reductiBhparts per job from 1 to 20, resulting in problems with between 20

for admissible algorithms such as$ and B&B. In [16], an experiment t0 600 operations.

showed a reduction of nearly 75% of the reachability tree generated. Each of the 30 problem sets contained 10 problems which were
5) Summary of the AlgorithmDLSS" results from the integration Solved by DLSS (Top_Level = 10, Max_Nodes = 5, Move_At =

of CGS, the PN-based* algorithm, and the concept of SF. Thel’). Three parameters obtained from each set are:

pseudo-code for the algorithm is shown in Fig. 4. 1) the average relative difference (Rd) of the makespan obtained for
SF is initialized to the initial marking. The generation of the PN each problem with respect to the Bl (Mo) (Fig. 5 left);

reachability tree follows4*. The next marking is selected from SF 2) the average number of iterations of the algorithm (number of

using the heuristic functiori(r). The PN branching scheme CGS is markings explored) (Fig. 5 right),

integrated within the algorithm to determine the set of transitions to 3) the average execution time (Fig. 6).
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F the ab its. the algorith ¢ ‘ Each of the problems was also solved with a heuristic dispatching
norr:ioaTWiti? tieO;,/iieri)sfuthzl r:bﬁe?norlrhr:oaaﬁzlrits prerreggg daazct) e'gorithm that selects the next transition to fire based in the least
P ) P Y, €Xp working remaining time (LWRT) rule, and ties are broken by applying

Rd to the Lb, seems to be constant, i.e., no degradation of the SOM{RQ shortest processing time (SPT) rule. This approach is conceptually

quality is observed as we increase the size of the problem. Since L% ivalent to [1]. The makespan obtained is an average of 18.8% times
obtained assuming no machine idle time, the results when considergr} ater than the heuristic Lb

1-2 ant_i perjoz srtllovxéak?refater;jltitance duet t? a lOIV\t'?r productllon esults indicate that the heuristic function quickly directs the search
mand. The quadralic behavior of the computational ime was asot%i those FMS with extreme flexibility, where the balanced machine

expected value, as aIgonthr_ns employed2|n the S|m_ulat|on modulevg rkload can be achieved (which is a desirable designing objective),
the SVSte“.‘ have a computatlonal costigh”), wheren is the number and there is low variation of operation cost between different alterna-
of tokens in the marking. tives for atask
For problems where a resource is clearly a bottleneck and a balanced
) ) ) workload is not possible, the estimation kcr (M) might be too
The second experiment was conducted in order to determine the gtimistic. However, in our approach, the search effort is mainly con-
gree of effectiveness of the algorithm for problems which is likely tgqjieq by DLSS. Again, this is an interesting property, since even for
obtain optimum solutions that are closer to Lb definedibyMo). A hoseideal FMS a machine breakdown can create a temporarily im-
set of 1000 random problems where generated with the following ch@sjance of the system. In this situatidycr (M) also becomes too
acteristics. The system has three machines, five jobs, and each willhgimistic and forces DLSSto increase the search within SF whilst
number of tasks between three and six. Fifty percent of jobs have t¢Qsyring that the search will advance toward a solution.
alternate plans. Eighty-five percent of operations can be performed by

more than one machine. Each operation is assigned a ragdnmd

cost from an uniform distributiofll . .. 100]. Then the actual cost of

each alternative is randomly obtained from a normal distribution of The following experiment was conducted in order to compare

meangroundand variance of 15%. A total of ten parts of each job arBLSS" with different PN search algorithms.

to be produced in the system. 1) DLSS(10,15,|7T'|/2), where|T| is the number of transitions in
Each problem was solved by DLSSvith the following settings the system.

(Top_Level = 10, Maz_Nodes = 5, Move_At = 5). The histogram 2) Nonadmissibled™ with a DF heuristic function [21]&(m) =

of the Rd of the makespan obtained with respect to the heuristic Lb  w-A-E—w-A-depth(M ), whereA is the mean operating cost of

L™ (My) is shown in Fig. 7. Notice that DLSSmay be reaching the all operations and is the nominal number of transition firings

optimal as the hypothetical Lb may be lower than the actual optimum  from the initial marking to a goal marking. Because there is no

in many cases. We believe this to be responsible for the normal curve concept of concurrency in the total operating casgxplains the

being disturbed by a cliff on the right. extent of reduction of this expression.

B. Optimality of the Algorithm

C. Comparison With Previous Work
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TABLE | TABLE 1l
DESCRIPTIVE STATISTICS COMPARISONWITH BENCHMARKS PROPOSED IN[5]
%Problems Relative difference of makespans Std. Problem Reported DLSS*
improved Minimum Maximum Mean Dev. Lee 94 (a) 06 329
A* 6.3% -15.0 94.8 22.8 17.1 Lee 94 (b) 298 254
B&B 5.4% -159 125 26.0 19.6 Lee 94 (¢ ) 273 237
Beam 15.6% -23.0 57.6 8.7 10.2
TABLE 1l
3) Incomplete B&B procedure: the search stops when the number COMPARISON RESULTS WITH [20]
of nodes expanded at least doubles the average nodes explcrad ]
by DLSS'. We employhrcr as Lb for pruning purposes. For _Problem | Makespan Number of markings explored
lecting th tb h binati fthe LWRT and SF BF BT-BF | DLss* | BF BT-BF __| DLSS*
selecting the next branch, a combination of the L an - =5 = =5 YY) 1657 e,
rules is adopted. Such an algorithm can be considered a sopl — 100 104 100 9438 8045 856
tication of the B&B approach of [1]. 3 134 148 134 23092 18875 1204

4) BS with abeam-widthof 80; such a setting explores the same
number of nodes as DLS®y average. The algorithm uses the
same heuristic function of DLSSo0 selectthe beams, i.ércr.  crease the search effort without falling ib@adth-first(BF) search. In
We believe such an approach is similar to kingited-expansion [5], authors reported that no further improvement of the solution could
A™* proposed in [19] and the BS approach of [17]. be made since relaxation of the DF component of the heuristic function

The problem data of 1000 FMS descriptions were randomly obtainsgkulted in the algorithm not being able to find the solution in a reason-
as follows. The number of jobs is uniformly obtained within the rangable amount of time.

[5...10], and the number of resources in the system is calculated aghe results for three problems presented in [20] are shown in
the number of jobs divided by two. Twenty-five percent, 50%, and 25%able I1I. The optimal solution is given by a pure Best-First technique,
of jobs have three, two, and one process plans, respectively, and 6&Bfile [20] proposes a hybrid search technique between a B&B
of tasks have alternate routing and multiple resources may be requiseéd BF. Results show that DLSSinds the optimum solution with

to perform a task. Each operation is assigned a ranga@mndcost considerably less search effort (measured in terms of the number of
from an uniform distributiorfl . .. 100]. Then the actual cost of eachmarkings explored).
alternative is randomly obtained from a normal distribution of mean

groundand variance of 33%.

The four algorithms solved each problem. In the casé*gfwe tried o ) ) )
different settings forw in order to obtain a proper comparison. How- 1Nn€ combination of PN modeling as a representation formalism and
ever, we found difficulties in choosing an adequate valuefoBetting Al-based_heunstlc search meth_odologle_s has been studied in this paper.
w to1/m resulted in the majority of the problems to be intractable. On A hybrid PN-based scheduling algorithm called DLS$s been
the other hand, thg/m results were too optimistic and the quality ofPresented, whose preliminary study shows it to be a promising alterna-
the solutions obtained were too poor to be compared with DLV tive to overcome the difficulties encountered with previous approaches.
finally opted forw = 2/m, although this setting resulted in 24% ofPLSS' is the further development of the works studied in [13] and [15].
problems not being solved in a reasonable amount of time. Each of the methodologies within _DLSSoncentrates on different as- _

The makespan obtained by DLS@as taken as the reference ancPeCt_S c_Jf_the sea_rch_ space and aims to reduce the _search effort while
compared with the rest of the solutions obtained. The comparison fa@ximizing admissibility: the PN-basedi" together with the PN ad-
sults are shown in Table 1. missible heuristic function implement a powerful optimization strategy.

The first column stands for the percentage of problems for which t&>S helps to identify successful alternatives and discard futile ones,
algorithm obtains a better makespan than DLSEhe other columns and flna_lly the SF t_)ehawor rule_s the strategy by avoiding exponent_lal
show the descriptive statistics for the % Rd of the makespan obtair@1€ration of markings and forcing the search to progress to a solution.
by each problem with respect to the solution makespan provided bP/Thl'_s regults_m an algorl_thm t_hat is able to_ achieve a useful degree
DLSS'. of optimality without experimenting exponential cost. When compared

We experienced tuning problems with tHé algorithm. The vari- with other approaches, experimental tests suggest the superiority of our
ance of the search effort was high and made a proper comparison dftProach.
cult. Actually, 24% of executions were halted due to memory problems.

V. CONCLUSION

Results with the B&B are the worst due to the fact that the B&B bases REFERENCES
its strategies in chronological optimization of a first solution, rather [1] B. Abdallah, H. A. EIMaraghy, and T. EIMekkawy, “An efficient search
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Different aspects of this approach to ILC is considered in the paper. Re-
sults from using the methods on an industrial robot are also presented.

Il. A STATE SPACEBASED APPROACH TOILC
A. Matrix Description of the System

An ILC system is characterized by the fact thatitis only defined over
a finite interval of time. If the sampling time is equal to one, this means
that0 < ¢+ < n — 1. This is also the reason why it is possible to write
the system description in matrix form as

zp = Glup, + dy,

Y, = Zk +ng 1)
with

dipt1 =di + Ay, (2
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