
240 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 2, APRIL 2002

[17] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event Sys-
tems. Norwell, MA: Kluwer, 1999.

[18] Y. Li and W. M. Wonham, “Deadlock issues in supervisory control of
discrete event systems,” inProc. Conf. Inf. Sci. Syst., 1988, pp. 57–63.

[19] P. J. G. Ramadge and W. M. Wonham, “The control of discrete event
systems,”Proc. IEEE, vol. 77, pp. 81–98, 1989.

[20] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA: Freeman,
1979.

Hybrid Heuristic Search for the Scheduling of Flexible
Manufacturing Systems Using Petri Nets

Antonio Reyes Moro, Hongnian Yu, and Gerry Kelleher

Abstract—The combination of Petri nets (PNs) as an analysis tool for dis-
crete-event dynamic systems and artificial intelligence heuristic search has
been shown to be a promising way to solve flexible manufacturing systems
(FMS) scheduling problems. However, the NP hard nature of the problem
obscures the PN capability of reasoning about the behavior of the system.
In this paper, two techniques to alleviate this drawback are presented: a
systematic method to avoid the generation of futile paths within the search
graph and a novel hybrid stage-search algorithm. The new algorithm is
based on the application of guided by a PN-basedheuristic within a
limited local search frame. An optimization policy is applied to maintain,
under evaluation, only the most promising paths. For each system state,
the algorithm is able to decide whether an enabled operation should be ap-
plied and to maintain this decision until new information forces reconsider-
ation. This eliminates permutation paths and useless scheduling sequences.
Experimental results show that the algorithm’s cost does not grow expo-
nentially with the size of the problem. Comparison with previous work is
given to show the superiority of our approach and the potential ofPN-based
heuristic search.

Index Terms—Flexible manufacturing systems, heuristic search, Petri
net, scheduling.

I. INTRODUCTION

A flexible manufacturing system (FMS) usually consists of several
numerically controlled manufacturing machines and automated mate-
rial handling systems that transport work pieces between machines and
tool systems. In a facility with routing flexibility, each product can be
manufactured via one of several available routes. The scheduling of an
FMS is the process of determining the allocation of parts to machines
and the sequence of operations so that the constraints of the system are
met and performance criteria are optimized.

Motivated by the need to develop models that factor in the full com-
plexity of the FMS, yet are efficient enough to obtain good solutions,
the recent integration of Petri nets (PNs) [7] as a representation tool

Manuscript received August 31, 2000; revised May 9, 2001. This paper
was recommended for publication by Associate Editor M. Zhou and Editor N.
Viswanadham upon evaluation of the reviewers’ comments.

A. Reyes is with iSOCO Lab at iSOCO, Intelligent Software Components,
Sant Cugat del Vallés 08190, Barcelona, Spain (e-mail: toni@isoco.com).

H. Yu is with the School of Engineering and Computer Science, Exeter Uni-
versity, Exeter EX4 4QF, U.K. (e-mail: h.yu@exeter.ac.uk).

G. Kelleher is with the School of Computing and Mathematical Sci-
ences, Liverpool John Moores University, Liverpool L3 3AF, U.K. (e-mail:
g.kelleher@livim.ac.uk).

Publisher Item Identifier S 1042-296X(02)02651-4.

for FMS [11], [22] with artificial intelligence (AI) problem-solving
methods as a reasoning paradigm appears promising.

In this paper, we extend the work begun in [12], [13], and [15] by
presenting a limited-selection limited-backtracking algorithm called
DLSS� which stands for PN-based dynamic local stage searchA�. The
aim is to reduce the scope of evaluation of theA� algorithm so that we
may apply a more exhaustive local search and to enhance the usefulness
of an admissible heuristic function [12] based on the PN model. To en-
hance the power of the algorithm in selecting promising paths, we also
propose a branching scheme for DLSS� called controlled generator
of successors (CGS) [16] that avoids the generation of both schedule
permutations caused byconcurrenttransitions and certain nonactive
schedules [10].

The research thus aims to provide effective decision modules inte-
grated with knowledge-based architectures that employ a PN as a rep-
resentation paradigm [7], e.g., hybrid methodologies based in random
optimization such as [14].

II. BACKGROUND

A. Problem Formulation

A number of jobs are to be processed in the system. Each job has
several process plans and each plan is a sequence of temporarily re-
lated tasks ordered by the technological constraints. Each task can be
processed in several ways. Each alternative may require one or several
resources. The following assumptions are taken.

• Each machine can process at most one task at a time and no pre-
emption is allowed.

• Each task consumes a single subpart and produces only a single
subpart (there is no assembling).

• For the scope of the paper, we have limited our results to the case
where an infinite buffer policy applies in the system. However,
different storage models can be applied as presented in [13].

• Machine tool loading and setup are considered negligible.

Details of the problem formulation and the PN modeling are given in
[12].

B. Scheduling of FMS Based on a Heuristic Search Over PN
Structures

Several works have addressed the combination of PN simulation ca-
pabilities and AI-based systematic search within the PN reachability
graph to solve FMS scheduling problems. The Beam search (BS) algo-
rithm as online decision support is implemented in [17] and the Branch
& Bound (B&B) search is employed in [6]. More recently, aninformed
B&B to generate deadlock-free schedules has been implemented in [1].

The L1 algorithm in [5] adapts theA� to PN structures to perform
FMS scheduling. L1 bases its strategy on maintaining a list of candidate
markings for further exploration. The selection of the next marking to
explore is based on a heuristic functionf(M) that is calculated from
the following expression:f(M) = g(M) + h(M). g(M) represents
the makespan of the partial schedule determined so far. On the other
hand,h(M) represents an estimate of the remaining cost (makespan) to
reach the marking that represents the goal stateMF . The performance
of A� basically lies in how good our heuristic function is.

To guarantee thatA� finds the optimum solution, the heuristic func-
tion must be admissible [9], i.e., it must be a lower bound (Lb) for the
actual makespan. Unfortunately, under these conditions,A� turns out
to be impractical for even small problems since the search effort be-
comes unaffordable.

1042–296X/02$17.00 © 2002 IEEE

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 2, APRIL 2002 241

Consequently, a typical problem observed is the difficulty in bal-
ancing the control of the search effort with the potential of PN to guide
a heuristic search process [5]. An immediate solution is to add a depth-
first (DF) search component to the heuristic function, thus making a
pureA� to quickly progress to a solution [5], [21]. The main problem is
that the tuning of the balance between the makespan estimation compo-
nent ofh(M) and the DF search component is difficult and the search
might produce unexpected results, obscuring the PN capability of rea-
soning about the behavior of the system.

An alternate solution comes from applying admissible PN-based es-
timates to guide the search while controlling the search effort with an
incomplete algorithm. Actually, limiting the backtracking capability of
a best-firstA�-alike search algorithm has already been considered by
some authors that combine PN modeling with heuristic search.

In [2], [19], and [21], a limitation of the candidate markings for ex-
ploration is proposed by simply rejecting those markings with the max-
imum cost off(M). However, these works still consider the applica-
tion of weak heuristic functions that include a DF component. Never-
theless, the main problem with this approach employing an admissible
heuristic function is that the backtracking capability of the algorithm
is seriously limited due to the existence of a large number of equally
promising markings.

An approach that may solve this can be found in [3], where, al-
though the approach does not limit the number of candidate markings,
it removes those markings beyond a maximal depth from the current
marking that is being explored. A more elaborated approach is followed
in [12] where a hybrid search algorithm based on relaxation of the eval-
uation scope of anA� is proposed. However, this does not fully prevent
the exponential explosion if an admissible heuristic function is used.
This is due to the fact that, even limiting backtracking, the number of
nodes grows exponentially at each level, thus considering largemax-
imal depthsare prohibitive.

The algorithm that we describe in the next section [dynamic
look-ahead stage search (DLSS�)] aims to overcome these difficulties.
DLSS� has its basis in concepts of look-ahead algorithms such as
BS [8] and adaptations of well-known game search algorithms to
real-time scheduling [4]. It also follows the philosophy of the staged
search method [9].

III. D YNAMIC LOOK-AHEAD STAGE SEARCH (DLSS�)

A. Heuristic FunctionhRCR

The heuristic functionhRCR [12] employed in DLSS� is an ad-
missible one [9] and solves an alternate problem: the minimization
of the total machine utilization, which represent an Lb for the actual
makespan.

B. DLSS� Description

The aim of DLSS� is to implements anA� strategy that employs
hRCR but avoiding the exponential generation of heuristically equally
valued markings as the search progresses. TheA� search is constrained
by a number of markings that are contained in structure called the
Search Frame (SF) which is conceptually identified with the OPEN
list in theA� algorithm. The number of markings that this frame can
contain is limited; thus avoiding exponential grown. SF changes dy-
namically both in: 1) contents and 2) search limits:

1) Dynamics of SF:Each markingM in the reachability tree is
associated with the number of transitions that have been fired. This
value is equivalent to the depth ofM in the search tree:depth(M).
In our modeling paradigm, since operations are represented by transi-
tions,depth(M) also matches with the number of operations that have
been scheduled. We have organized SF into levels; each level is labeled
with a number that represents a depth in the PN reachability graph and

Fig. 1. Rules 1 and 2.

Fig. 2. Rule 3: the heuristic selection of markings for exploration of SF.

therefore SF contains a total of top–bottom levels. A levell can only
contain a maximum ofmax nodes(l) markings ofdepth(M) = l.
The number of markings currently allocated in this level is expressed
as size(l).

SF limits the application ofA� in two ways:

• the backtracking capability is constrained to markings whose
depth is equal to or bigger than abottom-levelvalue;

• nodes of depth equal to atop-levelconstant can be generated but
not explored.

Hence, a markingM is only included in SF ifdepth(M) 2

[top-bottom] and an inclusion criterion is applied at each level of SF.
2) Introducing Irrevocable Decisions: Dynamics of SF:SF pro-

vides a bounded safety frame within which to apply a heuristic best-first
search that considers the markings at the bottom level as irrevocable
decisions. But the search must progress toward a final marking, repre-
senting a solution to the problem. The advance of SF will be determined
by two rules. A first rule (Rule 1) advances the search windows when
the bottom level is empty. A second rule (Rule 2) allows the search to
progress DF when a number of markings are found at the top level.
These are shown in Fig. 1.

3) Inclusion Criterion: The second dynamic aspect of SF is the
heuristic selection of markings for exploration of SF. This strategy is
implemented as rule 3. The idea is to use the estimate functionf(m)
as the inclusion criterion. For each levell of SF, markings are ordered
in the increasing magnitude off(m). Any newly obtained markingm
can be included into a level if the level is not yet completed. If the level
is completed, the marking will be included only if a markingm0 with
f(m0) > f(m) is already included. In this case, the markingm00 with
the greatest value off(m00) will be rejected for exploration and dis-
carded. This markingm00 for each level is WORST(l) shown in Fig. 2.

4) Improving the Selection Criteria: CGS:It is worth noting that
DLSS� represents a dramatic decision in terms of rejection of paths by
the inclusion rule. It is important that markings representing different
paths to achieve the same schedule permutations and futile paths do
not compete to be included in SF. In the originalA� algorithm, the
test for similar markings solved this problem satisfactorily. However,
DLSS� seriously affects the application of such a test since the number
of markings stored is limited.

To overcome such a drawback, we propose a branching scheme
for DLSS� that avoids the generation of both schedule permutations
caused by concurrent transitions and certain nonactive schedules [10].
A schedule is called active if no operation can be completed earlier by

242 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 2, APRIL 2002

Fig. 3. Branching algorithm.

Fig. 4. DLSS algorithm.

altering processing sequences on machines and not delaying any other
operation. Obviously, the optimum solution is an active schedule. This
branching scheme is called the controlled generator of successors
(CGS) and is explained as follows.

Associated with any state of the search graph represented by a
markingM , we define a list calledAgenda(M) that contains the set
of transitions that are enabled atM and still can be fired to generate
a new branchM 0. Notice thatAgenda(M) � E for the general case
with, beingE the set of transitions enabled atM .

Agenda contains pairs of the form(t; r) with t an enabled
transition andr = c(M; t) the cost of firing t under M , i.e.,
the elapsed time fort to become enabled inM . The elements in
Agenda are ordered by the increasing magnitude ofr. Initially
Agenda(M) = f(t; 0); 8t enabled inM0g. The standard branching
procedure consisting of firing all the enabled transitions at the current
marking under exploration is substituted by the procedures shown in
Fig. 3.

That is, a transitiont enabled atM can be decided not to be fired
in order to introduce a tactical delay so other transitions can be fired
instead. To avoid the generation of futile paths (nonactive schedules
and schedule permutation of concurrent transitions), the transition will
not be reconsidered until it becomes enabled again, which means that
a change is observed in the input transitions representing resources.

With this strategy, it is possible to achieve a useful search reduction
for admissible algorithms such asA� and B&B. In [16], an experiment
showed a reduction of nearly 75% of the reachability tree generated.

5) Summary of the Algorithm:DLSS� results from the integration
of CGS, the PN-basedA� algorithm, and the concept of SF. The
pseudo-code for the algorithm is shown in Fig. 4.

SF is initialized to the initial marking. The generation of the PN
reachability tree followsA�. The next marking is selected from SF
using the heuristic functionf(m). The PN branching scheme CGS is
integrated within the algorithm to determine the set of transitions to

apply. For every new marking, Rule 3 is applied to see if inclusion in
SF is possible. Finally, Rule 2 is checked to see if SF must advance.

IV. EXPERIMENTAL RESULTS

The performance in terms of quality of the solution and execution
time of DLSS� is controlled in our experiments by the three parameters
Top level, Max nodes, and Moveat. Tuning guidelines can easily be
deduced from the role of each parameter in rules 1–3 of DLSS�.

The initial value oftop level(which we refer asTop level) controls
the scope of recovery of the algorithm. As we increaseTop level, we
increase the ability of DLLS� to recover from unpromising paths. This
means that DLLS� is more robust against deadlocks or catastrophic
scheduling decisions caused by bad estimations of the heuristic func-
tion.
Max nodes(l) controls the search effort by limiting the scope of

selection of the algorithm. Increasingmax nodesvalues, we allow
DLLS� to explore a larger number of promising schedules in parallel.
In our experiments, we consider the same value for each level which
is referred asMax nodes.

Move at serves as an indicative of how much one can trust the
heuristic function. Notice that irrevocable decisions are made when
at leastMove at markings are explored atTop level. Consequently,
a lower setting ofMove at with respect toMax nodesis appropriate
only if we consider our heuristic function to be a very good one.
Higher settings ofMove at are needed if we consider that our heuristic
function is not very well informed, thus making DLSS� explore a
larger number of the promising markings contained in SF.

A. Empirical Study of Computational Costs of DLSS

Since the number of nodes in the search window is limited, we can
expect that the computational cost of the algorithm to be polynomial
on the number of operations to schedule.

Ten FMS descriptions consisting of three machines, five jobs and
four tasks per job were generated. The degree of flexibility (alternate
routing) and the operation cost were randomly generated for each
problem. Thirty problem sets were obtained by increasing the number
of parts per job from 1 to 20, resulting in problems with between 20
to 600 operations.

Each of the 30 problem sets contained 10 problems which were
solved by DLSS� (Top Level = 10;Max Nodes = 5;Move At =
15). Three parameters obtained from each set are:

1) the average relative difference (Rd) of the makespan obtained for
each problem with respect to the Lbh�

RCR(M0) (Fig. 5 left);
2) the average number of iterations of the algorithm (number of

markings explored) (Fig. 5 right),
3) the average execution time (Fig. 6).

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 2, APRIL 2002 243

Fig. 5. Evolution of the solution obtained and the number of iterations.

Fig. 6. Evolution of the execution time (in seconds).

From the above results, the algorithm appears to perform a poly-
nomial with the size of the problem. The optimality, expressed as the
Rd to the Lb, seems to be constant, i.e., no degradation of the solution
quality is observed as we increase the size of the problem. Since Lb is
obtained assuming no machine idle time, the results when considering
1–2 parts per job show a greater distance due to a lower production de-
mand. The quadratic behavior of the computational time was also an
expected value, as algorithms employed in the simulation module of
the system have a computational cost ofO(n2), wheren is the number
of tokens in the marking.

B. Optimality of the Algorithm

The second experiment was conducted in order to determine the de-
gree of effectiveness of the algorithm for problems which is likely to
obtain optimum solutions that are closer to Lb defined byh�(M0). A
set of 1000 random problems where generated with the following char-
acteristics. The system has three machines, five jobs, and each with a
number of tasks between three and six. Fifty percent of jobs have two
alternate plans. Eighty-five percent of operations can be performed by
more than one machine. Each operation is assigned a randomground
cost from an uniform distribution[1 . . . 100]. Then the actual cost of
each alternative is randomly obtained from a normal distribution of
meangroundand variance of 15%. A total of ten parts of each job are
to be produced in the system.

Each problem was solved by DLSS� with the following settings
(Top Level = 10;Max Nodes = 5;Move At = 5). The histogram
of the Rd of the makespan obtained with respect to the heuristic Lb
h�(M0) is shown in Fig. 7. Notice that DLSS� may be reaching the
optimal as the hypothetical Lb may be lower than the actual optimum
in many cases. We believe this to be responsible for the normal curve
being disturbed by a cliff on the right.

Fig. 7. Relative difference with the lower bound.

Each of the problems was also solved with a heuristic dispatching
algorithm that selects the next transition to fire based in the least
working remaining time (LWRT) rule, and ties are broken by applying
the shortest processing time (SPT) rule. This approach is conceptually
equivalent to [1]. The makespan obtained is an average of 18.8% times
greater than the heuristic Lb.

Results indicate that the heuristic function quickly directs the search
for those FMS with extreme flexibility, where the balanced machine
workload can be achieved (which is a desirable designing objective),
and there is low variation of operation cost between different alterna-
tives for atask.

For problems where a resource is clearly a bottleneck and a balanced
workload is not possible, the estimation ofhRCR(M) might be too
optimistic. However, in our approach, the search effort is mainly con-
trolled by DLSS�. Again, this is an interesting property, since even for
thoseideal FMS a machine breakdown can create a temporarily im-
balance of the system. In this situation,hRCR(M) also becomes too
optimistic and forces DLSS� to increase the search within SF whilst
ensuring that the search will advance toward a solution.

C. Comparison With Previous Work

The following experiment was conducted in order to compare
DLSS� with different PN search algorithms.

1) DLSS�(10; 15; jT j=2), wherejT j is the number of transitions in
the system.

2) NonadmissibleA� with a DF heuristic function [21]:h(m) =
w�A�E�w�A�depth(M), whereA is the mean operating cost of
all operations andE is the nominal number of transition firings
from the initial marking to a goal marking. Because there is no
concept of concurrency in the total operating cost,w explains the
extent of reduction of this expression.

244 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 2, APRIL 2002

TABLE I
DESCRIPTIVESTATISTICS

3) Incomplete B&B procedure: the search stops when the number
of nodes expanded at least doubles the average nodes explored
by DLSS�. We employhRCR as Lb for pruning purposes. For
selecting the next branch, a combination of the LWRT and SPT
rules is adopted. Such an algorithm can be considered a sophis-
tication of the B&B approach of [1].

4) BS with abeam-widthof 80; such a setting explores the same
number of nodes as DLSS� by average. The algorithm uses the
same heuristic function of DLSS� to select the beams, i.e.,hRCR.
We believe such an approach is similar to thelimited-expansion
A� proposed in [19] and the BS approach of [17].

The problem data of 1000 FMS descriptions were randomly obtained
as follows. The number of jobs is uniformly obtained within the range
[5 . . . 10], and the number of resources in the system is calculated as
the number of jobs divided by two. Twenty-five percent, 50%, and 25%
of jobs have three, two, and one process plans, respectively, and 65%
of tasks have alternate routing and multiple resources may be required
to perform a task. Each operation is assigned a randomgroundcost
from an uniform distribution[1 . . . 100]. Then the actual cost of each
alternative is randomly obtained from a normal distribution of mean
groundand variance of 33%.

The four algorithms solved each problem. In the case ofA�, we tried
different settings forw in order to obtain a proper comparison. How-
ever, we found difficulties in choosing an adequate value forw. Setting
w to 1=m resulted in the majority of the problems to be intractable. On
the other hand, the3=m results were too optimistic and the quality of
the solutions obtained were too poor to be compared with DLLS�. We
finally opted forw = 2=m, although this setting resulted in 24% of
problems not being solved in a reasonable amount of time.

The makespan obtained by DLSS� was taken as the reference and
compared with the rest of the solutions obtained. The comparison re-
sults are shown in Table I.

The first column stands for the percentage of problems for which the
algorithm obtains a better makespan than DLSS�. The other columns
show the descriptive statistics for the % Rd of the makespan obtained
by each problem with respect to the solution makespan provided by
DLSS�.

We experienced tuning problems with theA� algorithm. The vari-
ance of the search effort was high and made a proper comparison diffi-
cult. Actually, 24% of executions were halted due to memory problems.
Results with the B&B are the worst due to the fact that the B&B bases
its strategies in chronological optimization of a first solution, rather
than in accurate local improvement. When DLSS� is compared with
BS, a less dramatic difference is obtained although it is still noticeable.
Since both approaches follow a similar optimization philosophy, such
difference is explained in terms of the backtracking recovery capacity
of DLSS�.

D. Comparison With Some Benchmark Problems

Finally, we solved several concrete benchmark problems proposed in
two papers. Table II shows the comparison results for three FMS prob-
lems in [5]. This paper implementsA� with a nonadmissible heuristic
function. The results show considerable improvement. Besides the fact
thathRCR results in a better heuristic function, DLSS� allows us to in-

TABLE II
COMPARISONWITH BENCHMARKS PROPOSED IN[5]

TABLE III
COMPARISONRESULTSWITH [20]

crease the search effort without falling in abreadth-first(BF) search. In
[5], authors reported that no further improvement of the solution could
be made since relaxation of the DF component of the heuristic function
resulted in the algorithm not being able to find the solution in a reason-
able amount of time.

The results for three problems presented in [20] are shown in
Table III. The optimal solution is given by a pure Best-First technique,
while [20] proposes a hybrid search technique between a B&B
and BF. Results show that DLSS� finds the optimum solution with
considerably less search effort (measured in terms of the number of
markings explored).

V. CONCLUSION

The combination of PN modeling as a representation formalism and
AI-based heuristic search methodologies has been studied in this paper.

A hybrid PN-based scheduling algorithm called DLSS� has been
presented, whose preliminary study shows it to be a promising alterna-
tive to overcome the difficulties encountered with previous approaches.
DLSS� is the further development of the works studied in [13] and [15].
Each of the methodologies within DLSS� concentrates on different as-
pects of the search space and aims to reduce the search effort while
maximizing admissibility: the PN-basedA� together with the PN ad-
missible heuristic function implement a powerful optimization strategy.
CGS helps to identify successful alternatives and discard futile ones,
and finally the SF behavior rules the strategy by avoiding exponential
generation of markings and forcing the search to progress to a solution.

This results in an algorithm that is able to achieve a useful degree
of optimality without experimenting exponential cost. When compared
with other approaches, experimental tests suggest the superiority of our
approach.

REFERENCES

[1] B. Abdallah, H. A. ElMaraghy, and T. ElMekkawy, “An efficient search
algorithm for deadlock-free scheduling in FMS using Petri nets,”Proc.
IEEE Int. Conf. on Robotics and Automation, pp. 1793–1798, 1998.

[2] A. Inaba, F. Fujiwara, T. Suzuki, and S. Okuma, “Timed Petri net based
scheduling for mechanical assembly—Integration of planning and
scheduling,”IEICE Trans. Fundamentals Electron. Commun. Comput.
Sci., vol. E-81A, pp. 615–625, 1998.

[3] M. D. Jeng, W. D. Chiou, and Y.-L. Wen, “Deadlock-free scheduling
of flexible manufacturing systems based on heuristic search and Petri
net structures,” inProc. 28th Int. Conf. Systems, Man and Cybernetics,
1998, pp. 26–31.

[4] R. E. Korf, “Real—Time heuristic search.,”Artif. Intell., vol. 42, pp.
189–211, 1990.

[5] D. Y. Lee and F. Dicesare, “Scheduling flexible manufacturing systems
using Petri nets and heuristic search,”IEEE Trans. Robot. Automat., vol.
10, pp. 123–132, 1994.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 2, APRIL 2002 245

[6] S. Lloyd, H. Yu, and N. Konstants, “FMS scheduling using Petri net
modeling and Brach & Bound search,”Proc. IEEE Int. Symp. Assembly
and Task Planning, pp. 141–146, Aug. 1995.

[7] T. Murata, “Petri nets: Properties, analysis and applications,”Proc.
IEEE, vol. 77, pp. 541–580, 1989.

[8] P. S. Ow and T. E. Morton, “Filtered beam search in scheduling,”Int. J.
Prod. Res., vol. 26, pp. 35–62, 1988.

[9] J. P. Heuristics,Intelligent Search Strategies for Computer Problem
Solving. Boston, MA: Addison-Wesley, 1984.

[10] M. Pinedo,Scheduling: Theory, Algorithms and Systems. Englewood
Cliffs, NJ: Prentice-Hall, 1995.

[11] J. M. Proth and X. L. Xie,Petri Nets: A Tool for Design and Management
of Manufacturing Systems. New York: Wiley, 1996.

[12] A. Reyes, H. Yu, G. Kelleher, and S. Lloyd, “Integrating Petri nets and
hybrid heuristic search for scheduling FMS,”Computers in Industry,
vol. 47, pp. 123–138, 2002.

[13] A. Reyes, H. Yu, and G. Kelleher, “Applying new search methodologies
for scheduling FMS using PN,” inProc. 16th Workshop of the UK Plan-
ning and Scheduling, Huddersfield, U.K., Sept. 1998.

[14] , “Petri nets, heuristic search and natural evolution: A promising
scheduling algorithm for job shop systems,” inProc. 3rd Int. Symp. In-
telligent Industrial Automation, Genoa, Italy, June 1999.

[15] , “Advanced scheduling methodologies for flexible manufacturing
systems using Petri nets and heuristic search,”Proc. IEEE Int. Conf.
Robotics and Automation. ICRA200, pp. 24–28, Apr. 2000.

[16] , “A PN reachability graph branching scheme with application to
the scheduling of flexible manufacturing systems,” inProc. IFAC Conf.
Control Systems Design, Bratislava, June 2000, pp. 19–22.

[17] H. M. Shih and T. Sekiguchi, “A timed Petri net and beam search based
on-line FMS scheduling system with routing flexibility,”Proc. IEEE Int.
Conf. Robotics Automat., pp. 2548–2553, 1991.

[18] S. Shukla and F. F. Chen, “The state of the art in intelligent real-time
FMS control: A comprehensive survey,”J. Intell. Manufact., vol. 7, pp.
441–455, 1996.

[19] T. Sun, C. Cheng, and L. Fu, “A Petri net based approach to modeling
and scheduling for an FMS and a case study,”IEEE Trans. Ind. Electron.,
vol. 41, pp. 593–601, 1994.

[20] H. H. Xiong and M. Zhou, “Scheduling of semiconductor test facility
via Petri nets and hybrid heuristic search,”IEEE Trans. Semiconduct.
Manufact., vol. 11, pp. 384–393, 1998.

[21] S. J. Yim and D. Y. Lee, “Multiple objective scheduling for flexible man-
ufacturing systems using Petri nets and heuristic search,” inIEEE Int.
Conf. Systems, Man, & Cybernetics, 1996, pp. 2984–2989.

[22] C. Zhou and F. DiCesare,Petri Net Synthesis for Discrete Event Control
of Manufacturing Systems. Boston, MA: Kluwer, 1993.

An Adaptive Iterative Learning Control Algorithm With
Experiments on an Industrial Robot

Mikael Norrlöf

Abstract—An adaptive iterative learning control (ILC) algorithm based
on an estimation procedure using a Kalman filter and an optimization of
a quadratic criterion is presented. It is shown that by taking the measure-
ment disturbance into consideration the resulting ILC filters become iter-
ation-varying. Results from experiments on an industrial robot show that
the algorithm is successful also in an application.

Index Terms—Disturbance rejection, iterative learning control, robot ap-
plication, synthesis.

I. INTRODUCTION

Iterative learning control (ILC) is a well-established method for con-
trol of repetitive processes. It is in general considered to be an approach
for trajectory tracking, and this is how it is usually described in the lit-
erature (see, for example, the surveys [1]–[3]). In this paper, we will
use ILC in a different setting by applying ILC for disturbance rejection
(see also [4]). In Section V, we will show how we can apply the re-
sults to a standard tracking application for ILC. Disturbance rejection
aspects of ILC have also been covered earlier in, e.g., [5]–[7], where
disturbances such as initial state disturbances and measurement distur-
bances are addressed.

In Fig. 1, the structure used in the disturbance rejection formulation
to ILC is shown as a block diagram.

The goal of ILC is to iteratively find the input to a system such that
some error is minimized. In the disturbance rejection formulation, the
goal becomes to find an inputuk(t) such that the outputzk(t) is mini-
mized. If the system is known and invertible, and the disturbancedk(t)
is known, then the obvious approach would be to filterdk(t) through
the inverse of the system and use the resultinguk(t) as a control input.
This means that the optimal input looks like

uk(t) = �(G
0)�1dk(t):

Different aspects of this approach to ILC is considered in the paper. Re-
sults from using the methods on an industrial robot are also presented.

II. A STATE SPACE-BASED APPROACH TOILC

A. Matrix Description of the System

An ILC system is characterized by the fact that it is only defined over
a finite interval of time. If the sampling time is equal to one, this means
that0 � t � n � 1. This is also the reason why it is possible to write
the system description in matrix form as

zzzk = GGG
0
uuuk + dddk

yyy
k
= zzzk + nnnk (1)

with

dddk+1 = dddk +�d (2)

Manuscript received May 31, 2001. This paper was recommended for pub-
lication by Associate Editor Y. Xu and Editor A. De Luca upon evaluation of
the reviewers’ comments. This work was supported by VINNOVA’s Center of
Excellence ISIS at Linköpings universitet, Linköping, Sweden.

The author is with the Department of Electrical Engineering, Linköpings Uni-
versitet, SE-581 83 Linköping, Sweden (e-mail: mino@isy.liu.se).

Publisher Item Identifier S 1042-296X(02)02653-8.

1042–296X/02$17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

