
Abstract

Accurate measurement of the air-fuel ratio in a spark-ignition
internal combustion engine is desirable for precise control of
the engine but difficult to achieve economically because of the
unavailability of low-cost sensors.  This paper describes
research which aims to develop the spark plug as a sensor for
the measurement of the air-fuel ratio.  The method involves
recording the time-varying voltage waveform at the spark
plug.  The shape of this waveform is influenced by the
combustion activity in the cylinder, which in turn, is
dependent on a number of factors, of which one is the air-fuel
ratio.  After signal-enhancement by pre-processing algorithms,
the data is analysed by a neural network.  The outcome of the
analysis is the prediction of the air-fuel ratio.  As the spark
plug is already installed in the engine, the additional
instrumentation cost is low.  The paper describes the effects of
differing neural-network training file sizes and discusses
measures which could be taken to overcome the effects of
variations in other engine parameters.

I.  INTRODUCTION

Monitoring the combustion phenomena occurring in the
cylinder of an internal combustion engine can provide
information which can be used for the control of the engine
and also in the diagnosis of fault conditions. A robust, low-
cost method of monitoring combustion phenomena would
be of great interest to engine manufacturers.  However,
many current combustion-monitoring techniques are too
expensive for incorporation into production engines.
  
Methods of determining a range of parameters have been
described in the literature, including statistical timing
parameters, flame burn rates and temperature, air-fuel ratio,
NOx levels, the onset of engine knock, cyclic variations and
combustion abnormalities such as misfire [1, 2, 3, 4, 5].

Optical sensors have the potential to detect a wide range of
combustion phenomena of interest [1].  However, the
installation of the sensor involves changes to the shape of
the combustion chamber, leading to the possibility that the
combustion itself will change with consequent degradation
in performance.  

The cylinder pressure can be related to a number of
quantities of interest.  Measurement can be achieved by the
insertion of a sensor into the cylinder head.  However, this
is again an invasive procedure, potentially itself leading to
changes in combustion.  Additional problems also occur, in
that the sensor often must be water-cooled, leading to
expense, and that it suffers from reliability problems [2].

As the spark plug is in direct contact with the combustion
processes, a number of researchers have suggested it for use
in the gathering of  combustion-related data.  The ionic
current method has been investigated by a number of
researchers.  A bias voltage of approximately 100V is
applied to the spark plug after the initiation of combustion.
The combustion phenomena are assessed by monitoring the
ionisation current in the gases due to this bias.  Zhao and
Ma [2] have proposed a spark plug ionisation (SPI)
detection circuit which is incorporated into the secondary
winding of the ignition coil.  The system enables ionic
currents to be monitored via the spark plug.  The data
obtained permits the detection of knocking combustion and
engine cyclic variations.  However, the results published
exhibit a very wide spread of data due to random
fluctuations and this would be likely to make automated
analysis of the data difficult.  Ohashi et al. [4] describe the
use of ionic currents for knock and mis-fire detection in a
modified production gasoline engine.  An et al. [5] have
used Principal Components Analysis (PCA) in association
with a statistical classifier to analyse ionic current data.

While a number of researchers have reported investigating
the ionic current technique in the research laboratory, the
practical problems inherent in applying the bias have
prevented the system from being widely adopted for use in
production vehicles.  For example, the high voltage diodes
which are often required are expensive and prone to break-
down.  In addition there are difficulties in obtaining
measurements of sufficiently high accuracy.

II. COMBUSTION MONITORING USING THE SPARK-PLUG
VOLTAGE

A continuing research project at the University of Brighton,
involves an investigation into the use of the time-varying
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voltage waveform at the spark plug for monitoring
combustion phenomena and engine parameters.  The project
aims to use spark-plug data in conjunction with other
measured engine information to create a virtual sensor
system to determine combustion parameters of interest. One
quantity which is of particular interest is the air-fuel ratio,
often expressed as the lambda value where a lambda of
unity corresponds to an air-fuel ratio of approximately 14.7
to 1.

The use of the spark-plug voltage waveform for combustion
monitoring has some characteristics in common with the
ionic-currents technique.  However, it has the advantage
that no bias voltage supply is required and the problems
inherent in switching the bias supply in and out of circuit
are obviated.

The spark-plug voltage waveform has a number of
predictable phases.  As the spark pulse is generated by the
ignition system the potential difference across the gap rises
to between approximately six and 22 kV, before breakdown
occurs.  Breakdown is accompanied by a fall in voltage,
giving a characteristic voltage spike of approximately 10us
in duration.  This is followed by a glow discharge region of
a few milliseconds duration which appears as the tail of the
waveform.  

Empirical observation of the spark-plug voltage
characteristic has shown that variations in engine
parameters lead to changes in the shape of the voltage
characteristic.  Some of the reasons for these changes are
discussed in a later section of this paper.  Although the
general shape of the characteristic is predictable, the
detailed variations which occur as the engine parameters
vary are not.  In addition, random variations occur between
sparks even when the engine parameters are kept constant.
For these reasons, analysis of the spark-voltage data is not
amenable to the use of scalar parameters or conventional
classifiers.  However, encouraging results have been
obtained by the use of adaptive techniques, for example,
neural networks. 

Neural networks are frequently used as classifiers in
pattern-recognition applications.  Neural networks possess a
number of specific qualities which make them invaluable in
pattern classification applications and which are not easily
achieved by other means.  For example, they can
automatically perform knowledge abstraction and statistical
analyses on data which is presented to them and this
information becomes encoded into the internal structure of
the network.  They can generalise so as to respond correctly
even in the presence of noise or uncertainty.  The ability of
the neural network to act as a trainable pattern classifier has
been exploited where there has been a need to correlate
characteristic voltage or current signatures with some
physical phenomena.  The ability of neural networks to
generalise give them a resistance to noise which is useful in
situations where random variations in signal are
problematic.

Previous papers by the author and associates have described
the use of neural networks to correlate the signatures
formed by the spark plug voltage waveforms with specific
values of air-fuel ratio [6,7] and some of the practical
problems, due to electrical noise, the high voltages
encountered and lack of stability in the engine, have been
reported [8,9].  It has been found that the neural network
can differentiate between various categories of air-fuel ratio
(lambda = 1.0, 1.2 or 1.4 respectively) with a success rate of
up to approximately 90% provided load, speed etc., were
held constant [6,7].  A number of neural network
architectures have been investigated in this application,
including the multi-layer perceptron (MLP) and the radial
basis function (RBF) network. 

The aim of the experimental work reported here was to
investigate the effects of different neural network training
regimes on a MLP network, in order to obtain
improvements in the ability of the system to determine the
air-fuel ratio, and to gauge the suitability of this architecture
for use in this application.

III. EXPERIMENTAL WORK

A. Method

The experimental work was conducted using an engine test-
cell which is being developed to allow investigation into the
application of a range of intelligent techniques to engine
control.  Early work on the development of a fuzzy logic
control kernel for this engine has been previously described
[9].

The engine was a single-cylinder type with a capacity of
98.2cc.  The engine was modified to enable manual
adjustment to be made to the air-fuel ratio, which was
measured using an exhaust gas composition analyser.  The
ignition timing was fixed at 24 degrees before top-dead-
centre.  A regenerative electric dynamometer provided an
adjustable load.  Instrumentation and data-capture circuitry
was installed to allow engine parameters and spark
signatures to be recorded.

The experimental method used involved recording sampled
spark waveforms for various values of lambda, at specific
values of engine speed.  The data was pre-processed and
then placed in a training file.  This was used in conjunction
with neural-network pattern-classification to correlate the
waveform signatures with the corresponding lambda values.
The neural network used was a multi-layer perceptron
(MLP) executing a cumulative back-propagation learning
algorithm.  The code for this was written in-house in the C
language.



Training files were created at three different engine speeds,
2800 rpm, 3500 rpm and 4200 rpm.  Correspondingly,
separate test files were created at these speeds so that the
neural network could be tested on unseen data after
training. 

B. Training using the Raw Data

Firstly, the raw spark data was used in training the neural
network.  Very small learning coefficients were required in
order to prevent oscillatory behaviour in the sum-of-squares
error during training.  Convergence was extremely slow and
the training process, judged by a termination criterion of a
satisfactorily low sum-of-squares error, was not reached in
a 24 hour training period.  This prevented results from
being obtained.  The difficulty in obtaining satisfactory
convergence with raw training data was not surprising
given previous experience with an MLP.

C. Training with Pre-Processed Data

Two forms of pre-processing were applied to the spark data.
Firstly, based on knowledge gained in previous
experiments, each input vector presented to the neural
network was tailored so that only relevant information was
present.  Data points corresponding to regions of the spark
known to be unlikely to contain information were removed.
Secondly, in order to enhance the signal-to-noise ratio, a
filtering operator was applied to the data, the aim of which
was to reduce random variations between contiguous spark
waveforms.

Figure 1 shows the correct discrimination rate which was
obtained at each of the three speeds.  The graph shows that
the discrimination rate is reduced at higher speeds.  The
sampling rate of the analogue to digital converter was not
varied as the engine speed changed.  This would effectively
lead to a coarser resolution at higher speed which is likely
to explain the reduced performance.  Measures are in hand
to link the sampling interval to the speed.
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Figure 1: Discrimination rate using pre-processed data

D. Training File Size

The optimum number of training records (input-output
vector pairs) in the training file of an MLP network has
been the subject of much investigation, however, it has not
proved amenable to formal analysis.  It would be expected
that a number of training vectors comparable with, or
exceeding, the number of weights in the network would
lead to good generalisation.

Given an MLP network with P, Q and R neurons in the
input, hidden and output layers, respectively, the number of
weights in the network, Nw, is given by:-

 Nw = ( P + 1 ) Q + ( Q + 1 ) R (1)

If the number of training records is Nt, then it would be
expected that for good generalisation 

 Nt = S . Nw (2)

The value s is the normalised size of the training file, where
1 < S  < 10.  The optimum value of S depends on the
application, which, in turn, determines the shape of the
error surface.  Generally, large values of  S lead to better
generalisation; however, adoption of this criterion often
leads to a large training file size and long training times
which may not be acceptable in practice.
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Figure 2: Graph showing neural network discrimination rate
for different sizes of training files.

Figure 2 shows the variation in the ability of the neural
network to correctly discern the air-fuel ratio with varying
normalised training set size.  As the normalised size
increases the discrimination rate improves.  However,
although not shown quantitatively here, at the same time the
convergence rate worsens and the training time rises very
rapidly.  

E. The Effect of Speed Variations

In the previous experiments which have been described in
this paper, the neural network has been trained using data
obtained from the engine running at a fixed speed, and then
it has been tested using new data obtained when the engine
was running at the same speed.  Figure 3 illustrates the
performance of the network when data obtained when the
engine was running at a particular speed was used in
training the network, and then data obtained at a different
speed was used for testing.

Training Speed (RPM)

Correct
Disc.
 Rate

0
10
20
30
40
50
60

70
80
90
100

2800 3500 4200

2800
3500
4200

Figure 3: Discrimination rate obtained when the training
and recall speeds were different.

Figure 3 shows that while the neural network was able to
indicate the air-fuel ratio when the training and recall data
were obtained when the engine was running at the same
speed, only poor accuracy was achieved when the neural
network was tested with data corresponding to different
speeds.

In an attempt to gain an improvement to the accuracy of the
system, a composite training file was constructed.  Data
obtained when the engine was running at 2800, 3500 and
4200 RPM was combined into a single training file.  The
network was then tested using individual recall files
obtained at these speeds, but also at 3150 and 3900 RPM.
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Figure 4: Training with an extended speed range
Figure 4 shows the results which were obtained.

Although reasonable accuracy was obtained at the speeds
where data had been used for training the network
performed poorly at the other speeds.  The reason for this
could be linked to the behaviour of the ignition system as
speed changes.  The ignition system of a conventional
spark-ignition engine is based on a coil, which effectively
functions as a transformer, and a contact breaker.  The
contact breaker may be mechanical, or may be a
semiconductor device such as a transistor in the case of an
electronic ignition system.  

When the contact breaker closes current flows in the coil
and energy is stored in the magnetic field which is
produced.  When the piston is at an appropriate point just
before top-dead-centre the contact breaker opens again a
voltage, V = M dI/dt is induced, where M is the mutual
inductance of the coil, and this causes breakdown in the
spark-plug gap.  The energy discharged into the air-fuel
mixture before ignition, and into the plasma in the cylinder

after ignition, depends on the energy stored in the coil,
which in turn is the integral of the instantaneous current, I
and the supply voltage Vs over the period for which there is
current flowing in the coil.

The amount of energy becomes speed-limited, because at
higher speeds the time available for the storage on energy in
the coil becomes reduced.  In a magneto ignition system,
the spark energy increases with speed, as the rate at which
flux is cut increases.

Thus, in either type of ignition system the energy of the
spark will vary with speed.  The spark-plug voltage
characteristic would, in turn, be expected to exhibit
variations with speed.  The inability of the neural network
to characterise spark data recorded at speeds which had not
been used during training, is not, therefore, surprising. 

There are a number of methods which suggest themselves
for overcoming this dependence on speed:-
• The neural network could be trained with spark data

recorded for all speed conditions.
• The data could be pre-processed in such a manner that

these speed-induced variations become insignificant.
• The neural network could be supplied with information

about speed and other relevant engine parameters

Investigations into these alternatives is being carried out by
the research group at the University of Brighton.  

IV. DISCUSSION - THE EFFECT OF LAMBDA ON SPARK
VOLTAGE WAVEFORMS

The breakdown voltage across the electrode gap of a spark
plug in an operating internal-combustion engine is
dependent on the interactions of a multitude of parameters,
for example, the combustion chamber and electrode
temperatures, the compression pressure, the electrode
material and configuration and the composition of the air-
fuel gas mixture, [10, 11]. All of these factors may be
attributed to physical properties and processes; for example,
the composition of the air-fuel mixture influences the
breakdown voltage mainly through temperature and
pressure changes.

The spark plug cathode electrode temperature has a
significant effect on breakdown voltage, due to increased
electron emission at elevated temperatures. The maximum
spark plug temperature, when keeping other parameters
constant, is achieved when lambda is equal to 0.9, that is,
the value for maximum power output [10]. Under lean, and
to a lesser extent, rich mixture conditions, the voltage rises
[11]; this is largely due to a reduction in the heat released
by combustion [12].  Given a constant set of engine



operating conditions, an increase in lambda results in an
increased pressure at ignition which has been attributed to
an increase in the ratio of specific heats (the gamma ratio)
of the air-fuel mixture [12]; an increase in gas pressure
results in a concomitant rise in breakdown voltage.

Changes in lambda, and therefore in breakdown voltage,
lead to subtle changes in the overall shape of the typical
ignition spark waveform. Given a constant ignition system
energy, an increase in breakdown voltage results in more
energy being used within the breakdown phase. This leaves
less energy available for following phases of the spark, i.e.
arc and glow discharge. The observed result is a reduction
in the glow discharge duration. 

To summarise, changes in lambda would be expected to
influence both the breakdown voltage and the voltage
characteristic of the arc and glow discharge phases.
However, if the voltage characteristic of the spark is to be
used to determine the lambda value, the effects of other
parameters on the spark characteristic, for example
temperature and pressure, must be accommodated.  

V. CONCLUSIONS

The experiments described here have shown that the MLP

neural network is capable of discerning small changes in
lambda (~0.1) from the changes in spark waveform that
occur, provided that other engine parameters are held
constant.  Changes in other engine variables, for example,
load and temperature, are likely to be significant.  In order
to accommodate the effects of these changes it is probable
that the values of these parameters will need to be supplied
to the neural network.  

Neural network models have been described in the literature
[13, 14, 15].  These relate engine parameters such as the
speed, load (manifold air pressure), temperatures etc.  The
virtual sensor system which is being developed under this
project incorporates a neural network model of the engine
but supplements speed, load etc., information with spark
data.  It is believed that this is an original concept. 

The MLP network has proven useful in a range of
applications, providing a compact representation of the
problem space.  Where the small training files are adequate
for network learning or where execution platforms are  
available with high floating-point calculation rates, the
network may be trained in practicable times.  However, the
large problem space inherent in a virtual sensor system for
an engine is likely to necessitate the use of large amounts of
training data.  There must be a question about whether the
standard MLP network executing a back-propagation
algorithm will converge quickly enough for it to be usable

in this application.  Faster training algorithms have been
investigated, including the Class-Distributed network
which may be executed on a multi-processor platform [7,
16, 17].  An alternative to faster training neural networks
could be to reduce the dimensionality of the training data
(and the problem space) by the use of a mathematical
transformation.  Both of these are key areas of research into
this problem.
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