
Adaptable Components

Grady H. Campbell, Jr.
Prosperity Heights Software

8457 Van Court
Annandale, VA 22003 USA

+1703 573 3139
Grady Campbell @ acm.org

www.domain-specific.com

ABSTRACT
The key to viable software reuse is the ability to rapidly
retrieve and tailor software components for new uses. An
adaptable component is a representation of a family of
similar software components which supports tailoring as an
intrinsic aspect of retrieval. Differences among the
instances of a family are conceived as a set of feature
decisions and represented as parameters of adaptability.
Organized into a domain-specific taxonomy of architectural
categories, adaptable components provide for rapid retrieval
of components tailored to suit each particular use.

Keywords
Reuse, component, domain-specific, adaptable, family,
generator, abstraction, metaprogram

1 INTRODUCTION
An adaptable component represents a family of similar
software components. It provides the capability to derive
an instance component that is tailored to a particular use,
for reuse or in response to changed requirements. The
diversity of instance components represented by an
adaptable component is expressed as a set of parameters that
define reusers’ selection/tailoring decision criteria. An
adaptable component represents a set of similar instance
components and can express the form and content of any
associated information, including code, documentation, and
test cases. A reusable component can be derived to suit the
specific needs of a particular application by instantiation of
a suitable adaptable component. A collection of
architecturally integrated adaptable components provides the
basis for systematic derivation of complete software
products.

2 BENEFITS OF ADAPTABLE
COMPONENTS

The motivation for adaptable components is to represent
reusable software in a form that makes comprehensive need-
specific tailoring implicit to retrieval of each needed
component. In this way, storage of reusable components is

Permissit,n I(, make digital or Ilard copies of ZIII 07 pati ~flhis work fo’
personal or c,assroom use is granted without fee provided that co@
are not ,,,ade or distributed for p&it or commercial ndV:mt~%e and that
copies bea,. this notjce a,l<{ the full citation 011 the first page. To Copy
otherwise, tO republish, to post on servcrs or to redistribute to lists.
requires prior specific permission and/or a fk

l&E ‘99 Los Angclcs CA
Copyright ACM 1999 l-58113-074-0/99/05...$5.00

highly efficient, with each adaptable component implicitly
representing an arbitrarily large number of retrievable
instance components.

Adaptable components provide benefits both to component
developers and to reusers:

An adaptable component is a concise representation of
an arbitrarily large collection of need-specific parts,
avoiding the effort of handcrafting or tailoring of each
one individually and resulting in fewer errors.
A hierarchical file system is sufficient for effective,
low cost storage of adaptable components; no special
search or retrieval mechanisms are needed.
Components of greater diversity are retrievable from an
adaptable components repository, through mechanical
tailoring to specific needs as part of their retrieval,
providing more flexibility for new uses.
Adaptable components enable reusers to be effective
with less deep or detailed expertise in the various
aspects of a problem and its solution, resulting in
better solutions with less effort.

Obtaining these benefits requires an explicit investment in
the development of adaptable components. Developing a
high quality adaptable component costs more than a single
instance component but pays off when a future need for
three or more similar instance components is anticipated.
This investment will provide substantially greater payoff
sooner when managed as a coordinated independent service
to product development efforts, involving an organization’s
best people and considering business and technical needs,
current and future.

3 TWO MODELS OF REUSE
The usual procedure for reuse presumes a library of reusable
instance components. This procedure consists of 4 steps:

. Retrieve a candidate set of components that
approximate some needed capability.

. Select the component from the candidate set that most
closely matches the specific need.

. Tailor the selected component to all aspects of the
specific need.

. Return the tailored component to the repository as a
candidate for future reuse.

685

The model of reuse underlying this procedure is weak,
providing too little benefit to justify the associated costs.
It presents several problems:

Deciding whether an appropriate component exists
requires indeterminate effort, linear to the number of
components available or dependent on unreliable
techniques of concept or content matching or
complicated indexing schemes.
Choosing among similar candidate components requires
detailed, time-consuming comparative analyses of the
components.
Tailoring a component to meet slightly different needs
can violate unstated developer assumptions resulting in
errors. Failure to tailor or remove unneeded
capabilities results in inefficient or bloated code.
Every adaptation of a reusable component creates a new
candidate for reuse resulting in uncontrolled growth in
size and complexity of the repository.

In contrast, the procedure for reuse based on adaptable
components is:

. From a taxonomy of provided adaptable components,
select the adaptable component, if any, in which the
needed reusable component should be found.

. Consistent with particular needs, resolve the decisions
associated with the selected component, mechanically
deriving the corresponding reusable component.

. If an appropriate category does not exist or the
adaptable component does not support needed tailoring
decisions, describe the unsatisfied need to adaptable
component developers.

This procedure does not guarantee that a developer will find
a needed reusable component but it guarantees that the effort
to determine success or failure is very low. An adaptable
components repository avoids the problems associated with
the conventional model of reuse. In contrast:

The thought that goes into abstracting similar reusable
components into an adaptable component leads
naturally into the identification of a hierarchy of well-
defined categories that substantially reduces the effort of
identifying the existence, or non-existence, of
components appropriate to a particular need.
An adaptable component establishes a certain level of
standardization, retaining essential diversity but
avoiding unnecessary redundancy that would exist in
separately represented components and eliminating non-
essential differences which arise when different people
develop components that provide similar capabilities.
Part of creating an adaptable component is envisioning
future alternative uses that would be a natural extension
of any existing set of similar components. This
increases the likelihood that an adaptable component
will suit each developer’s particular needs without
additional tailoring of a derived component.

As reuser needs change, the need for new components
arise in the context of the existing structure of
adaptable components. This adds a degree of discipline
in controlling the evolution of the repository, reducing
the likelihood of redundant components or categories.
The differences among the set of components
represented by an adaptable component are formalized
as a set of decisions that indicate the diversity
represented. These decisions characterize alternative
uses for a component and are a sufficient basis for
identifying a single instance component for retrieval.

SUPPORTING THEORY
An adaptable component represents a family of similar
components. Dijkstra [l] proposed and Parnas [2]
elaborated the idea that families ought to be the basis for
the systematic construction and evolution of programs. A
family is characterized by an abstraction that expresses what
is common about its instances. An adaptable component
expresses a family in concrete form. The differences among
instances are represented by a set of decision parameters that
together are sufficient to distinguish each producible
instance component from all others in the family.

Given a precise notation for representing a family as an
adaptable component, a corresponding instantiation
mechanism enables the derivation of instances. The body
of an adaptable component is a definition of how common
and varying component fragments are tailored and combined
to derive any particular instance component. Goguen [3]
and Dershowitz [4] discuss concepts of abstraction,
parameterization, and instantiation that underlie adaptable
components. A particular notation and mechanism that is
easily adopted by programmers is described in [S].

Adaptable components are an effective medium for flexible
reuse and program evolution w’ith text-based instances.
Future work needs to address application to graphical forms
and uses of formal verification techniques for establishing
correctness of a family of derivable instances.

REFERENCES
1.

2.

3.

4.

5.

Dijkstra, E.W. Notes on Structured Programming.
Structured Programming, Academic Press (London,
1972), 39-41.

Parnas, D.L. On the Design and .Development of
Program Families. IEEE Trans. Sojlware Eng. SE-2
(March 1976), l-9.

Goguen, J.A. Parameterized Programming. IEEE
Trans. Sofnyare Eng. SE-IO, 5 (Sep 1984), 528-543.

Dershowitz, N. Abstraction and Instantiation. A CM
Trans. Program. Lang. Syst. 7, 3 (July 1985), 446-477.

PHS Web Site. On-line at
httu://www.domain-suecific.com/MTP/index.html.

686

