
0DQDJLQJ�VRIWZDUH�DUWLIDFWV�RQ�WKH�:HE�ZLWK�/DE\ULQWK1

1This work was partly supported by MURST 40% funding
programme, project Interdata.

)DELDQR�&DWWDQHR��(OLVDEHWWD�'L�1LWWR��$OIRQVR�)XJJHWWD��/XLJL�/DYD]]D��*LXVHSSH�9DOHWWR
CEFRIEL - Politecnico di Milano

Via Fucini, 2
I-20133 Milano (Italy)
Tel: +39-02-23954.1

Fax: +39-02-23954.254
E-mail: {cattaneo|valetto}@cefriel.it, {dinitto|fuggetta|lavazza}@elet.polimi.it

$%675$&7
Software developers are increasingly exploiting the Web as
a GRFXPHQW� PDQDJHPHQW� V\VWHP. However, the Web has
some limitations, since it is not aware of the structure and
semantics associated to pieces of information (e.g., the fact
that a document is a requirement specification) and of the
semantics of relationships between pieces of information
(e.g., the fact that a requirement specification document
may be associated to some design specification document).
In the Labyrinth project we enhance the capabilities of the
Web as a document management system by means of a
VHPDQWLF�PRGHO (called VFKHPD, in analogy with database
schemas), which is associated to Web documents. This
model is itself a Web document and can be accessed and
navigated through a simple Web browser.

.H\ZRUGV
Document management systems, software repositories,
semantic models for the Web, Internet technologies.

�� ,1752'8&7,21
The simplicity and flexibility of the concepts underlying
the Web has made it a successful –though limited–
GRFXPHQW�PDQDJHPHQW�V\VWHP��The main limitation of the
Web as a document management system is its lack of
knowledge about the semantics of the documents it stores.
To manage large quantity of documents, it is essential to
have visibility over a VHPDQWLF� PRGHO that describes the
structure of these documents in terms of proper types and
relationships among these types. This is especially true in
the context of software development, where it is essential
to have in mind the types of artifacts being produced
(requirement specs, design specs, source code, test lists,
…) and the relationships among them (source code
LPSOHPHQWV design specs, test lists GHSHQG� RQ the
requirement specs, …). Such information can be exploited,
for instance, to track the state of the development process
(e.g., how many requirements have been considered in the

design phase) or to analyze the impact of a change of some
artifact over the others.

Based on the above considerations, we have developed an
environment called Labyrinth [1]. Labyrinth allows users
to define a VFKHPD for a document base and to store it
within a Web document. The schema defines the semantics
of documents and relationships among them and is linked
to the actual documents (collectively called GRFXPHQW
EDVH). The schema and the meta-information layer can be
accessed and browsed through standard Web browsers,
thus enabling a semantic-based navigation of the document
base. Labyrinth also provides a run-time infrastructure that
manages the updates of the document base and monitors its
consistency with the schema.

Our approach guarantees scalability: documents can be
distributed everywhere, simply exploiting the basic
features of the Internet. Also, it allows existing documents
to be easily integrated in Labyrinth. In fact, any document
can be part of a document base (i.e., the set of documents
managed by Labyrinth) provided that its type and its
relationships with other documents are described in the
schema and that it can be accessed through an URL. For
instance, documents stored in proprietary repositories that
provide a Web interface can be linked to a Labyrinth
document base. In this way a “super repository” offering a
view over data stored in different tools is achieved.

�� 7+(�'7:(%
In Labyrinth a document base and the corresponding
schema and meta-information layer define a GDWDZHE (the
term dataweb has been suggested to us by David Reese of
Colorado University, Boulder).

The schema defines the structure of the document base.
We have chosen to describe it through the traditional
Entity/Relationship model whose expressive power is
adequate to describe typing properties of documents and
relationships among them. The evolution towards more
sophisticated semantic models (e.g. object-oriented) and
representations (e.g., through XML) is possible, while

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee.
ICSE 2000, Limerick, Ireland
© ACM 23000 1-58113-206-9/00/06 �$5.00

746

retaining the general structure of Labyrinth.

5HTXLUHPHQW�VSHF
title
version
authors

3URGXFW
name

����Q

5�
title = “...”
version = 1.0
authors = E. Di Nitto
FRQWHQW� �KWWS�������

FRQWHQW
�UHT��VSHF�

GRF�

3�
name = “...”
FRQWHQW� �KWWS�������

FRQWHQW
�SURGXFW
GHVFU��

')�
HQG�SRLQW��� �KWWS�������
HQG�SRLQW��� �KWWS�������

6FKHPD

'RFXPHQW�EDVH

0HWD�LQIRUPDWLRQ
OD\HU

'HILQHV�WKH
IXQFWLRQDOLWLHV

RI

)LJXUH����$Q�H[DPSOH�RI�D�GDWDZHE.

Documents have an DFWXDO� FRQWHQW and are characterized
by a GRFXPHQW�GHVFULSWLRQ that is structured according to
the corresponding type definition given in the schema. The
actual content is stored separately from the corresponding
description and can be in any format (e.g., binary, ASCII,
XML). Like the entities, the relationships defined in the
schema do have an instantiation in the dataweb.

Document descriptions and relationship instances define
the PHWD�LQIRUPDWLRQ� OD\HU between the schema and the
document base. They describe the characteristics of
documents in terms of the semantics given in the
corresponding model. The correspondence between
elements in the schema (entities and relationships) and
elements in the meta-information layer is explicitly
maintained [1].

In summary, a dataweb is defined by a set of document
contents and a number of HTML files that provide meta-
information over such contents, thus enabling the
definition of advanced navigation paths and query
mechanisms. These mechanisms recall the ones provided
by DBMSs but in a lightweight style.

�� +,*+�/(9(/�$5&+,7(&785(
Figure 3 shows the Labyrinth architecture. A Web site,
called the /DE\ULQWK KRPH� VLWH, stores the schema
corresponding to a certain document base. The other sites
contain fragments of the meta-information layer and of the
document base.

Labyrinth
engine
servlet

Schema
Management

servlet

Labyrinth
engine
servlet

applet

applet

Jedi event dispatcher

browser

Web server

Web server
(Labyrinth home site)

Jedi events

Jedi events

Jedi events

Jedi events

HTTP

HTTP

browser
schema

Doc.info &
meta-info

Doc.info &
meta-info

)LJXUH����7KH�/DE\ULQWK�KLJK�OHYHO�DUFKLWHFWXUH�

Navigation of a Labyrinth document base is performed by
exploiting the standard Web browser/server interaction
paradigm (i.e. Labyrinth specific components are not
involved if the user only browses the model and
documents). Associated to each Web site there is a
/DE\ULQWK� HQJLQH (implemented as a Java servlet) that
controls all the update operations performed on the
dataweb. It checks for coherence between types and
instances, keeps track of possible inconsistencies (e.g., a
document of type A should be associated to a document of
type B but at the moment it is not), and ensures the
atomicity of operations.

The JEDI event-based communication mechanism [2] has
been adopted to notify users when some portion of the
document base of their interest has been modified.

��)($785(6�2)�/$%<5,17+
The features of Labyrinth are illustrated through a case

,QLWLDO�3URGXFW
%XVLQHVV�3ODQ

)LQDO�3URGXFW
%XVLQHVV

3ODQ

3ODQ�'&3
FRQWUDFW

)LQDO
'RFXPHQWV

DQG
6SHFLILFDWLRQV

&RPSRQHQW
2SSRUWXQLW\

3URGXFW

UHSODFHV

���Q�
UHSODFHV

UHSODFHV

UHSODFHVUHSODFHV

H[SDQGV
H[SDQGV

GHILQHVLV�XVHG�LQ

SURGXFHV

LV
DFWLYDWHG

ZLWK

LV
IRUPDOL]HG

LQ

LV
DQDO\]HG

LQ

���Q� ���Q� ���Q�

���Q� ���Q� ���Q� ���Q� ���Q� ���Q�

���Q� ���Q� ���Q� ���Q�

���Q� ���Q����Q� ���Q�

���Q� ���Q� ���Q� ���Q�

���Q�

���Q�

���Q�

���Q�

)LJXUH����7KH�VFKHPD�XVHG�IRU�WKH�FDVH�VWXG\�

747

study we have carried out in an industrial context. A
company develops and builds hardware devices with
embedded software following an ISO 9000 certified
development process. The company has an internal
document repository based on Lotus Notes, where all the
document contents are stored. The repository is composed
of several Notes databases distributed worldwide. The
company wants to use Labyrinth in order to build a
semantic navigational and management model on top of
the existing document base. In particular it is required that
this model explicitly represents document versioning
information and enables transparent access to documents
regardless their physical location.

Figure 2 illustrates the schema as derived through the
analysis of the existing documents and their relationships.
All the instances of the entities shown in the figure are
changed quite frequently during the development process.
In the Notes repositories no explicit relationships are kept
between different versions of the same document. In the
Labyrinth schema an explicit “replaces” relationship has
been defined, which allows contributors to the document
base (document authors, mainly) to explicitly record that a
document supersedes an old one and why.

)LJXUH����7KH�VFKHPD�SUHVHQWDWLRQ�SDJH�

%URZVLQJ�DQG�3RSXODWLQJ�WKH�'RFXPHQW�%DVH�
When the schema given in Figure 2 has been installed, a
user can connect to the schema presentation page (see
Figure 4) where all the entities and relationships belonging
to the schema are linked to a list of the corresponding
instances. As shown in Figure 4, in the current
implementation the schema is displayed textually. We are
working on its graphical representation.

From the schema presentation page, a user can navigate
through the existing documents or he/she can request
creation of a new entity or relationship instance. Figure 5
shows the form that is downloaded on the user’s browser
when he/she requests to add a new document of type
Opportunity (see the schema definition in Figure 2) to the
document base. The form has to be filled in with the
description associated with the document. The information
to be provided corresponds to the attributes of the entity

according to the schema definition. Additional fields allow
the user to select the Web server that will host the
document description and the URL of the document
content. Optionally, it is possible to have the Labyrinth
system directly managing the storage of the document
content. When the form is submitted to the Labyrinth
system, it updates the dataweb by creating a Web page
containing the document description and by linking it to
the schema. Finally, if needed, it uploads the document
content and stores it in the Web server file system.

As demonstrated by the example above, some operations
on the dataweb require updates on different, possibly
distributed files. The execution of these updates needs to
be atomic and serializable. To ensure these properties we
have adopted an approach based on the OpenGroup's
Distributed Transaction Processing concepts, where a
manager coordinates the execution of transactions
according to the two phase commit protocol. In the current
implementation we use the Jini transaction manager
(mahalo) [4]. The adoption of an ACID transactional
approach in this case does not limit the scalability of the
approach, since the number of involved parties is small.
While the transaction is executing, users can still access
the dataweb by exploiting the standard Web server
mechanisms. If users perform operations that impact on the
files involved in the transaction, these operations are
serialized properly.

)LJXUH����(QWHULQJ�PHWD�LQIRUPDWLRQ�DERXW�D
GRFXPHQW�

+DQGOLQJ�&RQFXUUHQW�$FFHVVHV�
The Web, per se, does not provide any mechanism for
guaranteeing that a user does not accidentally overwrite
modifications performed by other users on a document. In
some approaches (see for instance WEBDAV [3]) a
locking mechanism is introduced. In Labyrinth we adopt a
OD]\ approach where no explicit lock is applied to
documents. Users download dataweb items on their
machine and perform any modification on such a local
copy. When they end with the modification, they submit
the change to the system. At this point, the Labyrinth
engine checks if the modification is FRPSDWLEOH with the

748

current state of the dataweb, i.e., nobody else changed that
same document in the meanwhile. If an incompatibility
occurs, the Labyrinth engine does not apply the changes
posted by the user arriving later, and requires him/her to
merge his/her changes with the ones submitted by the
previous user.

+DQGOLQJ�,QFRQVLVWHQFLHV�
In principle, the document base should be kept consistent
with the given schema: for instance, all the mandatory
relationships for a newly uploaded document should be
specified. However, in some cases maintaining such
consistency is not feasible or convenient: e.g., a mandatory
relationship cannot be established, since the correlated
document will be released at a later time. In such cases, the
user can leave the document base in an inconsistent state.
Labyrinth will keep track of these inconsistencies marking
the affected dataweb elements with a proper HTML tag
and a textual description explaining the reason of the
inconsistency (see Figure 6). Later on, as soon as the user
provides the missing relationship, Labyrinth automatically
detects that the inconsistency no longer exists, and
transactionally replaces the tag with a proper link.

)LJXUH����'HDOLQJ�ZLWK�LQFRQVLVWHQFLHV�

+DQGOLQJ�1RWLILFDWLRQV�
Labyrinth’s notification mechanism complements the pull
style approach typical of Web browsers. Labyrinth engines
publish notifications about the occurrence of changes in
some dataweb fragments using JEDI. On the user’s side,
each time a page describing a document or a relationship
instance is downloaded, an applet (that is downloaded
together with the page) automatically subscribes for
notifications concerning the page. The user is thus
informed as soon as someone else changes the page and
can choose to have it automatically refreshed when this
happens.

As shown in the left frame of Figure 6, another applet
allows the user to express his/her interest in specific
actions (e.g., in updates) concerning a particular
entity/relationship type or even a single instance. This
applet collects the notifications about such events emitted

from the Labyrinth engines and displays them. Examples
of notifications that can be shown are: insertion in the
document base of a new “Opportunity” document;
insertion of a new “replaces” relationship for the “Final
Documents and Specifications” entity; update of the
description of a specific “Component” document.

�� ',6&866,21�$1'�)8785(�:25.
Labyrinth combines a lightweight Web-based approach
with an explicit, expressive and fully customizable schema.
The existence of the schema makes Labyrinth suitable for
application in several fields –such as software
engineering– where it is important that documents conform
to a predefined type, and relations (e.g., dependencies) are
explicitly represented.

In the short term, Labyrinth will be integrated with a
workflow management system and with several tools that
will assist the user in defining the schema, in deploying
datawebs on remote sites, and in defining policies for
managing inconsistency. The modular servlet-based
architecture of Labyrinth will also be exploited to add
information search utilities.

A detailed presentation of Labyrinth features and
architecture and a comparison with related work and
approaches can be found on the CEFRIEL Web site at
http://www.cefriel.it/Se/Projects/Labyrinth.

$&.12:/('*(0(176
We would like to thank L. Aprile, D. Baroncelli, and L.
Corradini who helped us in the development of the
Labyrinth prototype. Special thanks to A. Agostoni, F.
Perego, and E. Tracanella who have worked with us at the
definition of the case study we have presented in this
paper.

5()(5(1&(6
[1] F. Cattaneo, A. Fuggetta, L. Lavazza, G. Valetto,

Labyrinth: Schema-based Distributed Document
Management on the Web, CEFRIEL Technical report
- RT 99002.
<http://www.cefriel.it/Se/Projects/Labyrinth>

[2] G. Cugola, E. Di Nitto, A. Fuggetta. Exploiting an
Event-based Infrastructure to Develop Complex
Distributed Systems. In 3URF�� RI� WKH� ��WK
,QWHUQDWLRQDO� &RQIHUHQFH� RQ� 6RIWZDUH� (QJLQHHULQJ,
Kyoto, Japan, April 1998.
<http://www.cefriel.it/se/Resource/resource.asp?ID=1>

[3] IETF WEBDAV Working Group - World Wide Web
Distributed Authoring and Versioning.
<http://www.ics.uci.edu/~ejw/authoring/>

[4] Sun Microsystems. Jini connection technology.
<http://www.sun.com/jini>

749

