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ABSTRACT
This paper explores the idea of augmenting traditional model
checkers with the expressiveness of a declarative, relational
language. The goal is to enable programmers to write very
intuitive and compact specifications, in order to allow the
automatic verification of more complicated software systems.
The key idea is that many structural operations (common
in object-oriented programs) can be easily described using
relations and relational operators, while other operations
are best described using the primitive data types and their
operations (such as simple arithmetic operations on num-
bers). By allowing a mixture of both, and by allowing parts
of the model to be described declaratively rather than im-
peratively, the programmer has the freedom to model each
part of the system differently, using the most intuitive and
simple constructs. We built a BDD-based model checker
for the language, and successfully verified a straightforward
model of the dependency algorithm in Apache Ant for up to
5 nodes.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking

General Terms
Verification

Keywords
Software model checking, computation tree logic

1. INTRODUCTION
Model checking has been successful at verifying systems

with very large state spaces [11]. However, most of the exist-
ing tools have poor or no support for models containing rela-
tions and expressive relational operators. Previous work[3]
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has shown that relational operators can often be used to suc-
cinctly describe behaviors and operations on structural ob-
jects. Furthermore, existing model checking tools require all
state transitions to be described explicitly. It is not enough
to describe the desired effect of a state transition: an im-
plementation describing how the state changes has to be
provided. As a result, the model specification is often ver-
bose, and this increases the likelihood that there is a bug
in the specification, or that the specification and the actual
system do not match.

We decided to explore the idea of bringing together rela-
tional and temporal logic. To test the idea, we designed a
proof-of-concept specification language that augments tra-
ditional model checkers with relational logic. The model
can be written declaratively, imperatively, or as a mixture
of both. In addition to the commonly supported data types
such as integers and booleans, the model can also use sets,
relations, and relational operators. Safety properties can be
specified using both relational and temporal operators, using
the temporal logic CTL[7], and then checked automatically
by a model checker. We implemented a proof-of-concept
BDD-based model checker for this language and used it to
verify several algorithms, including the topological sorting
algorithm in the Apache Ant program.

Our main contributions are the development of techniques
to embed relational data structures into symbolic model
checkers, the design of a simple yet expressive specification
language based on these techniques, and the implementation
of a proof-of-concept model checker. To our knowledge, this
is the first checker that smoothly combines first-order quan-
tifiers, relational operators, and temporal logic operators in
a single framework.

2. SYNTAX

2.1 Scalars
Our language supports two scalar data types: integers

and enumerations. When an integer variable is de-
clared, the programmer has to specify the size of the variable
in terms of the number of bits required. Integer operations
such as addition, subtraction, multiplication, and division
are supported. They are performed using either 2’s comple-
ment arithmetic or unsigned arithmetic, depending on the
version of the operator being used.

An enumeration defines a set of distinct scalar values.
Each variable can then take on one of the values at any given
time. For example, we could define Employee to be an enu-
merated type with 4 possible values: Alex, Beth, Carl, and

312



Expr ::= emptyset

| Variable
| Expr {+ & - . ->} Expr union, intersection, difference, relational join, and Cartesian product
| {~ ^ *} Expr transpose, transitive closure, and reflexive transitive closure

Formula ::= true

| false
| Variable
| Formula {&& || =>} Formula conjunction, disjunction, and implication
| ! Formula negation
| {AG AX AF AU EG EX EF EU} Formula CTL operation over a formula
| {all some one no lone} Variable Formula quantification over a formula
| {all some one no lone} Expr cardinality test on a set-valued expression
| Expr in Expr subset/membership test on two expressions

Statement ::= Var := Expr;
| Var := Formula;
| Formula;
| if Formula Statement
| if Formula Statement else Statement
| foreach Variable:Expr Statement
| FunctionName(Expression, Expression, · · · );

Figure 1: Core Syntax of the Language

Dave. We could also omit the names. For example, to model
the interaction of 10 communicating nodes, we could define
Node to be an enumerated type with 10 distinct values,
without the need to give them names.

Booleans are implemented as a built-in enumerated type
with two possible values: true and false.

2.2 Sets and Relations
Variables can also be declared to be a relation among

scalar types. For example, to store the languages that each
employee can speak, a variable can be declared to be a rela-
tion from Employee to Language. Relations can be of any
arity greater than zero. Sets are just relations with arity
one. The list of operations we support is listed in Figure 1.

We find that the relational join and transitive closure op-
erators especially useful in modeling structural operations
and properties.

Two arbitrary tuples a and b can be joined if and only
if the last component of a is equal to the first component
of b. If they can be joined, the join is the concatenation
of the two tuples, with the last component of a and the
first component of b removed. The relational join of two
relations A and B, with arity n and m, is a new relation
with arity n+m−2, consisting of all the possible joins of
tuples from A and B.

This operator nicely captures the notion of objects and
fields: given a relation f representing the mapping from ob-
jects to their field contents, and given a set S containing just
a single object, then the C/C++/Java-like notation of S.f
will contain exactly S’s value of the field f.

The transitive closure is defined only on binary rela-
tions. Given a binary relation A, its transitive closure is the
smallest transitive relation that contains A. In other words,
it is the limit of the infinite series A + A.A + A.A.A +
· · ·

This operation is especially useful in modeling operations
that traverse complicated structures. For example, search-
ing a tree or DAG is easily accomplished by taking the tran-
sitive closure of the pointer fields, then dereferencing the
result: there’s no need to write complicated traversal proce-
dures to walk over the pointers.

2.3 Statements
Our tool supports both imperative and declarative state-

ments. The syntax for imperative statements is similar to
Pascal. For example, if A, B, and C, are integer variables,
then the statement “A:=B+C;” changes the value of A to
be equal to the sum of B and C. Other control constructs
such as “for” loops and “if-then-else” statements are also
provided.

Unlike many other modeling languages, our language also
allows declarative statements that declare the desired effects
rather than explicitly describing the exact action. Inside a
declarative statement, primed variables (A’, B’, · · · ) refer
to the value of the variables after this statement, where as
the unprimed variables (A, B, · · · ) refer to their values before
this statement.

For example, the statement “(A == A’ && A !in B’);”
specifies that the value of A shouldn’t change, but the new
value of B can be any value that does not contain A as a
subset. In particular, there are no implicit frame conditions
in declarative statements: anything can change unless ex-
plicitly specified to be unchanged.

Borrowing from Alloy’s syntax, we use the in keyword to
mean “is a subset of”. Because scalars are represented as
sets constrained to be singletons, and since we do not allow
higher-order sets, scalar A is in B if and only if the singleton
set containing A is a subset of B. Thus there is no ambiguity
in using the in keyword to mean both “is a subset of” and
“is a member of”.
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2.4 Procedures
A procedure is simply a list of statements. When a pro-

cedure is executed, each statement is executed sequentially,
except in the case of loops or recursive calls.

At least one of the procedures must be declared as a top-
level procedure. The semantics of the model is simply that,
at any given step, one of the top-level procedures is nonde-
terministically chosen and executed.

Executing a model generates an infinite list of successive
system states. Since there may be more than one top-level
procedures, and some of them may be nondeterministic, the
possible system states form a tree: each state s has a finite
number of possible next states s1 · · · sn.

Since the state space is finite, every branch of the tree
eventually leads to a previously visited state. Therefore,
this infinite tree of states can be viewed as a finite Kripke
structure. A model in this language thus defines a finite
Kripke structure, and the top-level procedures define its al-
lowable transitions.

2.5 Assertions
Our approach should support CTL [7], LTL[15], or richer

logic, but our choice to build the proof-of-concept BDD
model checker makes CTL the ideal logic for writing prop-
erty assertions.

At any given state, the A operator specifies a property
that must hold for every possible future execution trace,
and the E operator specifies a property that must hold for
at least one possible future execution trace. The A and E
operators must be coupled with one of the four state oper-
ators: G, X, F, and U.

On any given execution trace, the G operator specifies a
property that must be true at every state along the path.
The X operator specifies a property that must be true at
the next state along the path. The F operator specifies a
property that must eventually become true, at least once.
The U operator specifies a pair of properties p1 and p2,
where p2 must eventually become true in at least one future
state, and p1 must be true at every state prior to that.

Together, there are 8 possible CTL operators: AG, AX,
AF, AU, EG, EX, EF, and EU.

3. EXAMPLE: MUTUAL EXCLUSION
Even though the classic problem of mutual exclusion is

trivial, it helps to illustrate the features of this system.
The problem involves a system of P processes and M mu-

texes. At any given time, a process is either waiting or run-
ning. A running process can choose to either do nothing, or
it can give up a mutex that it currently holds. A running
process can also request a mutex that it doesn’t currently
hold. If no other process holds that mutex, then the request-
ing process will get possession of the mutex and remain in
the running state. Otherwise, the requesting process enters
the waiting state. Whenever a running process chooses to
give up one of its mutexes, if there is one or more processes
waiting on that mutex, then one of them will be arbitrar-
ily chosen to receive the mutex. Only the chosen process
will enter the running state; all other waiting processes will
remain in the waiting state.

When implementing a mutual exclusion algorithm, the
main problem to avoid is deadlock: suppose initially process
1 holds mutex 1 and process 2 holds mutex 2; if process
1 chooses to wait on mutex 2, and process 2 chooses to

// There are exactly 4 mutexes and 4 processes.
enum mutex={m1,m2,m3,m4};
enum process={p1,p2,p3,p4};

// "has" is a relation from processes to mutexes,
// representing the mutexes currently held
// by a process.
process->mutex has;

// "wait" is a relation from processes to mutexes,
// representing the mutex each process
// is waiting for, if any.
process->mutex wait;

toplevel void ReleaseMutex(process p, mutex m) {
if (no p.wait) && (m in p.has) {
p.has := p.has - m;

}
}

toplevel void GrabMutex(process p, mutex m) {
if (p.wait == m) && (no has.m) {
p.has := p.has + m;
p.wait := emptyset;

}
}

toplevel void Wait(process p, mutex m) {
if (no p.wait) && (p.has < m) { p.wait := m; }

}

Figure 2: Mutual Exclusion

wait on mutex 1, then both processes will be in the waiting
state forever. (A waiting process cannot choose to give up
a mutex until its request is first granted; since process 1
can resume only when process 2 releases its mutex, and vice
versa, neither process can make any progress from that point
on.)

The model in Figure 2 describes one particular solution to
the problem: by assigning a total ordering on the mutexes,
then requiring that each process can wait only on a mutex
whose position is ‘greater’ than all other mutexes that the
process currently holds.

In this example, there are four processes competing for
four mutexes. All three procedures are top-level procedures,
and they describe the allowable state transitions. At any
given point in time, if a process is waiting for a mutex that
has just become available, the process can grab it. If a pro-
cess isn’t waiting for anything, it can choose to release a
mutex it currently holds, or it can choose to wait on any
mutex that is greater than any mutex that the process cur-
rently holds. (In this example, there are four mutexes: m1,
m2, m3, and m4. So if a process already holds m2, it can
choose to wait on only m3 or m4).

Assertion 1: Mutual Exclusion. The following assertion
ensures that mutual exclusion is always satisfied:

assert !bad && (no has+wait)
=> !bad && AG (all m:mutex | sole has.m);

It says that if initially none of the processes is holding
any mutex or is waiting for any mutex, then in all possible
future execution paths, at every state along each path, each
mutex is always held by zero or one process.

“bad” is a built-in boolean variable that is set to true
whenever a runtime exception has occurred; and once it be-
comes true in a given system state, it will remain true in all
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future system states. For example, assigning a set of mul-
tiple values into a scalar variable will set the “bad” flag to
true.

Assertion 2: No Deadlock. The following assertion en-
sures that the processes never deadlock in this system:

assert !bad && (no has+wait)
=>

!bad &&
AG all p:process | all m:mutex |
(p->m in wait) => (EF p->m in has);

It says that if initially none of the processes is holding
any mutex or is waiting for any mutex, then in all possible
future execution paths, at every state along each path, if
a process waits for a mutex, it is possible for the process
to eventually acquire the mutex. The EF operator is used
instead of AF, because AF would be trivially violated by a
process that never releases its mutex.

4. EXAMPLE: TOPOLOGICAL SORT
We wanted to see if we could model a realistic Java proce-

dure that performs graph manipulations. We chose the de-
pendency algorithm in the open-source build tool Ant (ver-
sion 1.5.4), because its size is moderate, it has recursive calls,
and its correctness depends on five rich properties on the
graph. The code from the org.apache.tools.ant.Project class
is in Figure 3. It has a single top-level procedure (topoSort)
and a recursive procedure (tsort) that does the actual topo-
logical sort. Our model (shown in Figure 4) is a straightfor-
ward translation of the Java code.

There are two important observations. First of all, our
system allows the input graph to be specified declaratively.
By using sets and relations as the state components, we
can allow an arbitrary topology, and automatically verify
that the algorithm will perform correctly given any input
that satisfies some declarative constraint (in this case, the
requirement that the input graph be acyclic).

The second observation is that the relational operators
allow the safety properties to be specified very succinctly.
Even though the data structures here and the graph traver-
sal algorithm can be represented using primitive data types
in other model checkers, to do so is painful at best. This
example showcases the ease of using relational operators to
model operations on dynamic structures. For example, the
ability to take the transitive closure of the “dependOn” re-
lation makes it very easy to state the “has cycle()” property
that checks whether there is a cycle in the graph or not.

In the case of topological sort, there are exactly 5 prop-
erties that any topological sorting algorithm must satisfy.
Our model checker can verify that indeed all five properties
are satisfied:

Assertion 1: The assertion that every node appears exactly
once in the sorted list can be simply stated as follows:

bool has_cycle() {
some t1:Node | t1 in t1.^dependOn;

}

assert !bad && !has_cycle()
=> AX (!bad && (all S:Node | one list.S));

Here, the initial condition of the system is stated declara-
tively: any non-cyclic graph is allowed. This avoids the need

to explicitly enumerate all possible graph configurations; in-
stead, all possible configurations are considered.

Assertion 2: If node A depends on node B, then node B’s
position in the sorted list will always come before node A.

assert all a,b:Node |
(!bad && !has_cycle() && b in a.^dependOn)
=> AX (!bad && one list.a && one list.b

&& list.b < list.a);

Assertion 3: If the starting node “Node1” does not depend
on some node B, then B’s position in the sorted list will come
after Node1.

assert all S:Node |
(!bad && !has_cycle() && S!=Node1
&& S !in Node1.^dependOn)
=> (!bad && (AX list.Node1 < list.S));

Assertion 4: This assertion states that if there are no cycles
in the dependency graph, then the system won’t enter the
error state:

assert !bad && !has_cycle() => (AX !bad);

Assertion 5: Finally, this assertion states that if there are
cycles in the dependency graph, then the system will always
enter the error state:

assert !bad && has_cycle() => (AX bad);

5. IMPLEMENTATION

5.1 System States
This implementation uses BDD nodes [16] to represent

the system states and state transitions.
As is standard, each state variable is simply encoded by a

number of BDD variables, representing the range of possible
values. For example, a 4-bit integer variable can take on 16
possible values; so it can be encoded by 4 BDD variables.
An enumeration variable that can take on 8 possible values
can be encoded by 3 BDD variables.

Sets and relations are more expensive: a relation variable
can contain many possible tuples. Each tuple that could
possibly be in a relation requires a separate BDD variable
to represent whether the tuple is in it or not.

The arithmetic and relational operators are translated
into the corresponding operations on the BDD graphs rep-
resenting the corresponding bit positions, as is standard in
other symbolic model checkers.

One complication involves performing operations between
scalars and non-scalar values: since the bit positions are
encoded differently for scalars and non-scalars, the high-level
operations between them cannot be decomposed into simple
operations on each bit. Instead, our approach first promotes
the scalar into a set containing exactly 1 element and then
performs the relational operations on the resulting sets. On
the other hand, there is no way to automatically demote
a set expression into a scalar value, since the set may not
always contain exactly one element.

5.2 State Transitions
As is standard, state transitions are represented by dou-

bling the number of BDD variables used: one set for the
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// tsort() performs a Depth-First-Search from S.
void tsort(String root..) {

state.put(root, VISITING);
visiting.push(root);
Target target = (Target) targets.get(root);
if (target == null) { ... throw new BuildException(...); }
for (Enumeration en = target.getDependencies(); en.hasMoreElements();) {
String cur = (String) en.nextElement();
String m = (String) state.get(cur);
if (m == null) tsort(cur, targets, state, visiting, ret);
else if (m == VISITING) throw makeCircularException(cur, visiting);

}
String p = (String) visiting.pop();
if (root != p) { throw new RuntimeException(..); }
state.put(root, VISITED);
ret.addElement(target);
}

// It first calls tsort() on the root node.
// It then calls tsort() on any unvisited node in order to detect cycles.
Vector topoSort(String root, Hashtable targets) {

Vector ret = new Vector();
Hashtable state = new Hashtable();
Stack visiting = new Stack();
tsort(root, targets, state, visiting, ret);
for (Enumeration en = targets.keys(); en.hasMoreElements();) {
String curTarget = (String) en.nextElement();
String st = (String) state.get(curTarget);
if (st == null) tsort(curTarget,targets,state,visiting,ret);
else if (st == VISITING) throw new RuntimeException(..);

}
return ret;
}

Figure 3: Java code for topological sort

enum Node { Node1, Node2, Node3, Node4, Node5 };
enum Label { VISITING, VISITED };

Node->lone Label label; // Each Node can be unlabeled, VISITING, or VISITED. (’lone’ means zero or one)

Node->Node dependOn; // Each Node depends on 0/more other Nodes.

int->lone Node list; // The sorted list and its length.
int length;

void tsort(Node S) {
S.label := VISITING;
foreach Y:S.dependOn {
if (no Y.label) tsort(Y); else if (Y.label==VISITING) bad:=true;

}
S.label := VISITED;
list := list + length->S;
if (length>5) bad:=true; else length++;

}

toplevel void topoSort() {
bad:=false;
length:=0;
label:=emptyset;
list:=emptyset;
tsort(Node1);
foreach S:Node {
if (no S.label) tsort(S); else if (S.label==VISITING) bad:=true;

}
}

Figure 4: the model
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“present state” and one set for the “future state”. An assign-
ment statement such as a:=b+1 is translated into a relation
between present and future states: (a’==b+1 && b’==b),
where the presence of the apostrophe indicates that the vari-
able refers to the future rather than the present state.

One complication arises when trying to assign a set into
a scalar variable. To handle this correctly, we must make
sure that the set always contains exactly one element. More
precisely, whenever the set contains zero or more than one
element, we want that to be reported as an error. This
problem cannot be solved by having stronger typing rules:
the program being analyzed could perform a series of set
manipulations knowing the end result will be a singleton,
but a type checker cannot determine this in general.

To solve this problem, we introduce an additional global
variable named “bad”. Legal statements will preserve the
value of “bad”, but illegal statements should set “bad” to
true. Assuming there are three variables in the system states
a, b, and c, we translate the expression a:=expr; into the
boolean formula:

(a’==expr && b’==b && c’==c
&& bad’==bad && size(expr)==1)

||
(bad’==true && size(expr)!=1)

where size(x) denotes the number of elements in the set x.
The clauses b’==b’ and c’==c are frame conditions ensuring
b and c are not changed by this statement. Programmers
can then assert that the “bad” flag is never true in any
reachable states, for example.

As is standard, we translate each statement in a proce-
dure into a relation representing the set of allowable state
transitions. Each procedure then simply represents the se-
quential composition of all the statements in the procedure.
Consider a procedure containing two statements, s1 and s2:

void proc() {
s1; s2;

}

Let a and b be the transition relations represented by s1
and s2, respectively. Then the transition relation for the en-
tire procedure simply represents the effect of first performing
the first statement, and then performing the second state-
ment on the outcome of the first statement. That can be
easily computed by first declaring a set of temporary BDD
variables ŝ representing the intermediate system state, com-
posing the two relations a and b together, then existentially
quantify out the intermediate system state:

∃ ŝ (a[ŝ/s′]) ∧ (b[ŝ/s])

The approach given above is standard technique in sym-
bolic model checking, and can deal with everything in this
language, except loops and recursive procedure calls. The
following sections explain how they are translated by our
model checker. In particular, the treatment of potentially
infinite recursive calls and loops is interesting, as they are
not found in typical model checkers.

5.3 Recursive Calls
The standard way of deriving the semantics of a recursive

function is to compute the least fixed point of its generating
function. It typically starts by translating the function body
as if the inner call does nothing. This gives an approximate

transition relation for F. Then the function body is trans-
lated again where this approximation is used to translate
the inner call. This process repeats until a fixed point is
reached, and that additional substitution yields no further
changes to the transition relation. The standard algorithm
has a drawback: sometimes it cannot detect the presence of
possible infinite loops. Consider the following piece of code:

void F() {
S := an arbitrary value from 1 and 2.
if (S==1) F();

}

The standard approach first assumes that F() is the empty
transition relation. In the next iteration, the first statement
gives 2 possible next states: S=1 and S=2. The first choice
does not have a successor, and will be eliminated in the se-
quential composition, leaving the second choice as the only
choice. The third iteration finds no changes in the transla-
tion of F(), and concludes that for any input value of S, F()
will have a successor state with S set to 2. The possibility
that the value 1 may be chosen indefinitely and thus leading
to infinite loops is not detected.

Our technique solves this problem by introducing one more
system state called “loop”. The transition relation for ev-
ery statement is augmented, such that whenever the system
enters the “loop” state, it stays in that state forever.

We still perform the iterative fixed point computation as
above. But instead of assuming F() does nothing initially,
we assume F() takes every input state to the “loop” state.

This is basically a slight modification to the standard ap-
proach of using ⊥ in the denotational semantics. Instead of
having just ⊥, we added a state in the lattice on top of ⊥
to denote a “could loop” state.

Theorem: Fixed point computation using the aug-
mented system state always terminates
Proof : The fixed point computation always terminates if
the generating function is monotonic in some pointed Com-
plete Partial Order (CPO). Let S be the finite set of system
states, including a special “loop” state labeled L. Let E be
Powerset(S)\{∅}. We’ll define the relation �E on E as fol-
lows: ∀e1, e2∈E | e1�Ee2 if and only if (e1⊆e2∪{L}) and
(e1=e2 or L∈e1). Then every transition relation in our sys-
tem is a total function in S→E. If we define the relation �F

on S→E as:
∀f1, f2| f1�Ff2 if and only if ∀s∈S f1(s)�Ff2(s)

then both relations are reflexive, transitive, and antisym-
metric; thus, the set of functions S→E form a pointed CPO
under �F, with the function “λs.{L}” as the bottom value.
It is obvious that every generating function in our system
is monotonic with respect to �F. Thus, by Tarski’s theo-
rem [1], every generating function has a least fixed point.

Our new algorithm is sound because for every recursive
function F, the transition relation T that it finds will al-
ways satisfy the following condition: substituting T for ev-
ery recursive call sites inside the body of F will produce T
as the resulting transition relation (since, by definition, T
is the least fixed point of the recursive function’s generating
function).

For example, our new algorithm correctly translates the
previously-shown recursive function F() into the transition
relation that takes any input S into either the state S=2
or the “loop” state. Programmers can now incorporate the
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“loop” predicate in the assertions to check for the possibility
or inevitability of infinite loops.

Mutually recursive functions can be handled easily, since
we can always transform a set of mutually recursive func-
tions into a single recursive function with an additional “se-
lection” parameter.

5.4 Loops
All loops can be converted into “while” loops surrounded

by possible additional statements. For example, the “for”
loop “for(a;b;c) body;” can be translated as follows:

a;
while(b) {body;c;}

Likewise, the loop “do body; while(p);” is equivalent to
the following piece of code:

body;
while(p) body;

Therefore, it suffices to consider only the translation for
the following simple “while” loop:

while(p) body;

For every loop, we can automatically introduce a new re-
cursive procedure representing the loop. In the above case,
the corresponding recursive procedure is as follows:

void rec() {
if (p) { body; rec(); }

}

In the original model, the occurrence of the loop can then
be replaced by a simple call to this recursive function in-
stead. For example:

.. ..
while(p) c; rec();
.. ..

[Original Model] [Model where loops are transformed
into recursive procedures]

Since the additional recursive functions are anonymous,
they cannot possibly be invoked anywhere else. Therefore,
their introduction does not alter the set of execution traces
specified by the model. It is then straightforward to show
that the behavior of the model is preserved after replacing
each loop by a call to its corresponding anonymous recursive
function.

This way, we can apply our new algorithm for recursive
functions on loops and use it to detect the possibility of
infinite loops.

5.5 CTL Assertions
As is standard, the CTL operators take a transition rela-

tion, and computes the set of states that satisfy the relation,
one or two predicates, and the operator. What is novel is the
mixing of CTL and relational operators. If relational opera-
tors are used in the transition relation or the predicate itself,
our technique translates them into simple relations between
pre-state and post-state variables. Thus, no change to the
CTL model checking algorithm is required.

Likewise, set comprehension operators can be applied to
formulas containing CTL operators, because each CTL op-
erator simply computes a set of satisfying states. It is no

different than any other formula that represents a set of
states by evaluating to true for every state in the set.

Therefore, the mixing of CTL and relational operators
was surprisingly straightforward.

6. RESULTS
BDD representations are canonical: given the same state

space and the same variable ordering, an imperative descrip-
tion of an operation will take up the same amount of memory
as a declarative description of the same operation.

Since our relational data types and the corresponding
algorithms operate on BDD nodes directly, it should be
straightforward to embed them as front ends to existing
BDD-based model checkers such as SMV[13] with no per-
formance penalty (other than the compilation cost of trans-
lating these relational operators).

Nevertheless, to allow rapid exploration of different de-
sign trade-offs, we found it useful to build our own proof-of-
concept model checker. The results shown below are based
on our own tool which does not yet use partial order re-
duction, disjunctive partition, or many other standard opti-
mization techniques commonly found in model checkers such
as SMV.

N Mutual Exclusion Topological Sort
2 0.05 seconds 0.07 seconds
3 0.4 seconds 0.5 seconds
4 42 seconds 10.5 seconds
5 25 min 12 seconds 5 minutes 49 seconds
6 > 35 minutes > 20 minutes

Table 1: Time

N Mutual Exclusion Topological Sort
2 77 nodes 233 nodes
3 1649 nodes 1559 nodes
4 93587 nodes 11054 nodes
5 835049 nodes 283372 nodes
6 Out of memory Out of memory

Table 2: Memory Usage

The experiments were run on a Pentium 4 machine run-
ning FreeBSD 4.11 with up to 1G of user-space memory.

7. RELATED WORK
Alloy[4] is a structural modeling language that supports

relations and relational operators based on first-order logic.
Alloy models are always written declaratively, and it is dif-
ficult to model integer arithmetic using Alloy. Furthermore,
since Alloy specifications do not have a built-in notion of
states, they cannot be automatically checked against prop-
erties containing temporal operators.

This work combines the relational features of Alloy with
imperative constructs, control constructs (such as loops and
recursive function calls), and full integer arithmetic support.
By allowing models to be written declaratively or impera-
tively using simple data types as well as relations, the pro-
grammer can concentrate more on writing the model and less
on struggling with the limited expressiveness of the tool.
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B[2] is a rich formal specification language. B and Al-
loy are most similar to our specification style. While B has
extensive tool support, most of it is focused on aiding the
programmer in the software development process. Tools ex-
ist for deriving proof obligations and integrating with theo-
rem provers, but in general the proofs cannot be automated.
In contrast, our approach finitizes the problem so that the
properties can be checked automatically within a bounded
size without requiring user guidance.

SMV[13] is a BDD-based model checker that takes a de-
scription of a finite Kripke structure, and verifies it against
safety and liveness properties written in the temporal logic
CTL[7]. Its input language supports only simple data types,
and does not support dynamic structures and relational op-
erators.

SMV is very efficient, and has been successfully used to
verify many hardware and software systems. One of its
weakness is its lack of rich relational data types. To describe
the common operations on structural objects, the program-
mer has to encode the relations using arrays of primitives,
and then iterate through them whenever a value is required.

Not only is it cumbersome and error-prone, this approach
also hardcodes the sizes of the various objects. To change
the size later, the programmer often needs to go through the
whole model to modify the loop boundaries and to change
the list of constants. This can lead to more modeling errors.

In contrast, our approach allows the programmer to mix
relational, arithmetic, and logical operators throughout the
specification.

Java PathFinder[18] is a tool and a framework for check-
ing Java programs. At its core is a custom-made Java Vir-
tual Machine that executes Java bytecodes and uses back-
tracking and other searching algorithms to check for prop-
erty violations.

Its main advantage is the ability to check all pure Java
programs. However, being an explicit-state model checker
based on a Java Virtual Machine, it can check only prop-
erties expressed in terms of legal Java expressions. It is
cumbersome to describe properties involving complex data
structures containing pointers. It is not straightforward, in
Java, to specify transition relations such as “dereferencing a
pointer an arbitrary number of times” or “taking the union
of a set of traversed fields”.

SLAM[17] automatically generates a boolean abstraction
of C programs and uses traditional model checkers to check
properties. Through a series of refinement, it infers addi-
tional clauses and assigns boolean bits to represent them. It
has been very successful in verifying Windows device drivers,
but its inference algorithm is optimized for low-level predi-
cates and cannot infer complex relations between objects.

SPIN[8] is an explicit-state model checker that checks a
system by attempting to visit all reachable states. Safety
properties specified in linear temporal logic (LTL[15]) and
liveness properties can be checked automatically.

Furthermore, the user can optionally choose to enable var-
ious state compression methods (such as bitstate hashing)
to check systems with even larger state spaces.

SPIN has been successful applied to verify many types of
systems, especially systems consisting of concurrent commu-
nicating processes. However, its basic specification language
also does not support relations and relational operators; de-
scribing complex graph manipulation algorithms and their
safety properties is cumbersome.

8. CONCLUSION
The goal of this research is to show that it is possible

to embed relations and expressive relational operators into
a standard CTL symbolic model checker. Our techniques
should be applicable to many other symbolic or explicit-
state model checkers.

This paper demonstrates that the traditional BDD-based
model checkers can be augmented to work with declarative,
relational models. The relational operators allow many com-
mon structural operations to be modeled more clearly and
succinctly, and the temporal logic operators make it easy
to specify complicated safety and liveness properties that
depend on unbounded execution traces. Our approach ex-
tends the data types of existing model checkers by finitizing
sets and relations and then encoding them using standard
representations.

There were three main difficulties in the research. First
of all, the language design underwent many changes in the
hopes of finding a right balance between imperative model-
ing language (like SMV [13], Murphi [5] [6], or SPIN [8]) and
a rich object-oriented or relational language (like Java [12],
Alloy[3], or OCL[10]). Rich, expressive languages reduce the
gap between the specification syntax and the actual imple-
mentation language, but often impedes automatic analysis.
Following the success and lessons of Alloy, we opted for a
very simple language with just enough constructs to describe
scalars and relations. By adding a carefully chosen set of
relational operators, we are able to model structure manip-
ulation algorithms as well as simple integer calculations.

The second challenge involved finding efficient and deter-
ministic algorithms for computing the transition relation of
statements and declarative constraints; in particular, the
translation of (potentially infinite) recursive function calls
was nontrivial.

The third main challenge is in finding ways to optimize the
BDD operations and reducing the memory usage. In terms
of speed, we rearranged our algorithms to reuse previously
calculated values rather than recomputing them. On top
of the BDD library’s built-in cache, we added additional
cache to remember the values of different phases of CTL
computation and reuse the values when possible.

In terms of memory usage, we can only hope to reduce
the graph size during computation, because the final graph
size is fixed (since BDD representation is canonical). On
top of the BDD package’s automatic reordering, our system
allows users to specify the initial ordering of variables. We
have found that, with the topological sort algorithm, the
penalty of a badly chosen initial ordering is severe: we were
not even able to verify the algorithm for N=5. We found a
locally optimal variable ordering for our experiment by trial
and error.

9. FUTURE WORK
We hope to apply our techniques to embed relational data

types into state-of-the-art model checkers and augment them
with expressive relational operators. Many domain-specific
model checkers already exist for different applications. We
believe they can benefit from having the ability to clearly
and succinctly describe complex data structures and opera-
tions that manipulate these structures.

One area of ongoing research involves the development of
techniques to reduce the memory usage of the BDD model
checker. Since the BDD representation for every boolean
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function is always canonical, improving the method of com-
puting them will not reduce the ultimate memory require-
ment. Instead, we are exploring compilation optimization
techniques to exploit the inherent modularity of procedure
boundaries in order to avoid BDD state space explosion.

Alloy 3’s new type system [9] is much simpler than Alloy
2’s type system, and yet enables richer analysis of relation
types and the domains and ranges of relations. We are con-
sidering adopting a similar type system and doing similar
compile-time analysis to reduce the number of BDD vari-
ables needed to represent certain relations.

Following the success of Alloy’s use of SAT [14] solvers to
achieve greater scalability, we are also exploring non-BDD
based techniques such as SAT and other decision procedures.
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