
Improving Validation Activities
in a Global Software Development

Christof Ebert, Casimiro Hernandez Parro, Roland Suttels, Harald Kolarczyk
Alcatel, Switching and Routing Division, Antwerp, Belgium; Madrid , Spain; Stuttgart, Germany

Correspondence: Tel.: +32-3-240-4081; e-mail: christof.ebert@alcatel.be

Abstract
Global software development challenges traditional tech-
niques of software engineering, such as peer reviews or
teamwork. Effective teamwork and coaching of engineers
highly contribute towards successful projects. We will
evaluate within this case study experiences with validation
activities in a global setting within Alcatel's Switching and
Routing business. We will investigate three hypotheses re-
lated to effects of collocated inspections, intensive coaching,
and feature-oriented development teams on globally dis-
tributed projects. As all these activities mean initial invest-
ment compared to a standard process with scattered activi-
ties, the major validation criteria for the 3 hypotheses is
cost reduction due to earlier defect detection and less de-
fects introduced. The data is taken from a sample of over 60
international projects of various sizes from which we col-
lected all type of product and process metrics in the past 4
years.

Keywords
Global development, validation, inspection, defect detection,
efficiency, cost of non-quality, coaching, feature develop-
ment, incremental development, teamwork

1. Introduction

Working in a global context has along tradition for tele-
communication suppliers. The primary drivers in the past
were the need to be locally present in terms of customiza-
tion, after sales service, and show to local (governmental)
customers that new jobs were created which in turn could
justify more contracts. A growing amount of acquisitions,
which add new markets, products, engineers, and creativity
to the existing team, is another contributor to global devel-
opment. A third reason for even starting new development
activities in countries where neither the market nor the ac-
quisitions would justify such evolution is the simple fact that
in the existing sites it's impossible to further hire young en-

gineers with right skills at reasonable cost. The answer in
such cases is to start business in countries such as Eastern
Europe or India, which we did over the past years.

Obviously working in a global context has advantages but
also drawbacks. In fact, the business case is surely not a
simple trade-off of different cost of engineering in different
regions or time-zone effectiveness. Working in a globally
distributed project means overheads for planning and man-
aging people. It means language and cultural barriers. It cre-
ates jealousy between the more expensive engineers being
afraid of loosing their jobs, while forced to train their much
cheaper counterparts.

We will focus in this case study on impacts of global devel-
opment towards validation activities. Form a business per-
spective this means impacts on quality and cost of non-
quality.

Cost of non-quality is the cost of not reaching the desired
quality level at the first run. It is often referred to as "re-
work". We calculate cost of non-quality by summarizing re-
spective (life cycle phase depending) cost for defect detec-
tion and correction across all defects found in the project.

Global software development obviously challenges tradi-
tional validation techniques of software engineering and
asks for new solutions. We will try in this case study to
summarize experiences and to share the best practices from
projects of different type and size that involved several lo-
cations in different continents and cultures. Especially vali-
dation activities during development, such as inspections or
unit test need to be adjusted to achieve results, which are
both efficient and effective. As a basis, we will evaluate ex-
periences with validation activities in a global setting within
Alcatel's Switching and Routing business. Such complex
software systems show the various dimensions of global de-
velopment and offer practical solutions as they have been
managed since years in a global context. The challenges,
which we will address in this case study, involve:

Proceedings of the 23rd International Conference on Software Engineering (ICSE’01)
0270-5257/01 $10.00 © 2001 IEEE

• to support of validation in a global product line concept;
• to facilitate early defect detection with an improved
validation process;
• to reduce overall cost of non-quality.

We will analyze three hypotheses related to those challenges
in the context of over 60 projects developed in a three-year
timeframe. This study is unique in that it provides insight in
a running software process improvement (SPI) program
within a large organization dealing with legacy software in a
global context. Around two thirds of the projects had been
handled before the changes were implemented, some proj-
ects implemented only parts, and several projects imple-
mented all three mentioned changes. This allows comparing
impacts directly linked to any of the three factors.

Few documented results quantitatively evaluate the effects
of global development. A good summary on the evolution of
concurrent engineering is provided in [1]. Several recent
studies describe experiences gained from distributed proj-
ects that are not further described in detail [2,3,4]. They
provide a huge set of project management and team man-
agement techniques, which we could also apply, but did not
give quantitative evidence about the effectiveness. In fact,
most evaluations of validation techniques happen in class-
room settings or collocated projects [5,6,7].

Only few studies describe the problem and a solution how to
handle remote inspections in large-scale software develop-
ment [8]. Experiences are based on a tool that facilitates in-
spections and annotations of results, even if the checker is
located remotely. There are however no concrete results
available on efficiency and effectiveness compared to a
collocated setting, which is what we were interested in.

The effects of coaching had not been studied in the area of
software engineering besides the practical guidelines from
change management and technology introduction gained
from using the CMM [2,3,5,9]. Most results published so far
describe the background of such a program with focus on
the assessment and qualitative observations [9,10]. They are
in many cases looking on rather small groups of engineers
that act like a small- to medium-size company, even when
embedded in a big organization [7].

Several qualitative lessons learned have been documented
[11], but they are difficult to scale up towards large legacy
based development projects. They try to set up a return on
investment (ROI) calculation that however typically takes
average values across organizations and would not show the
lessons learned in sufficient depth within one organization.
It has been shown in these studies that the CMM is an effec-
tive roadmap for achieving cost-effective solutions. Often
these studies seem not to be related to quantitatively speci-
fied upfront expectations.

Several current best practices related to continuous build,
configuration management, inspections and validations
within a product line concept involving legacy software are
elaborated in [2,8,12,13]. This involves the impacts of team
management based on concrete measurable targets that are
followed up [7,10,14] - sometimes even to the extreme when
it comes to surviving a project running out of control [2].
Again, what is missing is a timeline study summarizing im-
pacts before and after the introduction of such process.

Within this paper specific terminology is used that should be
briefly explained. CMM is the capability maturity model;
SPI is software process improvement; PY is person years
and Ph is person hours, r is the correlation coefficient meas-
ured in the observed data set (depending on distribution we
use Spearman or rank correlation). Size is measured in
KStmt, which are thousand delivered executable statements
of code (incl. declarations). We prefer statement counting
compared to lines because the contents of a program are de-
scribed in statements and should not depend on the editorial
style.

Failures are deviations from a specified functional behavior.
They are caused by defects. Reviews detect defects and need
to distinguish between what would cause a failure and what
would be editorial or related to nonfunctional behavior. We
summarize these review activities as validation as we com-
pare to both functionality and design decisions. Coaching is
used in this study as on the job support of engineers by more
experienced peers on process and technology related as-
pects.

The paper is organized as follows. Section 2 introduces the
environment and set-up of the study. Section 3 describes
some essential lessons learned and best practices how to im-
prove validation activities in a global software development.
Finally, section 4 summarizes results and probes further.

2. Case Study Setting

Alcatel is a globally acting telecommunication supplier with
a multitude of development projects, which typically involve
different countries. Software development of switching and
routing systems involves several thousand of software engi-
neers. This development staff is distributed over the whole
world in more than 15 development centers in Europe, the
US, Asia (especially India) and Australia. Strong functional
and project organizations, which interact in a classic matrix,
facilitate both project focus and long-term skill and technol-
ogy evolution.

The study describes projects within Alcatel's Switching and
Routing business. The components within the product range
from the proprietary S12 switching system to Corba/Java
middleware and frontends. Alcatel is registered for the ISO
9001 standard. The majority of development locations are

Proceedings of the 23rd International Conference on Software Engineering (ICSE’01)
0270-5257/01 $10.00 © 2001 IEEE

ranked on CMM L2; few are on CMM L3. In terms of effort
or cost, the share of software is increasing continuously and
is currently in the range of 90 %. We focus in this study on
switching projects as they are developed typically involving
at least two to three sites, often in several continents. The
projects vary in size between few person years and several
hundred person years, depending how much new develop-
ment is involved.

Fig. 1: Process Overview Building upon Feature-
Oriented Teams and Continuous Build

To avoid overheads in terms of redundant skills and re-
source buffers in various locations; engineering is entirely
globally managed. Having no option for working local, proj-
ects are organized to achieve the best possible efficiency by
optimizing the trade-off between temporarily collocating
teams, reducing overheads, and having the right skills in due
time.

The development process focuses on teamwork and continu-
ous build [2,12]. It is further outlined in fig.1, which distin-
guishes between upfront Expert Teams for analysis and sys-
tem design, Development Teams which deliver increments
to the continuous build, and the overlapping (sandwich) Test
Team doing the regression, feature and system test activities.
Some details related to making teamwork more efficient are
discussed in the following section.

The project data has been collected in a standardized way
since years by means of a history database [15]. Data is ag-
gregated from the respective operational databases (e.g. ef-

fort or defect data) towards teams, and consolidated for the
entire project. Per project data is collected in two ways. Ob-
viously the first source is the online project information
which is accessible from a project homepage. It is online
available in operational databases and reflects real-time ac-
curacy. Such online data includes defect reporting with
status, test progress, requirements implementation status,
etc. In addition to this operational online data there is from
begin to end a project-specific consolidation data sheet

capturing project and process metrics, such as size, effort,
defects and their distribution, etc. This consolidated data is
available on a monthly basis to track overall performance
with respect to performance targets (e.g. quality, reliability,
cost, cost per activity, cycle time, etc.)

Having done that since '96 allows us to study impacts of
various process changes and other parameters on project
performance. We will use in this study the data of 60 proj-
ects, which we combined with some qualitative information
to link each project towards the three hypotheses. Pilot proj-
ects are not included in this study. Only those projects were
considered that were linked to a clear customer contract
from the beginning.

Having the independent variables closely linked to the over
60 projects in our study, we could extract impacts of each
single variable - following the rule that there should be at
least 10 samples for each variable. This avoids conclusions
of the type described in experimental software engineering
as shotgun approach with uncontrolled independent vari-
ables or the Hawthorne effect [16]. The subsets of projects
used here to explain results are not overlapping. This means
that effects attributing to one result would not attribute si-
multaneously to another and thus hide the real explanation.

StartQual Handover

 Expert Team
req. analysis

Expert Team
TopLevelDes.

 DevTeam4 (1.incr.)

 DevTeam1

DevTeam4 (2.incr.)

 DevTeam2

 DevTeam3

Continuous Build and Industrialization

Regression / Feature / System Test

Context

first load package
refreshes

DD-COD-COI-Reviews-MT-FIT

Incremental Deliveries

Qualification

Customer Project Team Customer

StartDevStartAnal

continuity / consistency

StartBuild

Expert Teams

Incremental
Feature-Oriented

Development

Continuous
Build

Proceedings of the 23rd International Conference on Software Engineering (ICSE’01)
0270-5257/01 $10.00 © 2001 IEEE

To avoid long discussion on possible side effects as they
could occur if we discuss the entire design process (e.g.
tools impacts, skills impact), we narrowed down the design
process towards validation activities, especially code re-
views. Validation - or not doing it at the right time and with
the right process - is a major cost driver and risk factor in
almost all software projects.

Normalized cost of non-quality has been calculated based on
actual defects detected and actual average cost per defect
(incl. detection and correction) per activity where it is de-
tected. Defects detected after handover are accounted with
same cost as during test to avoid different types of market-
specific opportunistic and penalty cost in the field. Then we
calculated the average cost per defect for the entire project
and normalized with size. The result is a project-specific av-
erage value of Ph/defect.

3. Improving Validation Activities

Competition, along with the customers’ willingness to
change suppliers whenever they are dissatisfied has resulted
in huge efforts to provide switching software on time and
with exactly the quality the customer has specified and ex-
pects to pay for. A study by the Strategic Planning Institute
shows that customer-perceived quality is amongst the three
factors with the strongest influence on long-term profitabil-
ity of a company. Customers typically view achieving the
right balance among reliability, delivery date, and cost as
having the greatest effect on their long-term link to a com-
pany. We thus focus here on making validation activities
more effective.

Since defects can never be entirely avoided, several tech-
niques have been suggested for detecting defects early in the
development life cycle [2,10,17]:
• design reviews and inspections;
• code inspections with checklists based on typical fault
situations or critical areas in the software;
• enforced reviews and testing of critical areas (in terms
of complexity, former failures, expected fault density, indi-
vidual change history, customer's risk and occurrence prob-
ability);
• tracking the effort spent for analyses, reviews, and in-
spections and separating according to requirements to find
out areas not sufficiently covered.

We will further focus on several selected approaches that are
applied for improved defect detection before starting with
integration test and system test.

To improve validation activities in global project settings we
have embarked on three separate changes, which we will
further discuss. Each change had been linked to a hypothesis
(or management expectation) which we evaluated during the
projects. Having many projects in parallel and being forced

to carefully introduce change to avoid any confusion on
which process is applied in a certain project, we had after
three years enough data from projects having implemented
none or several of mentioned changes.

Changes that impact entire development processes need
good management sponsorship [10]. Although all three
changes that we evaluate and describe in this case study
have been discussed in literature before [2], it's not at all
evident that such a big organization would easily go for it.
Many people that are used to doing things their own way
need to be convinced. Often this means heavy disputes that
can only be resolved with hard facts. A case study (or exten-
sive pilot) thus is key to successful (i.e. sustainable) process
change.

The changes had been piloted first in a small and uncritical
environment before starting to roll out the change. This al-
lowed to carefully check results versus initial hypotheses (or
assumptions) and to prepare the necessary changes to the
management system (e.g. processes, rules, planning guide-
lines, budgeting guidelines, training materials, tools adapta-
tions, etc.). Pilots were then not continued in increasingly
broader settings, but the sponsoring management decided
upon the good results and benchmarking evidence from
other companies, that the changes become mandatory. In
fact it's a risk to pilot too long, as the variety of processes
confuses the engineering teams.

The following three hypotheses which we set upfront (i.e. as
management decisions supported by history data) will be
evaluated in the following three subsections:
• Hypothesis 1: Collocating peer reviews would improve
both efficiency and effectiveness of defect detection and
thus reduce cost of non-quality.
• Hypothesis 2: Providing a certain level of coaching
within the project reduces cost of non-quality.
• Hypothesis 3: Reengineering the development process
towards teamwork and continuous build allows to better
managing globally distributed projects, and thus reduces
cost of non-quality.

The hypotheses all center around facilitating early defect
detection in the development of projects that are handled in
a global context. They are ordered according to introduction
effort. While collocation of peer reviews is rather easy to
achieve, coaching means already a certain investment and
the reengineering of a development process is certainly the
biggest change described in this study.

3.1 Collocating Peer Reviews

The single most relevant techniques for early and cost-
effective defect detection are inspections and module test.
Detecting faults in architecture and design documents has
considerable benefit from a cost perspective, because these
defects are expensive to correct. Major yields in terms of

Proceedings of the 23rd International Conference on Software Engineering (ICSE’01)
0270-5257/01 $10.00 © 2001 IEEE

reliability however can be attributed to better code, for the
simple reason that there are much more defects residing in
code that were also inserted during the coding activity. We
therefore provide more depth on techniques that help im-
proving quality of code, namely code reviews (i.e. code
reading and code inspections) and module test.

There are six possible paths between delivery of a module
from design until start of integration test (fig.2). They indi-
cate the permutations of doing code reading alone, per-
forming code inspections and applying module test.

Although the best approach surely is from a mere defect de-
tection perspective to apply inspections and module test,
cost considerations and the objective to reduce elapse time
and thus improve throughput, suggested to carefully evaluate
which path to go in order to most efficiently and effectively
detecting and removing faults. To our experience code
reading is the cheapest detection technique, while module
test is the most expensive. Code inspections lie somewhat in
between.

Z
K
R
OH
V
H
W
R
I
P
R
G
X
OH
V &25

&2,

P
R
G
X
OH
WH
V
W

LQ
WH
J
UD
WL
R
Q
WH
V
W

Fig. 2: Six possible paths for modules between end of
coding and start of integration test (COR: code reviews;
COI: formal code inspections)

Module test however, combined with C0 coverage targets
has highest effectiveness for regression testing of existing
functionality. Inspections on the other hand help in detecting
distinct fault classes that can only be found under load in the
field.

There is nevertheless a tendency not to perform these inex-
pensive validation techniques adequately. Fig.3 indicates the
typical vicious circle of not validating when it’s the right
time, and as a consequence later having to detect defects at
much higher cost thus again taking away unexpectedly
resources during the next design activity of a project.

The target must be to find the right balance between effi-
ciency (time to be spent per item) and effectiveness (ratio of
detected faults compared to remaining faults) by making the
right decisions to spend the budget for the most appropriate
quality assurance methods. In addition, overall efficiency
and effectiveness have to be optimized. It must be therefore
carefully decided which method should be applied on which
work product to guarantee high efficiency and effectiveness
of code reading (i.e. done by one checker) and code inspec-
tions (i.e. done by multiple checkers in a controlled setting).

Wrong decisions can mainly have two impacts:
• Proposed method to be performed is too ‘weak’: Faults
that could have been found with a stronger method are not
detected in the early phase. Too little effort would be spend
in the early phase. Typically in this situation, efficiency is
high and effectiveness is low.
• Proposed method to be performed is too ‘strong’: If the
fault density is low from the very beginning, even an effec-
tive method will not discover many faults. This leads to a
low efficiency, compared to the average effort, which has to
be spent to detect one fault. This holds especially for small
changes in legacy code.

Globally distributed software development is highly im-
pacted by work organization and effective work split. Often
not all necessary skills to design a complex functionality are
available at one location. While some authors recommend
building virtual teams [3], we strongly advice to build co-
herent and collocated teams of fully allocated engineers.
Coherence means that the work is split during development
according to feature content, which allows assembling a
team that can implement a set of related functionality - as
opposed to artificial architecture splits. Collocation means
that engineers working on such a set of coherent functional-
ity should sit in the same building, if feasible in the same
room. Full allocation finally implies that engineers working
on a project should not be distracted by different tasks for
other projects.

Projects are at their start already split into pieces of coherent
functionality that will be delivered in increments to a con-
tinuous build. Functional entities are allocated to develop-
ment teams, which are often based in different locations. Ar-
chitecture decisions, decision reviews at major milestones,
and test are done at one place. Experts from countries with
minority contribution will be relocated for the time the team
needs to work together. This allows effective project man-
agement based on the teams that are fully responsible for
quality and delivery accuracy of their functionality.

Proceedings of the 23rd International Conference on Software Engineering (ICSE’01)
0270-5257/01 $10.00 © 2001 IEEE

Fig. 3: The vicious cycle of not reviewing results in due
time.

Collocating a development team to stimulate more interac-
tions is more expensive and might demotivate engineers due
to traveling. We based our hypothesis on earlier qualitative
studies telling that a team is only efficient when communi-
cation of team members happens whenever necessary and
without long planning and preparation [4]. To base our deci-
sion on experiences within Alcatel, we studied projects
where we could distinguish according to the factor of collo-
cation degree.

The hypothesis we tested is that collocating peer reviews
would improve both efficiency and effectiveness of defect
detection and thus reduce cost of non-quality. Out of three
recent projects that included several development teams that
were globally distributed, we looked into the results of each
single code inspection. 87 inspections were randomly se-
lected.

We divided 2 data sets, one with collocated development
teams and inspections, and one with distributed teams where
inspections were conducted remotely. All other variables
remained unchanged. The two sets showed normal distribu-
tion with average values of 25 vs. 13 defects/KStmt and 0,33
vs. 0,08 Ph/defect, respectively. A t-test shows for this data
an evidence of more than 98% that indeed the two sets can
be considered independent. Other impacts such as different
knowledge of underlying code or skill level of engineers
could not be found as explanation factor in this data, as the
involved engineers had experience with the underlying
baseline. The hypothesis was thus accepted on a level α =
0,02.

Looking into individual team performance, we could see that
collocated teams achieve an efficiency improvement during
inspections of over 50%. This means that with the same
amount of defects in design and code, those teams, which sit

at the same place, need less than half the time for defect de-
tection. The amount of defects detected shows almost a fac-

tor 2 difference
in terms of de-
fects per KStmt.
Looking towards
the low cost of
defect detection
during inspec-
tions compared
to subsequent
testing activities
and the cost
contribution of
validation to-
wards total cost,
we found an im-
pact of >10% on
project cost.

3.2 Effective Process Coaching

Continuous technical training and coaching seems natural
for any engineering activity. Looking into post mortem
studies of finished projects with respect to training activities,
we realized that there are big differences in terms of phase-
specific training that involves both technical and process as-
pects. Some project managers focus heavily on providing all
necessary technical and process information at respective
phase kick-off meetings (e.g. start of detailed design, or start
of test), while others just present some rudimentary technical
information and do not further bother with ongoing coach-
ing.

Coaching in the context of validation processes is described
in fig.4. First an initial process is defined and piloted. For
peer reviews for instance this might include checking speed,
duration of reviews, specific checklists, etc. This is also
where such case studies appear as the one underlying this
article. This process is then evaluated in real project set-
tings. Actual data is compared with the original definitions
and proposals. Practitioners are confronted with the results
and together with experts for the respective process, they
investigate results. The process is finally updated. Process
coaches are the link between these elements of process re-
finement. They also guarantee consistency in applying the
process. Finally they evaluate process data and propose to-
gether with practitioners updates for the respective proc-
esses.

Effective coaches consider main learning effects from past
projects and relate them to available process expertise of the
respective teams being coached. For validation activities
which we embarked on within this case study there are the
following elements being considered:

Resources
“not enough resources”
“skil l i s not available”

Planning
“we have to keep the milestone”
“we have already delay”

Complaints

Delay of next
project start

Delay of project
milestones

Attitude:
“we prefer testing in the lab"

Decision: NO VALIDATION

Consequences

Resources get not
free for next project Project costs

exceed

Feedback

Proceedings of the 23rd International Conference on Software Engineering (ICSE’01)
0270-5257/01 $10.00 © 2001 IEEE

• General availability of a re-
view or inspection leader: Only a
trained and internally certified in-
spection leader is allowed to plan
and perform inspections to ensure
adherence to the formal rules and
achievement of efficiency targets.
The number of certified inspection
leaders and their availability limits
the number of performed inspec-
tions for a particular project.
• Upfront design effort (planned
versus actually spent): The actual
design effort per component (i.e.
class or module) gives an initial
estimate on how much code will be
new or changed. This indicates the
effort that will be necessary for
validation tasks like inspections.
• Expertise of the checker: If
specific knowledge is necessary to check particular parts of
the software the availability of correspondingly skilled per-
sons will have an impact on the planning of code reviews
and code inspections.
• Checking rate: Based on the program language and
historic experiences in previous projects the optimal check-
ing rate determines the necessary effort to be planned.
• Size of new or changed statements: Relating to the
checking rate the total amount of the target size to be in-
spected defines the necessary effort.
• Quality targets: If high-risk areas are identified (e.g. un-
expected changes to previously stable components or unsta-
ble inputs from a previous project) exhaustive inspections
must be considered.
• Balancing the cost-benefit trade-off of review activities:
The intention is to apply code inspections on heavily
changed modules first, to optimize payback of the additional
effort that has to be spent compared to the lower effort for
code reading. Code reading is recommended to be per-
formed by the author himself for very small changes with a
checking time shorter than two hours in order to profit from
a good efficiency of code reading. The effort for knowledge
transfer to another designer can be saved.
• Achieving the entry criteria: The inspection or review
can start earliest if entry criteria for these procedures can be
matched. Typically, at least error-free compilable sources
have to be available.

Often coaching of engineers during the projects is reduced
due to assumed negative impacts on total cost and duration.
We found however the opposite. Reduced coaching harms
overall project performance.

Fig. 4: Successfully introducing and sustaining valida-
tion activities is a culture change requesting adequate
process management.

The hypothesis we tested is that providing a certain level of
coaching within the project reduces cost of non-quality.
Coaching in this study is the amount of on the job support
by experienced engineers. Coaching comes on top of regular
technical training and happens entirely on the job by means
of allocating experienced engineers to teams of less experi-
enced engineers. We compared a set of projects within one
culture (i.e. Europe) and similar skill background (i.e. engi-
neers had sufficient technical knowledge of the software
package) that received a coaching effort of ca. 1..2% of total
project budget with a second set of projects that received no
coaching. This data set was evaluated in more depth to see
not only the coaching degree but to also directly evaluate the
type of coaching and the phases where coaching was intensi-
fied.

We found in this specific data set that coaching intensive
projects had an average of 24 Ph/defect, while those with no
coaching had an average of 29 Ph/defect. A t-test shows for
this data an evidence of more than 90% that indeed the two
sets can be considered independent. Based on the careful
selection of the projects we could not see other impacts such
as engineering skills or different stability of baselines. To
see also the bigger picture of all projects in the history data-
base, we did a simplified check based on a ranking of
coaching effort for 68 projects over 4 years. Both parametric
and non-parametric tests show similar results with signifi-
cance level of > 90% The hypothesis was thus accepted on a
level α = 0,1.

Subsystem SS1 / Team 1: Definition of
Quality/Validation Targets

0

20

40

60

80

100

120

COR/I MT FIT FT ST IQT
Phases

M
a

lf
u

n
ct

io
n

s

Malf.

Subsystem SSx / T eam y : Evaluation of of
Quality/Validation Targets vs. Achievements

0

20

40

60

80

100

120

COR/I MT FIT FT ST IQT

Phases

M
a

lf
u

n
ct

io
n

Malf.
Malf. Targets

Definition

Follow-up

Evaluation

ConfrontationInvestigation

Process Coach

Proceedings of the 23rd International Conference on Software Engineering (ICSE’01)
0270-5257/01 $10.00 © 2001 IEEE

Intensive coaching (ca. 1..2% of accumulated phase effort)
could reduce the cost of non-quality in the project by over
20%. We found that for our own process and defect detec-
tion cost a break-even would be reached at ca. 5% coaching
effort. Obviously, this is much more than what we usually
consider necessary. This also means that there are quantifi-
able limits towards involving too many inexperienced engi-
neers in one project.

3.3 Introducing Teamwork and Continu-
ous Build

An essential factor in managing a global project is to create
responsibility for results. We faced in the past often a situa-
tion where distributed projects were heavily impacted by the
functional line organization or even some local legacy or-
ganization. However, nobody felt responsible for achieving
results. The result was poor productivity and unpredictable
delivery accuracy.

Due to not having a product perspective, work products
were handled inefficient. Results were forwarded to the next
in the chain, and cost of non-quality as well as delays accu-
mulated. For instance, inspections were considered finished
when the respective milestone date appeared, instead of ap-
plying reasonable exit criteria, before continuing the defect
detection with the next and more expensive activity. Test
was conducted with a rather static set of test cases that was
not dynamically filtered according to real feature impacts.
The root causes were obvious but so much embedded in the
culture that a complete process reengineering was necessary
to facilitate global development at competitive cost.

The major change, which we implemented to allow for
global development, combine concurrent engineering, con-
tinuous build, and teamwork. They are supported by the re-
spective workflow techniques. Concurrent engineering
means that we assemble cross-functional teams focussed on
customer requirements. Even before project kick-off a first
expert team is assembled to ensure a complete impact analy-
sis which is prerequisite to defining increments. Concurrent
engineering also means that for instance a tester is also part
of the team as experience shows that designers and testers
look at the same problem very differently. Testability and
reduced cost of test can only be ensured with a focus on test
strategy and the potential impacts of design decisions al-
ready during the initial phases of the project.

Teamwork was reinforced to the degree that a team has sole
responsibility for realizing a set of customer requirements.
This means that not anymore a designer would leave the
team when her work product is coded, but would stay to test
the work products in the context of those changes provided
by other team members. Feature-orientation clearly domi-
nates artificial architectural splits [2,12]. The targets of the
team are based on project targets and are shared by all team
members. They are followed up based on delivered value,

i.e. feature content [14]. Periodic reviews of team progress
with the project lead are necessary to follow up and help in
case of risks that cannot be mitigated inside the team.

The changes we introduced towards achieving real incre-
mental development can be summarized as follows (see also
fig.1):
• Analyze requirements from the beginning in the view of
how they could be clustered to related functionality, which
later could be delivered as an increment.
• Analyze context (data structures that are common for all
modules) impacts of all increments upfront before start of
development. The elaboration phase is critical to make in-
cremental development and a stable test line feasible.
• Provide a project plan that is based on these sets of
clustered customer requirements; allocate each requirements
set to a development team. Depending on the impact of the
increments, they can be delivered to the test line more or
less frequently. For instance, if a context impact is detected
too late, a new production cycle is necessary which is taking
more effort and lead time, than regular asynchronous incre-
ments of additional code within the originally defined con-
text.
• Each increment is developed within one dedicated team,
although a team might be assigned to several increments in a
row. Increments must be completed until end of unit and
feature integration test to avoid that the various components
later cannot be accepted to the test line. An important crite-
rion for the quality of increments is that they don't break the
build.
• The progress tracking of development and test is pri-
marily based on the integration and testing of single cus-
tomer requirements. This for the first time gives visibility on
real progress because a requirement can only be checked off
if it is successfully integrated in the test line. Traceability is
improved because each customer requirements links to the
related work products.
• Increments are extensively feature tested by the inde-
pendent test line.

Increments towards a stable build proved one of the key
success factors in global development. We realized that cy-
cle time of projects is heavily impacted by whether continu-
ous build is globally applied or not.

The hypothesis we tested is that reengineering the develop-
ment process towards teamwork and continuous build allows
to better managing globally distributed projects, and thus
reduces cost of non-quality.

Obviously one can argue that this hypothesis actually con-
tains two different pieces, namely teamwork and continuous
build. They are however closely related especially in global
development or in large projects. It's practically impossible
(or very cumbersome, error-prone, time-consuming and thus
inefficient) to work with individual empowered development

Proceedings of the 23rd International Conference on Software Engineering (ICSE’01)
0270-5257/01 $10.00 © 2001 IEEE

teams, if no continuous build is applied. This would for in-
stance mean that each team runs the risk of reworking their
delivery because another team has invalidated specific de-
sign decisions. On the other hand, in big projects a continu-
ous build is meaningless if no teamwork is involved to dis-
tribute work into chunks.

We evaluated the effects of this reengineered process care-
fully over the past 2 years. Consequently, we see two effects
contributing to the hypothesis. Response time and thus over-
all cycle time is reduced as defect correction happens in the
team (fig. 5). Field defects are reduced due to focus on an
optimized test strategy, longer overall test-time and end-to-
end responsibility of a development team.

Eff ect s o f FD Pro ce ss: F aster R am p -U p (h ere : E ar lier De fec t D et ect io n)

0%

1 0%

2 0%

3 0%

4 0%

5 0%

6 0%

7 0%

8 0%

9 0%

1 0 0%

E la ps ed Tim e in % re lat ed to D R1 -H O

D
ef

ec
ts

 (C
o

de
+

D
at

a)

F D P roj ec t (AR G) 0% 4% 1 0% 2 4% 3 2% 5 1% 6 0% 7 1% 8 4% 9 2% 1 0 0%

W a terfa ll (CH I7 4L P1) 0% 0% 1% 5% 1 5% 3 6% 4 6% 5 8% 7 1% 8 4% 1 0 0%

W ate rfal l (B P6) 0% 0% 0% 0% 4% 1 5% 2 9% 4 8% 6 2% 8 1% 1 0 0%

0% 1 0% 2 0% 3 0% 4 0% 5 0% 6 0% 7 0% 8 0% 9 0% 1 0 0%

Team Work:
Faster reaction

to problems
Waterfal l
Approach:
Late defect
detection

Fig. 5: Effective Team Management Scales Directly up to
Faster Reaction Time

Cost of non-quality in the overall project has been reduced
significantly due to this earlier defect detection. The hy-
pothesis was tested in a set of 68 projects over the past 4
years (i.e. before and after the change). Consequently we
can accept with a significance level of >95% in a t-test that
the change towards team work and continuous build indeed
reduces cost of non-quality.

4. Lessons Learned

Managing global software development is not easy and has
high-risk exposure to lowering overall productivity. By in-
troducing some changes towards improving the sense of re-
sponsibility for end results, we are able to keep quality and
productivity standards and to improve performance - even
with this changing work environment.

Looking into the overall project history database, we can
also summarize the effects with few quantitative charts (fig.
6-8). Over the past 4..5 years defect detection has been
shifted increasingly to the activity when defects are actually
introduced into the project (fig. 6). Consequently, we could
embark on the improvement activities mentioned in this arti-
cle.

Percentage of Defects
Detected during Design

51%15% 41%34%29%

1995 1996 1997 1998 1999

Fig. 6: Earlier Defect Detection during Design Allowed
to Focus on Collocated Peer Reviews and Sufficient
Coaching

With the attention on collocating peer reviews, embarking
on better process coaching, and introducing incremental
build principle into the projects, we could improve cost of
non-quality by a factor of over 50% (fig. 7). Although the
direct impact is visible on defects and quality level, we
could achieve both cost and cycle time improvements (fig.
7,8). This is obvious if teams are encouraged to focus on the
right quality level as long as they are in full control of the
results, and not to wait until the next project phase.

Norm. Cost of Non-Quality ['97 = 100%]

100% 45%77%

1997 1998 1999

Fig. 7: Reduction of Normalized Cost of Non-Quality
over past 3 Years by Combined Focus on Collocating
Peer Reviews, Effective Process Coaching, and Introduc-
tion of Teamwork and Continuous Build

We will summarize those best practices related to improve
validation activities, which we identified over the past years
that clearly support global software development:
• Agreeing and communicating at project start the re-
spective project targets, such as quality, milestones, content,
or resource allocation. Similarly, at phase or increment start
team targets are adjusted and communicated to facilitate ef-
fective internal team management.
• Making teams responsible for their results
• While having one project leader who is fully responsi-
ble to achieve project targets, assign her a project manage-
ment team that represents the major cultures within the proj-
ect.
• Defining at begin of projects which teams are involved
and what they are going to do in which location. This in-
cludes a focus on allocation rules, such as scattering or col-
location.

Proceedings of the 23rd International Conference on Software Engineering (ICSE’01)
0270-5257/01 $10.00 © 2001 IEEE

• Setting up a project homepage for each project that
summarizes project content, progress metrics, planning in-
formation, and team-specific information.
• Collocate as much as possible teams to facilitate effec-
tive teamwork.
• Provide the necessary coaching on the job and friction-
free by mixing different level of expertise.
• Provide the necessary tools and technology to manage
workflow and workspaces around the world (e.g. CM,
problem management, test environments).

Alcatel 1000 S12

0

97 98 99 00
Year

re
la

ti
ve

 t
im

e

< 5Py Dvpt. Effort

< 10Py Dvpt. Effort

< 30Py Dvpt. Effort
> 30Py Dvpt. Effort

Fig. 8: Cycle Time Reduction is a Desired Side Effect of
Earlier Defect Detection and Continuous Build

5. Conclusions

We had embarked on three specific changes that we first
piloted in smaller settings to optimize the underlying proc-
ess, and then rolled out over the past 3 years. All changes
met the expectations in terms of cost versus benefit, al-
though we cannot yet tell that they are fully implemented in
all projects. The three underlying hypotheses could be vali-
dated in this case study covering more than 60 projects over
a timeframe of 3 years:
• Collocating peer reviews improves both efficiency and
effectiveness of defect detection and thus reduce cost of
non-quality.
• Providing a certain level of coaching within the project
reduces cost of non-quality.
• Reengineering the development process towards team-
work and continuous build allows to better managing glob-
ally distributed projects, and thus reduces cost of non-
quality.

Literature
[1] Smith, R.P.: The Historical Roots of Concurrent Engineering

Fundamentals. IEEE Transactions on Engineering Manage-
ment, VOL 44, N0. 1, February 1997.

 [2] McConnell, S.: Software Project Survival Guide. Microsoft
Press. Redmont, USA, 1998.

[3] Karolak, D.W.: Global Software Development. IEEE Com-
puter Society Press. Los Alamitos, USA, 1998.

[4] DeMarco, T. and T.Lister: Peopleware. 2nd ed. Dorset
House, New York, 1999.

[5] Jones, C.: Software Quality. Analysis and Guidelines for
Success. Thomson, Boston, USA, 1997

[6] Tagaki, Y. et al: Analysis of Review’s Effectiveness Based
on Software Metrics. Proc. Int. Symp. on Software Reliability
Engineering ‘95. IEEE Comp. Soc. Press, Los Alamitos, Ca,
USA, pp. 34-39, 1995.

[7] Humphrey, W.S.: Introduction to the Personal Software Pro-
cess. Addison-Wesley, Reading, USA, 1997.

[8] Perpich, J.M., et al.: Anywhere, Anytime Code Inspections:
Using the Web to remove Inspection Bottlenecks in Large-
Scale Software Development. Proc. Int. Conf. on Software
Engineering, IEEE Comp. Soc. Press, pp. 14-21, 1997.

[9] Wigle, G.B.: Practices of a Successful SEPG. European
SEPG Conference 1997. Amsterdam, 1997. More in-depth
coverage of most of the Boeing results in: G.G.Schulmeyer
and J.I.McManus, Ed.: Handbook of Software Quality Assur-
ance, 3. ed., Int. Thomson Computer Press, 1997.

[10] Grady, R.B.: Successful Software Process Improvement.
Prentice Hall, Upper Saddle River, 1997.

[11] McGarry, F. et al: Measuring Impacts Individual Process
Maturity Attributes Have on Software Products. Proc. 5. Int.
Software Metrics Symposium. IEEE Comp. Soc. Press, pp.
52-60, 1998

[12] Karlsson, E.A. et al: Daily Build and Feature Development in
Large Distributed Projects. Proc. ICSE 2000, pp. 649-658.
IEEE Comp. Soc. Press. Los Alamitos, USA, 2000.

[13] Perry, D.E. et al: Parallel Changes in large Scale Software
Development: An Observational Case Study. Proc. ICSE
1998, pp. 251-260. IEEE Comp. Soc. Press. Los Alamitos,
USA, 1998.

[14] Royce, W.: Software Project Management. Addison-Wesley.
Reading, USA, 1998.

[15] Ebert, C.: Technical Controlling in Software Development.
Int. Journal of Project Management, .Vol. 17, No.1, pp. 17-
28, Feb. 1999.

[16] Fenton, N. E. and S.L. Pfleeger: Software Metrics: A Practi-
cal and Rigorous Approach. Chapman & Hall, London,
1997.

[17] Ebert, C., T.Liedtke and E.Baisch: Improving Reliability of
Large Software Systems. Annals of Software Engineering.
Vol. 8, pp. 3-51,1999.

Proceedings of the 23rd International Conference on Software Engineering (ICSE’01)
0270-5257/01 $10.00 © 2001 IEEE

