
Version: 1.61
Authors: Jussi Koskinen,
 Henna Lahtonen, Tero Tilus

Classification:
Date: 19.6.2003
Status: Final version

SOFTWARE MAINTENANCE
COST ESTIMATION AND

MODERNIZATION SUPPORT
ELTIS-project

CONTENTS
1 INTRODUCTION...1

2 SOFTWARE MAINTENANCE..2

2.1 MAIN EMPIRICAL STUDIES...2
2.1.1 Lehman et al. (1998) ...2

3 SOFTWARE MAINTENANCE TASKS ...4

4 GENERAL SOFTWARE COST ESTIMATION MODELS...5

4.1 MAIN STUDIES..5
4.1.1 Boehm (1984) ...5
4.1.2 Kemerer (1987) ..7
4.1.3 Grady (1994) ..8
4.1.4 Briand et al. (2000) ...9

5 SOFTWARE MAINTENANCE COST ESTIMATION.. 11

5.1 MAIN STUDIES..12
5.1.1 Sneed (1995a) ... 12

5.2 EMPIRICAL METHODS ...13
5.2.1 Kemerer & Slaughter (1999).. 13

5.3 SOFTWARE LIFETIME AND REWRITING STRATEGIES ...14
5.3.1 Gode et al. (1990) ... 14
5.3.2 Foster (1991) ... 15
5.3.3 Tamai & Torimitsu (1992) .. 15
5.3.4 Chan et al. (1996)... 17
5.3.5 Sahin & Zahedi (2001).. 19

5.4 FUNCTION POINT -BASED ESTIMATION ..20
5.4.1 Furey (1997) .. 20
5.4.2 Kitchenham (1997)... 20
5.4.3 Abran et al. (2002) ... 21
5.4.4 Other works on the use of function points in software maintenance..................................... 22

5.5 DYNAMIC MAINTENANCE EFFORT ESTIMATION...22
5.5.1 Jørgensen (1995) .. 22
5.5.2 Caivano et al. (2001) ... 23
5.5.3 Other related works.. 24

5.6 GENERAL MAINTENANCE COST DRIVERS ..24
5.6.1 Niessink & van Vliet (1998) ... 24
5.6.2 Jørgensen & Sjøberg (2002) .. 25
5.6.3 Other works.. 26

5.7 SOFTWARE COMPLEXITY EFFECTS..26
5.7.1 Gibson et al. (1989).. 26
5.7.2 Banker et al. (1993) ... 27
5.7.3 Kemerer (1995) ... 28
5.7.4 Munson & Elbaum (1998) .. 29
5.7.5 Polo et al. (2001) .. 29
5.7.6 De Lucia et al. (2002) .. 30
5.7.7 Other works.. 31

5.8 MAINTAINABILITY ...31
5.8.1 Coleman et al. (1994) .. 31
5.8.2 Lanning & Khoshgoftaar (1994)... 32
5.8.3 Pearse & Oman (1995) .. 33
5.8.4 Other related works.. 33

5.9 PROJECT SIZE EFFECTS..34
5.9.1 Banker & Slaughter (1994).. 34

5.10 OTHER POTENTIAL MAINTENANCE COST DRIVERS OR METRICS...34
5.10.1 Factors related to regulators .. 35
5.10.2 Factors related to software business processes ... 35
5.10.3 Technical factors.. 35
5.10.4 The general type of the software and the applications area ... 35
5.10.5 User requirements.. 36
5.10.6 Quality of available human-resources... 36
5.10.7 Applied maintenance process models .. 36
5.10.8 Specific properties of the software.. 36
5.10.9 Used basic programming tools.. 37
5.10.10 Documentation... 37
5.10.11 Design of the system... 37
5.10.12 Factors affecting maintainability ... 37
5.10.13 Applied solutions supporting maintenance.. 38

6 APPROACHES FOR SOFTWARE MODERNIZATION AND ITS SUPPORT.................................. 39

6.1 GENERAL ORGANIZATIONAL DECISIONS ...39
6.2 CONFIGURATION MANAGEMENT ..39
6.3 RE-ENGINEERING..39

6.3.1 Sneed (1995b) ... 39
6.3.2 Ransom et al. (1998) .. 40
6.3.3 Teng et al. (1998).. 42
6.3.4 Comella-Dorda et al. (2000) .. 42
6.3.5 Warren & Ransom (2002) ... 44
6.3.6 Harsu (2003).. 45
6.3.7 Migration.. 45
6.3.8 Restructuring ... 45
6.3.9 Refactoring... 45
6.3.10 Kataoka et al. (2002) ... 46
6.3.11 Redocumentation... 46

6.4 REVERSE ENGINEERING...47
6.4.1 Information request specifications... 47
6.4.2 Impact analysis support ... 47
6.4.3 Program visualization.. 48
6.4.4 Reverse engineering of object-oriented software.. 48

6.5 PREVENTIVE ACTIONS FOR MAINTENANCE ..48
6.5.1 Enhancement of maintainability during implementation phase.. 48
6.5.2 Enhancement of maintainability during design phase .. 48

7 CONCLUSIONS.. 49

8 REFERENCES .. 52

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST … 1
19.6.2003 ELTIS-project

1 INTRODUCTION

This report describes the theoretical background studies of ELTIS (Extending the Lifetime
of Information Systems) project, based on the preliminary objectives set to the project.
ELTIS is concerned with software maintenance, legacy systems, software lifetime, software
renewal/modernization support, and relevant decision criterias for software modernizations.

Chapter 2 provides a general introduction to software maintenance and motivates the
economic importance of the area. Chapter 3 represents the usually applied classification of
software maintenance activities. Chapter 4 charts the area of general software cost models,
which potentially may provide a basis for maintenance cost estimations. Chapter 5 is the
largest part of the report and deals with software maintenance cost/effort determination.
References to main theoretical works are provided. Chapter 6 provides a framework for
software modernization and its support techniques. Chapter 7 summarizes the conclusions.

This report refers to the contents of the individual studies deemed as most relevant to ELTIS.
The applicability, constraints, validation, maintenance cost drivers, and suggested further
research areas of those studies are analyzed and explicated. In addition, there exists many
other articles whose reference information is provided in separate ELTIS-bibliography.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST … 2
19.6.2003 ELTIS-project

2 SOFTWARE MAINTENANCE

Usually software maintenance is defined as changes to software after its delivery to customers.
The main process of maintenance is changing of source code. Changing of source code,
naturally, also is important in other latter phases of actual system development. The problems
with successfully handling large source code masses, however, typically are more severe in
maintenance phase. Many of the large maintenance tasks also require versatile skills and thus
although maintenance often does not require much innovations, it is actually quite demanding.
In an ideal situation the existing code could be reused (Basili, 1990; Rombach, 1991) and
modified as flexibly as possible. That would make it possible to retain at least part of the
original investment of system development during long lifetime of the system.

The evolution of software is an empirically relatively weakly studied area. One of the main
references is Lehman & Belady (1985), which announces the so-called laws of Lehman. A
characterization of maintenance which emphasizes configuration management and program
comprehension is represented by von Mayrhauser (1994), who has distinguished herself
especially in the area of program comprehension. Most of the text-books in the software
maintenance area are old, classic ones being Martin (1983) and Swanson & Beath (1989).
More recent ones include Takang & Grubb (1996) and Polo et al. (2003). Pigoski’s (1996)
book is practical but remains at rather general level.

2.1 Main empirical studies

2.1.1 Lehman et al. (1998)

This paper describes a subset of the results obtained to the date of publication (1998) from
FEAST/1 project and implications on Lehman’s laws (listed in appendix 1 of the paper). Two
simple metrics of system evolution (size of system, fraction of system not touched at each
release) were observed as functions of release serial number and implications on general
system evolution and maintenance were drawn from them.

Results suggested a minor rewording of Lehman’s 5th law and increased confidence in the
validity of the laws. Results also provided significant support for the FEAST hypothesis
(formulated in the preprints of the three FEAST Workshops, see
http://www.doc.ic.ac.uk/~mml/feast1/).

E-type systems (which are central in the definitions of Lehman’s laws) mean applications for
“real-world” purposes, which are “connected” to a multi-layered and iterative “feedback
system”. Positive feedback tends to increase software size, whereas negative feedback tends
to stabilize program development.

Lehman’s laws are as follows (as formulated in this paper):

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST … 3
19.6.2003 ELTIS-project

1) Continuing Change: E-type systems must be continually adapted or they become
progressively less satisfactory.

2) Increasing Complexity: As an E-type system evolves its complexity increases unless
work is done to maintain or reduce it.

3) Self Regulation: Global E-type system evolution processes are self regulating.
4) Conservation of Organisational Stability: The average effective global activity rate

in an evolving E-type system tends to remain constant over product lifetime.
5) Conservation of Familiarity: On average, the incremental growth tends to remain

constant or to decline.
6) Continuing Growth: The functional content of E-type systems must be continually

increased to maintain user satisfaction over their lifetime.
7) Declining Quality: The quality of E-type systems will appear to be declining unless they

are rigorously maintained and adapted to operational environment changes.
8) Feedback System: E-type evolution processes constitute multi-level, multi-loop, multi-

agent feedback systems and must be treated as such to achieve significant improvement
for other than the most primitive processes.

Validation of the results
Data from the evolution of OS/360 (25 releases), ICL VME Kernel (30 releases) and Lucent
Technology System 1 (17 releases) and System 2 (14 releases) were used.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST … 4
19.6.2003 ELTIS-project

3 SOFTWARE MAINTENANCE TASKS

Generally software maintenance tasks are classified into corrective, adaptive, perfective, and
preventive categories. The first three of these categories were originally derived from the land-
mark empirical study of software maintenance by Lientz & Swanson (1980) (covering 487
organizations).

The contents and characteristics of the classes are as follows:
• Corrections relate to the diagnosis, localization, and actual fixing of errors. Debugging and

testing relate intimately to this class. Often correction-type tasks are easiest and thus less
cost-producing ones, but such that they have to be performed within rigid time-bounds.

• Adaptive tasks deal with interfacing existing software to changing (technical) environment.
• Perfective tasks is the largest category. Additions, enhancements and modifications are

made to the code based on (generally often) changing user needs.
• Preventive maintenance aims at enhancement of future maintainability of the system.

Preventive maintenance is least acute, but because of constant cumulation of maintenance
costs, preventive maintenance should be considered in case of software which has long
lifetime. Thus it may be a cost-effective strategy in long run.

A much more fine-grained classification of maintenance tasks has been represented more
recently by Chapin et al. (2001). Maintenance also includes such central (generic) tasks as
configuration management, change control, code changes, code localizations, program
comprehension and impact analysis. The line of empirical studies of software maintenance
processes in case of industry-level software is thin (look e.g. von Mayrhauser & Vans, 1995;
Singer, 1998; Seaman, 2002).

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST … 5
19.6.2003 ELTIS-project

4 GENERAL SOFTWARE COST ESTIMATION MODELS

There exists established ways to determine the effort needed in software development
projects. The results received from the application of the these general models, however,
generally are not accurate, although best of them provide relatively good estimates.

In traditional software cost models, costs are derived simply based on required effort (which
is measured in man-months). Empirical estimation models provide formula for determining the
effort based on statistical information (a project database) about more or less similar projects.
The precise software development situation is taken into account by using the so-called
complexity factors. Empirically derived co-efficients are provided in the tables of the models,
which take into account the effect of possible deviations from the nominal case. Models usually
require calibration to the actual software development process of the organization.

COCOMO (Boehm, 1981) is the best known of these models. Boehm states that
COCOMO’s intermediate model provides estimates which deviate from the actual needed
effort (only) about 20% in average. COCOMO-II (Boehm et al., 2000) is a new updated
version of the classic model, with a more modern project database. Boehm (1981) has also
represented a simple linear model for determining maintenance costs, but he admits that it has
many limitations. Also Phua (2002) has given general formulas for maintenance costs.

Other software cost models include those represented e.g. by Kitchenham & Taylor (1984).
Techniques may be classified into the following classes:
• Analogy-based methods (e.g. SSM, LATURI).
• Algorithmic methods (e.g. Halstead).
• Composition-based methods, most notably FPA (Function Point Analysis, Albrecht &

Gaffney, 1983) (and its variants: Jones, Symons and Reifer).
• Complexity-based (e.g. cyclomatic complexity, McCabe, 1976; Gill & Kemerer, 1991)

methods.
• Statistics-based methods (e.g. Prize-S).
• PERT.
• Putnam’s model.
• SOFTCOST.
• Other models (e.g. Farr-Zagorsky, NADC, Daly) which are tailored to the needs of

specific application areas, such as financing or aviation.

4.1 Main studies

4.1.1 Boehm (1984)

This article summarizes the 1984 state of decision making and software cost estimation
techniques. Boehm compares Algorithmic, Expert, Analogy, Parkinson, Price-to-Win,
Top-Down and Bottom-Up software cost estimation techniques (which have been developed

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST … 6
19.6.2003 ELTIS-project

earlier by various authors) and surveys decision making under uncertainty. These
techniques are covered in detail in Boehm’s classic book (Boehm, 1981).

Parkinson and Price-to-Win are judged unacceptable due to the high probability of ending up
to results that lead to hazardous decisions. None of the rest is better than the others in all
aspects. Boehm suggests that in practice a combination of applicable techniques should always
be used, results compared and iterated when they differ.

Boehm presents a “master key to software engineering economics decision analysis
techniques”: decision diagram. Main economic analysis techniques available to support
decision making under uncertainty are the following.

In complete uncertainty situation the following may be applied: maximax, maximin and
Laplace rules. These, however, are inadequate for practical software engineering decisions.

Expected-value techniques, where probabilities of different outcomes are estimated, and
complete expected payoff is calculated as follows:

() ()∑
∈

=
Outcomes

PoPr
o

ooE

where E = expected payoff,
Pr(o) = probability of o,
Po(o) = payoff if o occurs,
and decision is made using expected payoffs.

Uncertainty may be reduced by “buying information”. Boehm suggests 5 conditions, titled
“value-of-information guidelines”, under which it makes sense to buy information (by, for
example, prototyping). There exists attractive alternatives whose payoff varies greatly,
depending on some situation-dependent uncertainty factors. These uncertainty factors have an
appreciable probability of producing unwanted outcome (low or negative payoff). The
investigations have a high probability of accurately identifying the occurrence of the possible
unwanted outcomes. The required resources of the investigations do not exceed the value of
the information they produce. There exists significant side benefits (e.g. team-building,
customer relations) derived from performing the investigations.

Applicability of the approach
Given “value-of-information guidelines” and “master key to software engineering economics
decision analysis techniques” are directly applicable in a decision making situation. They both
translate the known limitations and constraints of decision making strategies to algorithmic
form.

Constraints of the approach
There are no explicated constraints.

Validation of the results

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST … 7
19.6.2003 ELTIS-project

This paper is a summary of techniques without detailed descriptions or validation.

Suggested future work
Software data collection is suggested to be performed. A fundamental limitation to progress in
software cost estimation is the lack of unambiguous standard definitions for software data
(such as: man-months, delivered instructions).

“The software field cannot hope to have its Kepler or its Newton until it has had its
army of Tycho Brahes” Barry W. Boehm.

Other related works
These include Boehm & Papaccio (1988); Sommerville (1996); Bennett & Gittens (1997).

4.1.2 Kemerer (1987)

Kemerer is an acknowledged authority on the field of software metrics. He has discussed the
importance of validating general empirical software cost models. Because of the preliminary
state of maintenance cost estimation research, the need for empirical data on software
maintenance is even clearer.

In this paper four popular algorithmic cost estimation models: SLIM, COCOMO, Function
Points Analysis (FPA) and ESTIMACS were evaluated. Generalizability, performance of
LOC and non-LOC based models and relation between proprietary and open models were
the main targets of research effort.

LOC-based models perform poorly when used in different environment than in which they
were developed. Average error rates between the received cost estimates and actual
outcomes ranged from 85% to 772% with most estimates having error rate higher than 500%.
Thorough calibration with a data from previous projects is a necessity.

Non-LOC models (FPA, ESTIMACS) did generally a slightly better job. In terms of
regression analysis results LOC models (COCOMO, SLIM) had higher correlations.
However, LOC data used was obtained ex post, which is – of course – accurate. In reality
cost estimation is based on ex ante LOC counts which are nothing more than a “civilized
guess”.

No conclusive answer to question “Do proprietary models perform better?” could be given,
because SLIM outperformed COCOMO, and FPA did somewhat better than ESTIMACS.

Applicability of the approach
This evaluation clearly points out the fact which model developers themselves have heavily
underlined: These models are adjuncts to, not substitutes for a detailed estimate done by
project managers. At the very best, algorithmic models explain 88% of the behavior of the
actual man-month effort.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST … 8
19.6.2003 ELTIS-project

Constraints of the approach
No special constraints in applying the results from this research were specified.

Validation of the results
Validation was done against data collected from 15 large business data-processing projects
written mainly in COBOL. Average size of project was 221 KLOC.

Suggested future work
More information is suggested to be acquired on what impact do the estimates themselves
have on project.

4.1.3 Grady (1994)

The author classifies uses of software metrics related to the following aspects:
• Project estimation and progress monitoring.
• Evaluation of work products.
• Cyclomatic complexity.
• Design complexity.
• Process improvement through failure analysis.
• Project defect patterns.
• Software process defect pattern.
• Experimental validation of best practices.

He also discusses the usefulness of these categories for engineers, project managers, process
groups and higher management. In conclusion part of the article, the author lists the following
recommendations for strategic purposes:
• Measures of success should be defined early.
• Data defect trend is useful in release decision.
• Complexity should be measured targeting design decision optimization and to creation of

more maintainable product.
• Defects should be categorized (this helps in identifying product and process weaknesses).
• Data which would quantify the success of best practices should be collected.

Following atributes (data which should be collected in a software project) were used in the
research: engineering effort by activity, data size, defects, relevant product metrics,
complexity and testing coverage.

Applicability of the approach
General results need to be refined for each project. In other words, attributes, their timely
analysis and effect on success should be considered individually in each project/organization.
The article presents major uses of software metrics and proposes (listed above) attributes,
which should be collected in project, which is useful.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST … 9
19.6.2003 ELTIS-project

Constraints of the approach
No specific constraints, process metrics are suggested to be collected.

Validation of the results
Few examples without exact details are presented from Hewlett-Packard’s projects.

Suggested further research
The author claims that more effort should be reserved in research of new practices and their
benefits.

Other related works
Fenton (1994); Henry et al. (1996); Schneidewind, N. (1997); Bitman (1999); Ramil &
Lehman (2000); Pressman (2001).

4.1.4 Briand et al. (2000)

Main goals of this research were to evaluate existing cost models with large data set and to
compare local cost models to models based on multi-organizational data. Selected
modeling techniques to be evaluated by MRE (Magnitude of Relative Error) model, PRED(l)
(Prediction at level l) test and cross validation were: Ordinary Least-Squares regression (OLS
regression), Stepwise ANOVA, Analogy, CART, and combinations of these techniques.

Results indicate that OLS regression and ANOVA performed better than other evaluated
techniques. However, consistently with previous research, also the best models proved to be
inaccurate. Remarkable differences between local cost models and general cost models
weren't found.

Variables which were used in the research (and which potentially are also software
maintenance cost drivers) included the following: the domain the system was developed for,
adjusted KLOC, effort of project, team size at any time, virtual machine volatility,
required reliability, execution time constraints, main storage constraints, programming
practices, software tools and programming language experience.

Applicability of the approach
The research is an accurate and repeatable evaluation of cost modeling techniques. Results
give us hints, what cost models should we examined and developed.

Constraints of the approach
No explicated constraints.

Validation of the results
The researchers used data from European Space Agency (ESA) multi-organization software
project database, which, at the time of the research, contained 166 projects from 69
organizations.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
10

19.6.2003 ELTIS-project

Suggested future work
More research effort is suggested to be directed into studying subjective effort estimation,
modeling based on expert knowledge elicitation and combining techniques of expert opinion
and project data.

Other related works
Briand et al. (1999).

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
11

19.6.2003 ELTIS-project

5 SOFTWARE MAINTENANCE COST ESTIMATION

Software maintenance is clearly the most expensive and laborious phase of system
development. Often in case of successful software it causes 50-75% of the costs of system
development to the producing organization (Sommerville, 1996, p. 660). The relative
importance of maintenance is especially great in case of systems which have long lifetime (i.e.
legacy systems, look e.g. Bisbal et al., 1999) and which are large, complex and critical to the
customers.

Generally it is assumed that new design methodologies would alleviate also the problems of
maintenance. However, despite the adoption of new design methods, the relative amount of
maintenance costs has in fact increased (Edelstein, 1993). Thus maintenance problems appear
to be constant problems in organizations producing software, without any imminent, highly
effective panacea.

Most of the time used to software maintenance is spent on program comprehension. Since
work-time is expensive this underlines the importance of improving the maintenance process,
e.g. by using up-to-date CASE-tools, such as reverse engineering or reengineering tools.
Since cost-effective support tool development requires the identification of the processes
which take most of the maintenance time, this is an important related question.

Because of the great ratio of costs caused by maintenance, it would be desirable to estimate
the maintenance costs systematically. Their reliable estimation, however, is hampered by the
fact that most of the established cost models, such as COCOMO (Boehm, 1981; Boehm et
al., 2000) do not fit well to the peculiarities of the maintenance phase. Thus, estimates often
are only “enlightened guesses”.

A good example of the importance of maintenance problems and problems of their estimation
is the Y2K-bug (Feiler & Butler, 1999), which is said to be the single most expensive
technical problem in the history. The gap between many of the announced estimates (e.g.
Jones, 1997) and actual real costs was wide. Generally, the Y2K-bug was successfully
remedied. However, the required preventive code correction demanded relatively big effort,
and e.g. Nokia used about 75 million Euros to that purpose (ITV, 2000).

It would be desirable to be able to make well-informed and correct decisions regarding
whether to continue or not to continue maintenance of a peculiar software system (or its part).
Continued maintenance potentially enables extension of the system’s lifetime, which may or
may not be desirable depending on the interests of the organization producing the software and
its customers.

In reality there exists a great amount of factors which should be considered. Most of the
theoretical models represented earlier make crude simplifications regarding the actual decision

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
12

19.6.2003 ELTIS-project

situation. Thus it would be important to collect maximal data-set of the potentially relevant
factors.

5.1 Main studies

5.1.1 Sneed (1995a)

This paper proposes ways (and presents an implemented method Softcalc) to extend current
cost estimation methods to cover the estimation of maintenance costs.

Softcalc is carried out in the following 7 steps:
1) Size, complexity and quality of the software are measured (automatically, using code

auditor).
2) Impact domain of the planned maintenance action is determined.
3) The size of the impact domain is measured, in at least two of the following metrics: LOC,

number of program statements, function-points, data-points, or object-points.
4) The size measure (step 3) is adjusted by a complexity factor (step 1).
5) The size measure is adjusted by the external and internal quality factors (step 1, internal

quality reflects maintainability).
6) The size measure is adjusted by a productivity influence factor depending on the

estimation method used.
7) Adjusted size measure is transposed into maintenance effort by means of a productivity

table

Applicability of the approach
The model gives one of the inputs (estimated maintenance costs) to the decision making
process when deciding whether to rewrite current system or not.

Constraints of the approach
Supporting tools are a necessity. Softcalc appears to be well-defined only by the (Sneed’s
proprietary) tools implementing it. Even if this would not be the case, it would be far too
laborious to use it without proper supporting software providing required metrics.

Validation of the results
Sneed gives an example, but no actual empirical validation of any kind. In fact he presents
validation as “what is needed”.

Suggested future work
According to Sneed, empirically founded correlations between maintenance effort and size,
complexity and quality metrics would be interesting. Adequate means of defining the impact
domain of planned modifications is also interesting. Once this has been solved the scope of

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
13

19.6.2003 ELTIS-project

the maintenance action is measurable. Also maintenance cost drivers are interesting: the
product (software) itself, product (and business) environment and maintenance personnel.

5.2 Empirical methods

5.2.1 Kemerer & Slaughter (1999)

The article’s discussion is focused on empirical software maintenance research tasks and
methods. In the first section, the authors have summarized results found and methods used in a
few prior research articles.

The authors collected data from a large US retailer with centralized information systems
department, separate development and maintenance units and great stability of personnel.
Research included logs of 23 business systems written in COBOL, but only two systems are
compared in the article. Data was categorized into 3 types (corrections, adaptations and
enhancements) and processed with time series analysis, sequence analysis, phase mapping,
gamma analysis and gamma mapping.

At the end of the article, authors state, that many of the problems of maintenance derives from
a lack of knowledge of maintenance process and of relationships between software
practices and maintenance outcomes.

They emphasize the importance of participation of a good commercial partner in empirical
research projects. Main criteria for a good partner are: 1) a large data source from programs
and versions and 2) willingness to cooperate with the research. Another success factor is a
highly disciplined research approach with desire to expand the previous research.

Following attributes were used in data collection of this study: age, LOC, FP, number of
modules (online and batch), average module size, cyclomatic complexity per LOC,
operators per LOC (unique and total), unique operands per LOC (unique and total),
average cost per change/FP/LOC, enhancement cost per enhancement/FP/LOC and
maintenance cost per maintenance/FP/LOC.

Applicability of the approach
The article reports guidelines for empirical research and therefore it is useful to us.

Constraints of the approach
Results are possibly restricted to the studied software systems.

Validation of the results
Empirical data of over 25,000 change events was collected from 23 commercial software
systems over a 20-year period. However, only two of the systems are reported in the article.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
14

19.6.2003 ELTIS-project

Suggested further research
Authors recommend further research based on their data. Listed examples included:
• Comparing the evolution of legacy systems developed with different approaches.
• Comparing evolution patterns from different kind of industries and organizations.
• Examining the data collected by the authors with other methods to predict the occurrence

of evolution patterns.

Related works
Kitchenham et al. (2002).

5.3 Software lifetime and rewriting strategies

5.3.1 Gode et al. (1990)

A model to compare rewriting strategies (i.e. should we use the current or some new
technology) and determine the optimal rewriting points is represented. The given model is
explicit, well-formed and has only three relatively general assumptions:
1) Maintenance cost is convex in amount of maintenance performed (the effect of refactoring

is not taken into account),
2) Maintenance cost is decreasing in system structuredness,
3) Maintenance cost convexity is decreasing in relation to system structuredness.

Applicability of the approach
All the propositions made, are proven starting from the assumptions listed earlier. Model is
very simplistic and probably doesn’t contain the most important factors defining rewriting
policies. The only apparent, but quite severe, limitation is finite fixed planning horizon, which
is in fact fourth (hidden) assumption.

The model is a formal exercise, not an applicable model. Although (if possible) examining the
results from our research against the propositions of presented model could be interesting.

Constraints of the approach
There exists a huge gap between the simplicity of the model (instantaneous rewriting, and fixed
planning horizon are assumed, and there is only a small number of parameters) and versatility
of “real life”.

Validation of the results
No validation has been performed.

Suggested future work
In conclusion authors suggest: “The next step will involve empirical testing of some of the
results obtained in this phase.” Also lifetime drivers, technology structuredness (level of

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
15

19.6.2003 ELTIS-project

abstraction in programming languages and environment used to develop and maintain the
software), and maintenance backlog are suggested to be studied.

5.3.2 Foster (1991)

Widely held views on software maintenance expenditures are examined in this paper. Foster
argues that in the light of then recent evidence they must be modified. The “popular view” is
summed up as: Software maintenance costs are high and rising as a proportion of software
expenditure (commonly referred as the S-curve). This is an undesirable situation.

The goal of process improvement in maintenance should be the reduction in the proportion of
maintenance within software expenditure. However, actual effective maintenance costs
collected from various publications (1976-1990) clearly show that the proportion of
maintenance costs should be considered to be constant (not rising) over time.

The results of the paper show that if the maintenance process is improved, the results of the
effort are to be seen in increased “lives” of maintained programs. Interestingly, there is very
little existing data on the software system lifetimes.

Applicability of the approach
Not directly applicable.

Constraints of the approach
Results apply only to data processing systems. Embedded systems are excluded. The
economic model referred in the article doesn’t take into account the situation, in which
increase in development productivity and maintenance productivity occur at the same time.

Validation of the results
This work is based on a literature survey. Maintenance effort data was gathered from the
following publications: Bennett et al. (1980), Moreton (1988), Foster & Kiekuth (1990), and
Nosek & Palvia (1990).

Suggested future work
It is stated that maintenance process affects software system lifetime. Foster strongly
encourages to examine the age distribution of software systems and acquiring other software
demography data.

5.3.3 Tamai & Torimitsu (1992)

The article discusses software’s lifetime over (product) generations. The authors focus their
research on collecting statistics of software lifetime, investigating the state of the practice of
software reconstruction and analyzing the factors determining software life- time. Data is
being collected in two surveys.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
16

19.6.2003 ELTIS-project

The first, preliminary survey was performed in one company with questionnaires. The surveyed
systems were written in COBOL with 30 KLOC average software size. The researchers
found 32 cases of software replacements from 27 systems. Software lifetime caused by
replacement varied from 2 to 20 years, average lifetime was about 9 years. Researches listed
typical factors which cause replacement: hardware replacement, high maintenance cost,
change of system architecture, business procedures and social systems.

The second survey’s questionnaires were sent to 150 Japanese organizations and 42 were
returned with data of organizations’ software replacement cases within five years. Results from
the research are listed below:
• Average software lifetime is about 10 years.
• Variance of lifetime data is large.
• Small-scale software tends to have shorter life.
• Administrative systems have longer lifetime than systems supporting business more

directly.
• Some of the companies set software life length at the time of release.
• Software size grew in replacement.
• There is diversification in programming languages, but COBOL is still dominant in business

applications.
• Factors that cause replacement are composite.
• More than a half of replacement cases, satisfying user requirements is given as one of the

causes.
• Software, which has been replaced for reason of maintainability, has longer lifetime.

The authors point out that analysis of software lifetime gives a good support for maintenance
strategy decisions. Software with short life expectation may be maintained with quick-fix
strategy, but they should, however, be constructed by developing reusable components.
Application area, programming languages, and user requirements also have effect on software
lifetime.

Applicability of the approach
The article present factors, which has effect on software lifetime. A model including list of
replacement factors were estimated to be better than a mechanical statistical model, since
future technology development and user requirements are difficult to predict.

Constraints of the approach
No specified constraints.

Validation of the results
Preliminary survey was accomplished before the research. Data was analyzed from a relatively
large set of organizations.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
17

19.6.2003 ELTIS-project

5.3.4 Chan et al. (1996)

This article presents a normative formalized model of software maintenance and replacement
effort over a finite fixed planning horizon. Model extends and specifies the model of Gode
et al. (1990) and earlier work; Chan et al. (1994).

If rewriting speed linear to effort is assumed, optimal timings can be given in closed-form. The
represented major insights are the following:
• Inferior current platform implies earlier replacement and compressed rewriting

schedule.
• Maintenance staff not being familiar with the existing system implies earlier replacement.
• Greater functional complexity, good rewriting effectiveness or poor maintenance

quality imply compressed rewriting schedule.
• With higher rate of maintenance requests, rewrite appears later and replacement earlier.
• Better initial quality or poor rewriting effectiveness imply more relaxed rewriting schedule.
• Potential savings from rewriting don’t come from one single feature alone but from

better platform, quality and familiarity and stringent maintenance procedure together.

 Managerial implications drawn from the previous insights are the following:
• Avoid complete rewrite of large application.
• Organize programming staff by application (to increase familiarity).
• Compress the rewriting schedule (to minimize double maintenance).
• Impose strict quality control to maintenance (to achieve low quality deterioration rate).

 Functions and parameters of the proposed model can be interpreted as the set of factors
relevant to optimal replacement timing (and resourcing). Model has the following (free)
variables (referred as V1-V3)
• The time when rewriting starts.
• The time when the existing software system is replaced.
• The size of the rewriting team.

 Model functions (referred as F1-F7)
• The speed of the rewriting team (function of team size, V3).
• Functional complexity of the existing software system at time t.
• Functional complexity of the new software system at time t.
• Code quality of the existing software system at time t.
• Code quality of the new software system at time t.
• Maintenance productivity on the existing software system at time t (function of

complexity F2 and quality F4).
• Maintenance productivity on the new software system at time t (function of complexity

F3 and quality F5).

 Model parameters are the following:

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
18

19.6.2003 ELTIS-project

• Effort required to develop a function point equivalent of code with the existing
technology platform; it reflects the structuredness of the existing technology platform.

• Effort required to develop a function point equivalent of code with the new technology
platform; it reflects the structuredness of the new technology platform.

• Marginal effort required to deal with the functional complexity of the existing software
system; it reflects staff familiarity with the existing software system.

• Marginal effort required to deal with the deteriorating code quality of the existing
software system; it reflects staff familiarity with the existing software system.

• Marginal effort required to deal with the functional complexity of the new software
system; it reflects staff familiarity with the new software system.

• Marginal effort required to deal with the deteriorating code quality of the new software
system; it reflects staff familiarity with the new software system.

• Code quality of the existing software system when it became operational; it reflects the
control imposed on code quality during the development of the existing software system.

• Code quality of the new software system when it becomes operational; it reflects the
control imposed on code quality during the development of the new software system.

• Deterioration rate of code quality of the existing software system; it reflects the control
imposed on code quality during the maintenance of the existing software system.

• Deterioration rate of code quality of the new software system; it reflects the control
imposed on code quality during the maintenance of the new software system.

• Functional complexity of the existing software system when it became operational; it
reflects the complexity of the functional domain of the software system.

• Average complexity of each maintenance request.
• Average rate of arrival of requests; it reflects the volatility of the business environment.

Applicability of the approach
The presented model is one step closer to real life as compared to the one presented by Gode
et al. (1990). Even though the model is rather simplistic, all the parameters are now
measurable in the real world and optimal (in the sense of this model; see constraints) timing
and replacement policies can be determined (while required parameters are given).

Constraints of the approach
Required parameters for existing and new system are the following:
• Development and maintenance efficiency (person hours/FP),
• Marginal effort required to deal with the complexity of system (person hour/FP) and

deteriorating code quality (person-hours),
• Initial code quality (no dim.) and complexity (FP),
• Maintenance quality (1/request),
• Average complexity of maintenance request (FP), and
• Rate of arrival of requests (request/month).

Even if this input parameter data set is available, the model is (still) limited in finite fixed
planning horizon and leaves out a number of cost drivers (refactoring, changing regulations
etc.) which have a major effect on the process as a whole.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
19

19.6.2003 ELTIS-project

It’s rather evident that this model doesn’t take into account all factors necessary to determine
the optimal replacement policy. And there’s also this finite planning horizon which feels like a
very unrealistic approach.

Validation of the results
The results deduced from the model have not been validated, but model parameters and
assumptions come from field data. Constant maintenance request arrival rate is supported by
field data of 10 applications over a 7 year period. Assumptions concerning system growth
(Lehman’s laws), maintainability (Gibson, Senn, Jones, Kafura, Reddy), complexity increase
(Swanson, Beath) and maintenance productivity (Chan, Ho) are taken from results of separate
research projects.

Suggested future work
1) Determination of the effect of maintenance backlogs is suggested. Usually some
maintenance requests must be postponed (forever) to satisfy more urgent ones. When system
is rewritten this backlog can be incorporated into new system.

2) Collection of data on lifetime drivers such as user environment, effectiveness of
rewriting, technology platform, development quality, software familiarity and
maintenance quality of the existing and the new software systems.

Software lifetime drivers
See model functions and model parameters abowe.

5.3.5 Sahin & Zahedi (2001)

The article presents a model for strategic decision making in software maintenance. The
model is described at general level. Accurate formulas are presented in authors’ other article.

The model’s horizon axis is upgrade cycle of the software product and vertical axis is
customer satisfaction index. Customer satisfaction can be classified into eight policy
baselines based on three categories of change actions: warranty, maintenance and upgrade.
Each baseline has a recommendation for needed action to increase the satisfaction or to keep
it at the same level.

The authors found that high quality is a very relevant variable and with higher quality of
design and implementation, higher average returns are achieved. Furthermore, if software
product is of high quality, customer’s reactions have less severe influence on average return.

The results indicate that average return is higher under high volatility markets than under less
volatile markets due to the larger possibilities to upgrade the system. But on the other hand, in

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
20

19.6.2003 ELTIS-project

high volatility markets, quality and technological obsolescence have more important roles to
customers’ satisfaction and average return.

Applicability of the approach
The model presented in the article is relevant to ELTIS. It can be used to analyze
organizations’ portfolio of software systems and to give support in decision making of needed
maintenance actions.

Constraints of the approach
Details of the model are presented in another article.

Validation of the results
Model is validated with 3,840 base scenarios and 23,040 variations of scenarios in 487
organizations.

5.4 Function point -based estimation

5.4.1 Furey (1997)

In this short article the author argues that function points (FP) should be used as a size and
complexity measure. He prefers function points, because they are independent of development
tool and technology, consistent and repeatable, thanks to defined and documented process,
and they help normalize data. In addition, function points enable comparisons between
different technologies. They can be counted in an early phase and used in effort, schedule and
defect estimation.

Applicability of the approach
This article lists arguments, why function points should be used instead of LOC in software
size estimations.

Constraints of the approach
No explicated constraints.

Validation of the results
The article doesn’t present any kind of testing or comparing of FP with LOC.

5.4.2 Kitchenham (1997)

In this short article the author states that specific types of function points (FP, Albrecht’s and
Symons Mark 2 versions) aren’t reliable, since they are not straightforward and simple
measures and have fundamental flaws in their construction. In addition, counter judgements
have an effect in function points counting. However, the author doesn’t prefer LOC as a size

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
21

19.6.2003 ELTIS-project

measure. She proposes that function points should be further improved and used by taking into
account their limitations.

Applicability and constraints of the approach
The article lists arguments, why function points should be used only with caution. Constraints
have to be taken into account also in our research (in case that function points would be used
as software size measure).

Validation of the results
The article doesn’t present any kind of testing or comparing of FP with LOC.

5.4.3 Abran et al. (2002)

This research apply functional size measurement in building estimation models for software
maintenance. Authors describe two separate software maintenance research projects.
Development of enhancive maintenance effort estimation models using functional size was
studied. Following two hypothesis were examined: 1) maintenance effort is increasing
relative to functional size, 2) if correlation between maintenance effort and functional size is
not significant, there exists other factors which together with functional size have influence on
required maintenance effort.

Functional sizes were measured using version 2.0 of second generation function point method
called COSMIC-FFP. Data from field research A (a web-based system) was best explained
with functional size, project difficulty and experience of maintenance personnel as
variables (explanatory power, R2 = 0.83 and R2 = 0.57 in separate groups). Data from field
research B (a real-time system) was best explained with 2 variable regression model

dcxzbzaxy +++= (x = size, y = difficulty). Using that model coefficient of determination
rose to significant level R2 = 0.84. Functional size alone doesn’t explain maintenance effort.
However, together with project difficulty it does. Second hypothesis was supported by these
research projects.

Applicability of the approach
This research shows that there exists domains where accurate early maintenance effort
estimation is possible. It would be surprising if this would appear to be possible only in the
domains examined here. However, due to the use of regression models, no extra information
(supporting decision making, references to legacy data, etc.) besides the effort estimate value
is provided.

Constraints of the approach
These results are domain specific and shouldn’t be wildly generalized.

Validation of the results

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
22

19.6.2003 ELTIS-project

There were 36 maintenance projects, 21 of which were maintenance of large real-time system
(field research B) and 15 maintenance of web-based linguistic system (field research A).

Suggested future work
Better defined metrics for project difficulty are needed to refine results. More maintenance
data from different domains of business is needed to further test the second hypothesis.

5.4.4 Other works on the use of function points in software
maintenance

Other works include Abran & Robillard (1993); Engelhart (1995); Tran-Cao et al. (2002).

5.5 Dynamic maintenance effort estimation

5.5.1 Jørgensen (1995)

This article describes experiences from the development and use of 11 software maintenance
effort prediction models falling into 3 base categories: regression analysis, neural networks and
pattern recognition.

Best models achieved 50% MdMRE (Median Magnitude of Relative Error). Expert
predictions ranged from 10% to 20% on the same scale. However, there’s a major difference
between environments. While models were compared to historical data, the managers (most
likely) had their data from an environment where the maintainers knew about the predictions
(interpreted by the maintainers as “plans”) in advance!

Jørgensen suggests that prediction models should be used as instruments to support the expert
estimates and to analyze the impact of the maintenance variables on the maintenance process
and product. Pattern recognition approach seems to have the potential for being superior to
the other approaches in supporting the expert. Pattern recognition models (described e.g. in
Briand et al., 1992) are able to point out a set of similar maintenance tasks to the one to be
predicted.

Applicability of the approach
Results are important to us. If we are aiming at supporting decision making, we need to have
something more than a black box competing with the expert. Pattern recognition or hybrid
approach is capable of producing supporting information in addition to the estimated
maintenance effort.

Constraints of the approach
Not explicated.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
23

19.6.2003 ELTIS-project

Validation of the results
Data was collected from 109 randomly selected maintenance tasks executed by 110
maintainers of 70 applications written in COBOL or some 4GL, ranging 5-500 KLOC in size
and 1-20 years in age.

Suggested future work
Comparison of the prediction accuracy of expert predictions and the prediction accuracy of
formal prediction models, when both types of predictions are carried out under the same
conditions.

5.5.2 Caivano et al. (2001)

This article presents a dynamic maintenance effort estimation model and supporting tool
(DEE). The model expects process performance to change during project and tries to adapt
itself to reflect the changes. First estimator is deduced from previous projects pretty much the
same way as in other estimation models (regression analysis). That estimation is then further
refined during project execution using newly collected metrics.

DEE is built on Access 2000® and StatSoft STATISTICA®. External inputs come from past
experience and current project. Used econometric model is built automatically using (forward
stepwise multiple) regression analysis. Model refinement is done every time the accuracy of
estimation drops below given threshold value.

There were the following lessons which were learned on system renewal process.
• A renewal project can be more efficient if supported by tested tools.
• A restoration process (a process resembling reverse engineering and reengineering) is

useful when intention is to improve quality without altering software structure.
• Expectations for some variables (e.g. complexity gain) can be limited to reduce required

effort.

These “lessons” seem quite self evident and the connection between them and the subject of
research was left unclear.

Applicability of the approach
The results are not directly applicable to ELTIS. The tool (implementing the presented model)
is used when refining effort forecast during rejuvenation (reengineering) process. At that point
the decision has already been made to modernize the old system.

Constraints of the approach
Model is defined only by the tool (DEE) implementing it, thus the tool is a requirement.

Validation of the results

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
24

19.6.2003 ELTIS-project

There are no convincing validation. There exists only an experimental test with one renewal
project of aged banking application and some simulations with legacy data.

5.5.3 Other related works

These include Calzolari et al. (1998).

5.6 General maintenance cost drivers

5.6.1 Niessink & van Vliet (1998)

The article presents results from two measurements of cost drivers of software maintenance.
Research included two organizations: the first IT department is responsible for Dutch social
security system (A) and the second is a part of the Dutch industrial organization (B). The
selection of possible drivers was based on literature and interviews of managers and engineers.
To analyze the data, researchers used principal component analysis and multiple regression
analysis.

Although the environments and measurement programs were quite similar in organizations,
data from organization A was considered more useful to explain a variance in effort to
implement change request than organization B’s data. The authors point out the implication of
a consistent use of standardized measurement process. To improve the overall prediction,
authors suggest looking for variables relevant to analysis and testing.

There were a versatile set of data collected (of which many potential maintenance cost
drivers). These included the following: maintenance type, software complexity,
requirement changes, size, fault correction effort (fault locality, cumulative changes
made to the software, characteristics of the defective software components), work
needed to convert data, changed use of database, user interface change, code attributes
(structuredness, readability and quality), experience (of the engineer with the code), kind
of database used, relationship with other applications, relationship with other change
requests, documentation (readability, completeness, clarity and structure), availability of
test sets, tests performed, complexity and size of the change, size of the code to be
changed and other application characteristics.

Applicability of the approach
The results are restricted to the studied organizations and more research is required to
determine the presented formulas for maintenance effort more accurately. As noted earlier, the
article includes a wide list of attributes possibly having effect on maintenance costs.

Constraints of the approach
As noted in the previous paragraph.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
25

19.6.2003 ELTIS-project

Validation of the results
Data was collected from two organizations but results aren’t generalizable.

Other related works
Niessink & van Vliet (1997).

5.6.2 Jørgensen & Sjøberg (2002)

The research focuses on experience’s effect on maintenance skills. The skills were
measured as a frequency of unexpected major problems and as accuracy of prediction of
maintenance problems. Also maintainers’ learning from experience was studied.

The research was accomplished in a software maintenance department of a Norwegian
company. The department maintained over 70 applications, mainly written in COBOL, 4GLs
or C. The ages of the software varied from less than a year to more than 20 years and sizes
varied from a few thousand to 500,000 lines of code. From 110 workers, 54 maintainers
were randomly selected for interviews. The maintainers’ average experience in maintaining
and/or developing was 7.7 years, from which 3.4 on average were spent in maintaining the
certain software.

The major findings were the following:
• Experience decreases the frequency of unexpected major problems to a certain skill level.
• The maintainers’ general experience and application specific experience didn’t have a

great effect on maintenance problem prediction accuracy.
• A simple one-variable model produces more accurate predictions than maintainers.

Following data-attributes were collected during the research: total maintenance experience,
maintenance experience on the application to be maintained, application development
experience, task solving confidence, major unexpected problems, prediction accuracy
and size of the task.

Applicability of the approach
According to the article, it is important to consider maintainers’ skills as an attribute to
maintenance productivity (which affects required maintenance effort and thus profitability of
extended system maintenance and modernization).

Constraints of the approach
No specific constraints.

Validation of the results
As noted earlier, empirical data was collected. Findings are similar to previous studies. The
author lists the following possible effects on the validity of the results:

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
26

19.6.2003 ELTIS-project

• Bias in the allocation of maintenance tasks; difficult tasks were given to most experienced
maintainers.

• Lack of realism of prediction process; interviewer’s identity (researcher versus project
leader) may have an effect on answers.

• Low quality of the data; there is a risk for misunderstanding a question in interviews.
• Lack of meaningful measures; it is difficult to measure experience.

Suggested further research
At the end of the article, the authors state their interest to extend the research by focusing on
learning and training processes’ effect on maintenance and prediction skills.

5.6.3 Other works

Other works in the area include Gorla & Benander (1990); Mancini & Ciampoli (1990);
Gerlich & Denskat (1994); Bredero et al. (1995); Hürten R. et al. (1996).

5.7 Software complexity effects

5.7.1 Gibson et al. (1989)

The authors of this article have examined the system structure’s impact on software
maintenance performance. Motivation for the research is a fact, that most of the maintainers’
time is spent on understanding the system to be maintained. There is also empirical evidence,
that complex programs need more maintenance than less complex ones.

Three professional programmers were assigned to do three maintenance tasks to three
different versions of a system written in COBOL. Six metrics (Halstead’s E, McCabe’s
V(G), Woodward’s K, Gaffney’s Jumps, Chen’s MIN and Benyon_tinker’s C2) were
tested.

Results indicate that improvements in system structure decreased total maintenance time and
error frequency. This applies only across a portfolio of tasks, not in specific task.
Programmers were not found to be aware of structural differences although differences
improved performance. Also metrics were considered as a potential tool for project
management. However, programmers couldn’t separate complexity of the system from
complexity of the maintenance task and therefore systems were not ranked inconsistently by
them.

Following attributes were used in the research: participants’ background (age, titles,
general/development/maintenance experience, and COBOL/ISAM experience),
programmer’s performance (maintenance time, accuracy of modification, confidence
and perceptions) and maintenance task’s difficulty and complexity metrics (as described
earlier).

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
27

19.6.2003 ELTIS-project

Applicability of the approach
Also in our research structure of the system must be considered. The article gives a starting
point by representing empirical analysis of the effect of system structure to maintenance, but
reported research offers only thin research data and has some flaws, for example, in estimation
of complexity (in methods).

Constraints of the approach
The results aren’t directly generalizable.

Validation of the results
Only three versions of a single program were investigated.

Suggested future work
Future research is stated to be needed related to the dimensions of programmer perceptions of
complexity and determination whether the received results of relationship between system
structure and maintenance performance exist in “real-world” settings.

5.7.2 Banker et al. (1993)

The article analyzes the relation between software complexity and maintenance costs by
further developing an economic model of software maintenance presented in an earlier article
of Banker et al. (1991). Previous works on the topic are also summarized.

Complexity’s effect on maintenance costs was measured through software comprehension and
project factors (e.g., expended hours, software size). The researchers found that complexity
has a significant impact on maintenance costs.

Following maintenance cost drivers can be identified:
• Maintainer skill,
• Maintainer application experience,
• Structured analysis/design methodology used,
• Operational quality,
• Hardware response time, and
• Complexity (measured in three dimensions: module size, procedure size, and branching

complexity).

Size was measured with source lines of code and function points, and effort with hours
charged to the project. Modularity was mentioned as a measure of complexity.

Applicability of the approach

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
28

19.6.2003 ELTIS-project

The model is described accurately and results can be used as a guideline for future research.
Researchers stated, that results of the research are valid only in case of the specified (large) set
of commercial IS applications. Other sites need future research.

Constraints of the approach
Values of parameters (e.g., optimal module size) differ based on used programming languages.

Validation of the approach
The research included 65 maintenance projects from 17 applications from a large commercial
bank. The applications were written in COBOL.

5.7.3 Kemerer (1995)

The article presents a review of empirical research literature focused on a relationship between
software complexity and software maintenance performance. The survey included 61
articles, which the author had briefly summarized and classified into categories.

The first category includes articles discussing modularity and structure metrics. Researches
have find out, that larger modules have fewer errors than smaller ones and optimal module size
is not too small nor too large. In addition, global variables and high degree of coupling
cause more source code modifications and increase error rate.

The complexity metrics section presents, that SLOC is a reliable metric for measuring
complexity. The last section; comprehension research, lists main problems in comprehension:
personnel turnover, difficulty in understanding the program and difficulty in determining
impact domain. According to research results, experience (in years), breadth of
experience, knowledge of the system and efficiency of the aids have a positive effect on
maintenance.

Applicability of the approach
Since the article summarizes main results from previous studies it is a good reference to a
literature in software maintenance complexity research.

Constraints of the approach
No specified constraints.

Validation of the results
The article summarizes previous research results.

Suggested further research
The author points out, that software maintenance has been understudied relative to its practical
importance.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
29

19.6.2003 ELTIS-project

5.7.4 Munson & Elbaum (1998)

Complexity metrics can provide valuable information on software modules to be used during
testing. This study presents metrics depicting how each software system revision differs from
it’s successor and predecessor in terms of faults.

Relative complexity is a weighted sum of basic (raw) source code metrics of single release.
Code delta and code churn are derived from relative complexities of several releases. This
study proves that relative complexity together with code delta and code churn are closely
related to code quality. Code churn and rate of trouble reports had (Pearson) correlation of
0.65 (significant correlation). Relative complexity provides information on fault injection
process (which directly correlates to change in relative complexity).

Applicability of the approach
The study shows that complexity metrics really can provide information on fault proneness
and presumable fault insertion rate. This information is vital when trying to predict the
development trend of maintenance effort.

Constraints of the approach
Metrics are not specifically defined in this paper. The research team of Munson & Elbaum
developed their own supporting software including raw metrics analyzer (CMA, C Metric
Analyzer), relative complexity calculation (RCM, Relative Complexity Metric) and code churn
calculation (EVOLV).

Validation of the results
A large embedded real-time system (300 KLOC, 3,700 modules, programmed in C) was
evaluated over 19 successive versions.

5.7.5 Polo et al. (2001)

This paper presents an empirical study on the correlation of simple code metrics (LOC,
module count per application) and maintenance effort. It aims (but only partly succeeds)
to provide a method for the estimation of maintenance in the initial stages of outsourcing
maintenance projects, when there is very little information available on the software to be
maintained.

Logistic regression analysis is used to derive the model. Resulting prediction equations
(functions of metrics) for corrective maintenance allow to categorize applications to
“problematic” and “non-problematic” (from the Service Level Agreements point of view).
Other (negative) results confirm the results from other researchers stating that size is not a
good predictor of fault-proneness.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
30

19.6.2003 ELTIS-project

Applicability of the approach
Taken other results in account, it does not seem very likely that this approach (only measuring
size) would appear to be useful. Defects requiring corrective maintenance are focused on few
modules and the need of perfective maintenance does not heavily depend on the size of the
software system.

Constraints of the approach
No explicate constraints.

Validation of the results
Validation data was collected from two sets of banking applications over maintenance period
of two years. Both sets of applications were developed in COBOL/CICS on top of DB2.
They consisted of several MLOC and they are maintained by Atos ODS.

Suggested future work
Authors present correlation between code metrics and maintenance effort as future work.

5.7.6 De Lucia et al. (2002)

This paper presents a model for an early maintenance effort estimation. Metrics were chosen
using correlation analysis. The model was built using regression analysis and validated against
massive adaptive maintenance process used by EDS SC.

The used metrics were the following:
• Number of software code components in the work-packet (incremental part of software

in massive maintenance process),
• LOC,
• McCabe cyclomatic complexity,
• Number of control variables,
• Halstead software science volume,
• Number of logical branches not used, and
• Actual effort of the work-packet (measured in man-days).

Applicability of the approach
This estimation method is (in principle) directly applicable, at least on Y2K or euro-conversion
– and like massive maintenance projects. In addition, it is likely that required parameters are
early (i.e. before the project is started) and easily available, which are important features when
trying to support decision making. Due the nature of the model, it’s a black-box model, and
doesn’t provide any additional information besides the effort estimation.

Constraints of the approach

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
31

19.6.2003 ELTIS-project

The application of the model requires a sample set of maintenance projects and needed
metrics from them, such as: number of programs, one dimensional metric, and one structural
metric, LOC and cyclomatic complexity (which were used in this paper).

Validation of the results
The presented model was validated against data collected from a large Y2K remediation
project. There were 40 KLOC of components, and 15 KLOC of them were modified. The
programs were written in COBOL/CICS, PL/1, JCL, and Assembler. A leave-one-out cross-
validation was performed. Average prediction error was 47% with 10% sample, 42% with
30% sample and 35% with full data. Thus the model works pretty well with relatively small
sample sets.

Other related works
Other work by the authors is De Lucia et al. (2001).

5.7.7 Other works

Yet another relatively recent experience report on collecting maintenance metrics data in case
of industry-software is (Fasolino et al., 2000).

5.8 Maintainability

5.8.1 Coleman et al. (1994)

This article represents a comparison of metrics based maintainability evaluation models.
These evaluation models can be used to determine when a system should be reengineered.
There exists the following five models for this purpose: hierarchical multidimensional model,
polynomial regression model, aggregate complexity model, principal component analysis, and
factor analysis.

By expert review, two (hierarchical, and polynomial) of these five models were selected to be
actually applied to industrial software systems. Both of them produced results corresponding
to the maintenance engineers’ intuition and also provided useful additional data. Aim was to
develop a simple maintenance assessment mechanism for “line” engineers to use in ensuring
that system maintainability doesn’t decline on modifications.

Applicability of the approach
Metrics-based model of system maintainability evaluation is simple and based solely on source
code metrics. It could be of use when information on general profiling of system
maintainability or especially on guiding how to focus refactoring is required. However, weak
validation suggests that this model should be applied with caution.

Constraints of the approach

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
32

19.6.2003 ELTIS-project

Tools to obtain the required metrics are needed.

Validation of the results
Two C/Unix systems (240 KLOC, and 3 KLOC) were used as test cases of the model.
Expert judgment on the maintainability of system A was “low” and of system B “high”.
Maintainability index given by the polynomial regression model suggested that 33.4% of the
code of system A had low maintainability and only 2.8% of system B. Maintainability indices
obtained by the models were not validated against actual maintenance costs/effort required or
against wider expert judgments on maintainability.

5.8.2 Lanning & Khoshgoftaar (1994)

The article discusses code complexity’s effect in maintenance difficulty. The relationship
between these two factors can’t be measured directly and authors apply canonical correlation
analysis in their investigation. The method is applied in the system test phase of a commercial
real-time product. The product consists of about 223,000 lines of Assembly code in 152 files.
Product’s main purpose is to provide stable interface for software products, which are written
to a varying hardware base.

Following attributes were used in the research: complexity (number of unique operators
and operands, total number of operators and operands, number of executable
statements, McCabe’s cyclomatic number, number of times the control flow crosses
itself, number of calls out and calls in, average information content classification) and
maintenance difficulty (added/deleted/moved, noncomment source lines, number of
program faults, and number of design changes).

Applicability of the approach
The method is presented exactly, but isn’t reliable without further development, because model
omits influences on maintenance difficulty.

Constraints of the approach
Results can’t be used in general, because the research includes only one project.

Validation of the results
Researchers investigated system test phase of a one commercial real-time product. The
authors note, that results are restricted to their investigations, because canonical correlation
analysis is presented as a restricted form and the model omitted some influences on
maintenance difficulty. However, they considered canonical correlation analysis as a useful
exploratory tool.

Suggested further work
Authors’ future research will focus on developing general soft models of the software
development process for both exploratory analysis and prediction of future performance.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
33

19.6.2003 ELTIS-project

5.8.3 Pearse & Oman (1995)

The article presents a research, in which maintainability metrics are used to measure the effect
of adaptive and perfective maintenance. There are three aspects in maintenance which are
discussed here: management practices, operational environment and target software
system. The authors restrict their investigation into source code of the target software system.

The researcher constructed approximately 50 regression models. The best of these models
was based on Halstead’s Volume, the extended version of McCabe’s cyclomatic
complexity, lines of code and percent of comment lines. These four metrics were used in
calculation of Maintainability Index (MI). Researches selected four maintenance activities:
unused code removal, compiler warning removal, code restructuring and integrating new
features. Pre-post analysis was used to measure maintainability before and after maintenance
task.

Good results were achieved in testing of MI-model. However, the researcher noticed that it
doesn’t reflect to any kind of maintenance tasks, for example unused code removal and
compiler warning removal. These results suggest that assessment tools should also provide
data with MI for interpreting the value.

Applicability of the approach
MI is a simple model, and therefore it misses detailed information. Thus it is not useful to us.

Constraints of the approach
Two tools: UX-metrics and Micalc, were used in research to calculate the MI-value.

Validation of the results
The models were constructed in cooperation with Hewlett-Packard.

Other related works
Oman & Hagemeister (1994) and Oman & Hagemeister (1992) in which is provided a
classification of target system metrics.

5.8.4 Other related works

These include: Rose & Eriksson (1998); Sheldon et al. (2002).

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
34

19.6.2003 ELTIS-project

5.9 Project size effects

5.9.1 Banker & Slaughter (1994)

The article focuses on the relationship between maintenance project size and productivity.
Project size’s influence on productivity was analyzed by using Data Envelopment Analysis
(DEA) and DEA-based heuristics were used to examine returns to productivity scale.

It was found that project size’s effect to productivity should be an important measure in
maintenance and development projects. Smaller maintenance actions should be grouped into
larger releases. Presence or absence of scale economies at given maintenance project size has
influence on maintenance productivity. Researchers also noticed, that the most productive size
for the project is larger than 90% of the projects within the sample of this study. Identifiable
maintenance cost drivers included work efficiency (measured with hours and function points).

Applicability of the approach
The research focused in project size’s effect on maintenance productivity. Results are useful to
project managers. In our point of view, using DEA-based heuristics to examine returns to
scale for the projects is possibly interesting.

Constraints of the approach
No explicated constraints.

Validation of the results
Data was collected from 27 software maintenance projects from a major mass merchandising
retailer in two years period. Programs were written in COBOL. Research results were also
tested with heuristics and analyses. Test results appear to confirm the robustness of research
results.

Suggested future work
Authors mentioned a few possible extensions to research:
• Determining whether the received findings can be replicated in case of other software

maintenance projects.
• Identifying factors contributing organizations’ ability to manage maintenance projects.
• Identifying other factors’ effects on maintenance productivity.
• Identifying DEA methodology’s usability to assess the performance of an organization

which utilizes a proactive change management program.

5.10 Other potential maintenance cost drivers or metrics

There are also at least the following classes of decision criteria to be considered while making
software modernization decisions. Some of these factors have already been mentioned above
related to the individual studies. Since an incomplete model may give misleading results, it

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
35

19.6.2003 ELTIS-project

should be noted that the models should be iteratively enhanced, calibrated and validated within
the target-organizations. If a quantitative model would be a goal, it should be ensured that
sufficiently complete metrics data is available.

For receiving sufficient explanatory power for the decision model, the key elements
characterizing the maintenance situation should be identified. These additional factors include
characteristics describing the organization, project and system. Time aspect should also be
noted. It would be good if reliable and relevant statistical or metrics data would be available,
although the reliability of many of the quantitative basic metrics, such as LOC and cyclomatic
complexity is questionable.

5.10.1 Factors related to regulators

• Jurisdiction and other regulations, which pose more or less rigid boundary conditions to
the acceptable solutions.

5.10.2 Factors related to software business processes

• Real needs of customers (customer-driven development) vs assumed needs.
• Really useful technological opportunities.
• “Hype” (i.e. needs and expectations created merely by unfounded promises and wishful

thinking) (including merely technology-driven development).

5.10.3 Technical factors

• Technical options (possibilities) and their technical quality metrics.
• Maintainability (pre & post modernization) and costs due to maintenance.
• Lifetime of technologies (some possibly becoming obsolete).
• Possibilities to change the system sufficiently quickly to meet changing customer

requirements (version cycles).
• Effects of new adopted/to be adopted modernization techniques and support

technologies (such as reverse engineering) etc.

5.10.4 The general type of the software and the applications area

• Type of software (administrative, embedded, real-time system etc.).
• Novelty of the application area (e.g. standard invoicing vs. newest mobile technology).
• Effects of changes in environment (in addition to above-mentioned regulator-based

changes).
• General requirements (efficiency-, timing-, memory restrictions (RAM, disk-space)).

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
36

19.6.2003 ELTIS-project

5.10.5 User requirements

• Typical, average amount of source lines changed (added, deleted or modified)/total size
of the system/time unit.

• Requirements volatility (look: Stark et al., 1999; Di Lucca et al., 2002).

5.10.6 Quality of available human-resources

• Availability of the original coders (as councellors for new ones).
• Relevant technical work experience.
• Relevant work experience on the application domain.
• General maintenance experience.
• Maintenance experience of the system to be maintained.
• Work efficiency.

5.10.7 Applied maintenance process models

• Systematic configuration management (e.g. Capretz & Munro, 1994).
• Quality/sufficiency of the used CM-tools.
• Systematic process models of error-corrections (Jambor-Sadeghi et al., 1994;

Eisenstadt, 1997; Kajko-Matsson, 2002; Agans, 2002).
• Collected feedback from the users (error-reports etc.), and related process improvement.

5.10.8 Specific properties of the software

• Size of the system (KLOC, KDSI, number of tokens).
• Age of the system.
• Software complexity (e.g. average module size, number of modules, McCabe’s

cyclomatic complexity, control complexity, Halstead’s data complexity, code
redundancy (Burd & Munro, 1997), metrics values of object hierarchy; Kiran et al.
(1997). Software complexity is one of the main maintenance cost-drivers (Banker et al.,
1991; 1993). The reliability of complexity data is enhanced if versatile metrics data is
collected (Kafura & Reddy, 1987), although its collection may be laborious, and thus
potentially not cost-effective.

• (Un)structuredness (e.g. gotos).
• Delocalization of system logic (delocalized program plans; Letovsky & Soloway,

1986).
• (Module) cohesion.
• (Module) coupling.
• Number of versions.
• Number of variants.
• Number of releases.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
37

19.6.2003 ELTIS-project

• Level of using established standards (e.g. programming languages, graphical interfaces,
databases).

• Reuse (components acquired from elsewhere/those developed within the organization).
• Program comprehensibility, affected by numerous factors, e.g. naming conventions of

symbols (Laitinen, 1995), length of identifiers.

5.10.9 Used basic programming tools

• Programming language(s) (and its abstraction level: Assembler,... C,..., C++,... application
generators).

• Used compilers and debuggers.

5.10.10 Documentation

• Amount of documentation (pages).
• Quality of documentation (completeness, accuracy, timeliness, compactness,

comprehensibility, readability, consistency, history information about system
development and errors).

• Amount of comments (and its adequacy).
• Quality of comments (focus: functions, modules, data-structures, definitions, complex

structures etc.; Riecken et al., 1991).
• Programming style (applied standards, coherence; Oman & Cook, 1990; 1991).
• Traceability of design decisions.

5.10.11 Design of the system

• Applied quality assurance techniques (e.g. code inspections, testing procedures).
• General quality (metrics: e.g. mean time to failure; MTTF; rate of failure (ROCOF);

probability of failure on demand; POFOD; usability, mean time to change; MTTC,
error correction costs after system delivery; i.e. spoilage, security; robustness,
integrity).

• Applied design principles (e.g. logicality, structuredness, modularity, object-
orientation, information hiding, speculative design, flexibility).

5.10.12 Factors affecting maintainability

• Expected lifetime (neglected maintainability reduces this, due to e.g. prototyping,
optimizations).

• Process metrics (number of corrective maintenance requests, average time used to
impact analysis, number of considerable change-requests, amount of user-
interaction; Sommerville, 1996).

• Generality (preparedness to operation on e.g.: different hardware, operating systems,
input/output formats, data-structures, algorithms, and portability).

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
38

19.6.2003 ELTIS-project

5.10.13 Applied solutions supporting maintenance

The effects of applying sophisticated maintenance support techniques should be taken into
account while estimating the effort that maintenance requires. These techniques are listed in the
following chapter.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
39

19.6.2003 ELTIS-project

6 APPROACHES FOR SOFTWARE MODERNIZATION AND
ITS SUPPORT

In this chapter we compactly list the main available branches of solutions for software
modernization and its support. Since the project objectives in the focus area of this chapter are
yet not sufficiently specified, we will here not delve into the details of the many branches of
potential solutions.The purpose is to provide initial framework of the factors affecting the
success of software modernization. Reengineering and reverse engineering are the most
important sub-categories. Two last categories relate to the long-term, proactive maintainability
enhancements.

6.1 General organizational decisions

Managers may affect the following aspects, which provide frames for software maintenance.
• Principles of selecting maintenance personnel (per system).
• Training, compensations, incentives, status (Landsbaum, 1992).
• Maintenance organization (Swanson & Beath, 1990; Yeh & Jeng, 2002).
• Decisions regarding e.g. tools to be used, standards to be followed and attitude towards

reuse, code change practices, and applied process models.

6.2 Configuration management

Systematic configuration management (Berlack, 1991; Capretz & Munro, 1994; Tichy, 1995;
Lyon, 1999; Leon, 2000; Haug et al., 2001) is a necessity while maintaining large systems
and its importance is emphasized at the latter phases of system’s life-cycle. In practice,
configuration management is done by CM-tools (e.g. RCS, SCCS, make, ClearCASE,
CVS), which typically support control of code change rights, determination of base lines,
automatic change reporting, change accept control, and determination of program deltas.

6.3 Re-engineering

Re-engineering means studying the software system and changing it into (often also)
functionally new form. Main text-books written in English are the following: Arnold, 1993;
Miller, 1998; Warren, 1999; Ulrich, 2002; Valenti, 2002. Other related relatively recent
works include Bray & Hess (1995); Baniassad & Murphy (1998); Fanta & Rajlich (1998;
1999); Chu et al. (2000); Tahvildari & Kontogiannis (2002); Zou & Kontogiannis (2002).
Look also Bianchi et al. (2003) for data reengineering.

6.3.1 Sneed (1995b)

In the article the author presents a five-step reengineering planning process for estimating
whether reengineering is worth the required effort. The process model includes following five
steps:

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
40

19.6.2003 ELTIS-project

1) Portfolio justification: calculating return on investment by analyzing enhanced
business value, software’s quality increase and improvement in maintenance process.

2) Portfolio analysis: applications’ need for reengineering is prioritized according to their
technical quality and current business value.

3) Cost estimation: calculating estimated costs by identifying and weighting the software’s
components.

4) Cost-benefit analysis: comparing the estimated costs with benefits to be achieved in A)
reengineering, B) redeveloping and C) doing nothing at all.

5) Contracting: contract can be based on time and material or results.

The article mentions the following possible measurements: lines of code, number of
databases, number of files, number of fields, database accesses, number of function
points, data complexity, cyclomatic complexity, interface complexity, data-access
complexity, number of relationships among files, degree of module coupling, distance
between variable references, general quality, data dependency rate, number of
elementary data elements, modularity, testability, portability, test environment, test
support, number of test cases, average cost of test case, productivity rate, annual
maintenance cost (current cost, cost after reengineering and cost after redevelopment),
operation cost (specified more precisely as in case of the previous attribute), business value
(current business value, business value after reengineering and business value of a new
system), estimated reengineering costs and redeveloping costs, time and risk factor,
expected life(-time) of a system, user satisfaction and maintenance programmer morale.

Applicability of the approach
Accurate formulas are presented and the reengineering planning process is relevant to ELTIS.

Constraints of the approach
Measurement program is needed in project justification.

Validation of the results
The presented planning process has been developed with 25 years programming experience.

Related works
A newer work on reengineering risks is (Sneed, 1999).

6.3.2 Ransom et al. (1998)

Article presents an assessment method (planning part of RENAISSANCE method) that
examines a legacy system from its technical, business and organizational perspectives. The
method guides users through assessment of these perspectives and provides further guidance
on interpreting the results obtained from assessment. Method is iterative by nature and it
supports quick rough estimates and more detailed ones by further iterations.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
41

19.6.2003 ELTIS-project

There are the following two base principles for the method:
• Reengineering must be company and project specific. The method is designed so that it

can be instantiated according to particular company and project requirements.
• Both the reengineered process and the reengineered system must be continuously refined.

The principal product of applying the method is a system transformed to evolutionary state
(from whatever “legacy” state it had before).

 The product of the assessment method is to gain a sufficient depth of understanding of the
legacy system. Typical questions answered during assessment are
• Is the system critical to the organisation in which it operates?
• What are the organization’s business goals?
• What are the evolution requirements?
• What is the anticipated lifetime of the system?
• What is the required lifetime of the system?
• What is the technical state of the system?
• Is the organization that operates the system amenable to change?
• Does the organization responsible for evolving the system have sufficient resources?

Assessment process starts with method instantiation. Next phase includes business value,
external environment and application assessments, which are carried out in parallel. Finally
results are interpreted to find the optimal evolution strategy.

Instantiation includes defining assessment technique (expert judgement, quantitative metrics)
and level of detail. The goal of business value assessment is to determine the importance of the
system to the organization.

The external (technical) environment of a system is the union of hardware, supporting software
and organization’s infrastructure. The following hardware characteristics are suggested to be
considered: vendor/supplier rating, maintenance costs, failure rate, age, ability to
perform function, performance. The following supporting software characteristics are
suggested to be considered: License costs, Frequency of fixes/patches, Quality of support
personnel. The following organizational factors are suggested to be considered: Type of
organization and system users (how skilled is the system user’s work? what is in-house and
what is outsourced? etc.), Technical maturity of the organisation, Training procedures in
the organization, Skill levels of system support, and Organizational attitude to change.

Application assessment is concerned with the application software of the legacy system in
question. The following characteristics are considered: complexity, data, documentation,
external dependencies, legality, maintenance record, size, security and test bed.

Applicability of the approach
The represented method framework is highly relevant to the decision making support goals of
ELTIS. In addition a great deal of factors the authors believe to be relevant to the optimal
software evolution strategy are listed.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
42

19.6.2003 ELTIS-project

Constraints of the approach
These are not explicated.

Validation of the results
“The assessment method is currently being evaluated as part of the RENAISSANCE method
by industrial organizations involved in the project. We aim to incorporate their feedback in
subsequent refinement of the method.”

6.3.3 Teng et al. (1998)

In the article authors have collected empirical data from 105 organizations’ (sizes vary from
5,000 to 10,000 employees) business process reengineering projects by comparing projects’
radicalness and stage-effort profile to projects’ implementation success. The researchers
use correlation analysis in evaluation of responses.

The authors found a strong positive relationship between radicalness and implementation
success. Also roles and responsibilities, information technology and changes in the work
flow patterns have a great influence to perceived success. Additionally, attributes used in the
work included also the following: extend of change, strength of effort, goal fulfillment,
number of employees, business processes, organization’s type, used formal
methodologies.

Applicability of the approach
The method used in the article is useful in analyzing companies’ reengineering processes.

Constraints of the approach
No constraints for using this research method.

Validation of the results
As noted empirical data was collected from a large set of organizations. In the discussion
section the authors note, that the selected projects may not be a comprehensive variety of the
reengineering projects. Therefore the results should be interpreted with caution.

Suggested further research
The authors emphasize, that more attention should be shifted from analyzing the existing
business procedures to social design and process transformation in reengineering projects.

6.3.4 Comella-Dorda et al. (2000)

In the article system evolution is defined as a continuum of system maintenance,
modernization and replacement. The authors describe maintenance, replacement and white-

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
43

19.6.2003 ELTIS-project

box modernization in general and focus on black-box modernization, in which understanding
of the system is gained by examining merely its inputs and outputs.

The authors emphasize, that all options to modernize a legacy system must be thoroughly
explored and evaluated. Following techniques are discussed:
• User interface modernization

• Screen scraping for user interface modernization (in which old, text-based interface is
wrapped with graphical interface).
+ cost
– maintainability

• Data modernization for accessing data with a different interface or protocol.
• Database gateway. (wrapping legacy data with standard protocol)

+ cost
+ tool support
– maintainability

• XML integration. (convert proprietary connection between systems to XML-server
based)
+ flexibility
– evolving technology

• Functional modernization for encapsulating the data and business logic.
• CGI integration. (wrap legacy data and functionality behind web-interface)

+ cost
– flexibility

• Object-oriented wrapping.
+ flexibility
– cost

• Component wrapping.
+ flexibility
– cost

All the black-box techniques require the legacy system to be stable, because the new
functionality completely relies upon the old. Especially screen scraping (sometimes referred as
“whipped cream over road kill”) is very sensitive to the underlying application.

Object wrapping and componentization come in handy when the legacy system is to be
incrementally replaced. Modernization creates new interfaces between subsystems which can
then be replace one by one.

Applicability of the approach
The article is a good overview of modernization techniques and lists their strengths,
weaknesses, targets, and use.

Constraints of the approach
Presented techniques are suitable for specific types of software and system environments.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
44

19.6.2003 ELTIS-project

Validation of the results
There is no validation, since the article is a survey of general black-box modernization
techniques.

6.3.5 Warren & Ransom (2002)

In this article an overview of a method, and a process framework called Renaissance, is
presented. It supports system evolution by first recovering a stable basis using reengineering,
and subsequently continuously improving the system by a stream of incremental changes. The
extent of evolution is determined by taking into account technical, business, and organizational
factors.

Providing a controlled approach to system change means reducing the costs and risks. Key
requirements of a method to support controlled system evolution are
• The method should support incremental evolution.
• Where appropriate the method should emphasize reengineering rather than system

replacement.
• The method should prevent the legacy phenomena from reoccurring.
• It should be possible to customize the method to particular organizations and projects.

Process framework consists of two main phases:
• Evolution planning: “What to do”, see detailed description in Ransom et al. (1998).
• Evolution project management: “How to do”, contains implementation of evolution strategy

and delivery and deployment of the products.

Applicability of the approach
The represented framework is highly relevant to some of the goals of ELTIS.

Constraints of the approach
Not explicated

Validation of the results
No actual validation. Authors have recieved a great deal of feedback and refinement
suggestions from industrial partners of the RENAISSANCE project.

The key findings of companies which have evaluated RENAISSANCE were:
• Framework is well-defined and easy to follow.
• It integrates successfully with different project management processes.
• It helps risk reduction and cost distribution.
• Evolution strategy selection was proven useful.
• Overhead of adopting framework is high.
• Overhead for managing small projects was high.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
45

19.6.2003 ELTIS-project

Other related works
Other works on reengineering include Bailes & Peake (2003).

6.3.6 Harsu (2003)

Harsu’s text book covers software maintenance and especially reengineering. Harsu (2000)
has also written a Ph.D. thesis on the subject area. Following aspects are discussed in the
book:
• Reverse engineering/design recovery.
• Software renovation/modernization (models of renovation, language conversion,

wrapping).
• Data reengineering.
• Reusability improvements.

Applicability of the approach
The book describes approaches, which are highly relevant for the modernization support part
of the project’s objectives.

Validation of the results
Validation is not explicated, since the book describes existing techniques at non-detailed level.

6.3.7 Migration

The term migration refers here to the process of making legacy systems to function in new
technical environment (Brodie & Stonebraker, 1995). Proactive actions towards system
portability affect to the possibilities of cost-effective migration. Other recent works include
Goedicke & Zdun (2002).

6.3.8 Restructuring

Restructuring (Griswold & Notkin, 1993) means the change of the internal representation of a
system without changing the abstraction level of the representations (the external behaviour is
neither affected).

6.3.9 Refactoring

Refactoring (Fowler et al., 1999) means the general “polishing” of a system, often in
conjunction to its changes for other reasons. The targets of development may be, e.g.: style,
comprehensibility, flexibility or reusability.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
46

19.6.2003 ELTIS-project

6.3.10 Kataoka et al. (2002)

A (tool-supported) method, which helps finding out how refactoring will affect
maintainability and choose correct refactorings to be carried out is presented. The method
uses coupling metrics as a measure of maintainability.

Refactoring process consist of improvement planning, execution and validation. Planning
begins with detecting “bad smell” (potential refactoring candidates: duplicate code, etc.) from
source code. Then the candidates are analyzed and the most potential ones are selected to be
included in a comprehensive refactoring plan. The plan produced is then evaluated in terms of
cost and effect. Improvement execution starts with refactoring deployment as actual program
modifications, which are then carried out and evaluated.

It’s (still) totally unclear how this method helps to choose appropriate refactorings. It just
magically happens during refactoring planning: “After analyzing various “bad-smells”, a number
of refactoring candidates would be identified.” If it’s (as one would assume) done by
comparing metrics before and after refactoring, then where did the after refactoring -
coupling metrics value come from before the refactoring was actually carried out. The paper
doesn’t talk about estimated metrics, only the actual ones.

Applicability of the approach
The only result applicable is the information: “there exists refactorings on which maintainability
measured by expert judgment and coupling metrics correlate.” The method presented doesn’t
seem applicable at all for various reasons. It’s totally, completely and entirely unclear how the
refactoring candidates are selected from “bad smells” and how cost-effect-evaluation of
improvement plan is actually carried out. The number of refactorings whose effect can be
evaluated from coupling metrics viewpoint is limited. In “validation” the refactorings selected
could well have been the ones whose effect is measurable by coupling metrics.

Constraints of the approach
Tool support (Refactoring Assistant) is required.

Validation of the results
There is no actual validation. A single experiment with single 5 year old software project (size
unknown) written in C++ was used as a case study.

Related works
Visaggio (2000) may be relevant.

6.3.11 Redocumentation

Redocumentation means the creation of a new more illustrative representation for the system,
which still is equivalent to the original one. In effect, the aim is to create the documentation,

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
47

19.6.2003 ELTIS-project

which should have been created in the past (look e.g.: Antoniol et al., 2000). Look also
Prechelt et al. (2002).

6.4 Reverse engineering

Reverse engineering means the identification and representation of system components and
their interrelations, in a new form, which typically is at a higher abstraction level than the
original one (Cross et al., 1992; Lano & Haughton, 1993). Thus reverse engineering
produces representation transformations (Bennett, 1998), which support e.g.
comprehensibility (von Mayrhauser & Vans, 1995). Reverse engineering usually aims at
design recovery (look e.g. Gannod & Cheng, 1999; Niere et al., 2002). A thorough and
extensive classification of the reverse engineering techniques is found in (Koskinen, 2000;
Introduction and overview, Appendix I).

The applicability of reverse engineering tools is limited by their availability to the needed
platform, operating system and programming language. Old technologies (which often are most
troublesome) are not necessarily well supported. Some representative examples of the
modern, versatile tools of this category, which also support a relatively wide range of
programming languages include: Telelogic LogiScope, Imagix 4D, SNiFF+, and Refine/C
(look e.g. Bellay & Gall, 1997, for comparisons). Look also Chen et al. (1995).

6.4.1 Information request specifications

Information requests, which the maintainer formulates initiate the analysis operations of the
support tool. The specification mechanisms affect the possibilities of sufficiently exact and
detailed queries. There exists good mechanisms for these purposes, although they are still at
research stage. E.g. Paul & Prakash (1996) have proposed a dedicated query language for
this purpose.

6.4.2 Impact analysis support

The purpose of impact analysis (Queille et al., 1994; Arnold & Bohner, 1996) is to identify
the possible side-effects of code changes. In principle each code change should be followed
by regression testing, which would guarantee that the changed system still meets all the
requirements. In practice, in case of large systems, it is not possible to perform complete
impact analysis related to all changes. Focusing of impact analysis may be supported (in
principle) e.g. by program slicing, especially its static form.

6.4.2.1 Program slicing

One of the approaches which is theoretically very well suited especially for maintenance
support, is program slicing (Weiser, 1982; Berzins, 1995; Kamkar, 1995). The most
important of the program dependencies which should be checked while programs are changed
are data- and control flow dependencies (Paakki et al., 1997). Program slices are formed

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
48

19.6.2003 ELTIS-project

based on these dependencies. The main restriction of program slicing is its limited efficiency in
case of analyzing industry-size programs.

It is also important to identify (related to code changes) those parts of the code which have
been changed or which are not changed (“frozen parts”), or on only which necessary
preconditions changes should be allowed (invariants) (look e.g. Ernst, 2001).

6.4.3 Program visualization

The results of the reverse engineering are represented to the user either in text-form or
graphically. Hierarchical and graphical representations typically aid in the comprehension of
large information collections/structures (Ball & Eick, 1996; Eick et al., 2002; Yin & Keller,
2002).

6.4.4 Reverse engineering of object-oriented software

As an application area of reverse engineering legacy systems are very important. However,
some effort has also been targeted to the support of more modern object-oriented programs,
which are more and more important in the future (Chen et al., 1998; Systä, 2000; Systä et
al., 2001; Ferenc et al., 2002).

6.5 Preventive actions for maintenance

6.5.1 Enhancement of maintainability during implementation phase

Often proactive, preventive actions towards higher maintainability (Smith, 1999) of systems is
cost-effective. The possibilities for this are affected e.g. by the applied programming
languages. E.g. for enhancing correctness (and thus reducing needed effort for future
corrective maintenance) some languages provide such mechanisms as: defensive
programming (error recovery), pre/post conditions of procedures, assertions (e.g. Binder
(2001); Müller et al., 2002) and tracing mechanisms.

6.5.2 Enhancement of maintainability during design phase

In principle, maintainability should be taken into account already in the design phase of the
system by trying to anticipate the probable changes (look e.g. Koskimies, 1997). This is called
speculative design and it should, in one form or another, be noted during whole software
quality assurance process. Look also Baxter & Pidgeon (1997); Schach & Tomer (2000) on
the subject.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
49

19.6.2003 ELTIS-project

7 CONCLUSIONS

This report has summarized the theoretical background studies of the ELTIS project. Software
maintenance is generally an undervalued area of research and development, while taking into
account its actual importance. It causes most of the total software costs (often 50-75% in case
of successful systems with long lifetime). 1) Thus effective process improvements which take
into account the effects on maintainability appear beneficial in long-term. 2) Maintenance
appears to be (in general) a constant problem, despite the earlier process improvements and
development of system design methodologies (most likely because of the constant increases of
system sizes and program complexity). 3) These two points underline the importance of paying
attention to this area and identifying the actual cost drivers, whose improvement could have
substantial effect on the process profitability.

Software maintenance is often also quite demanding (despite the common view of it being
more or less routine work), especially in case of maintaining large legacy systems. These
systems are typically hard to maintain, but they cannot be replaced because of their great
business value and the application domain knowledge that they contain. Thus they tend to have
long lifetime. Lehman (1998) has gathered longitudinal empirical evidence on large-scale
industry-level software development and derived general laws of system evolution described in
this report.

Software maintenance is further complicated in case of large tasks of adaptive maintenance
category (i.e. software modifications made due to changing technical environment) without
proper system documentation (or other useful information sources) available. In an ideal
situation the existing code could be reused and modified flexibly by the original developers.
That would support the process of gaining the original investment back, and thus to improve
return on investment (potentially for both the organization developing the software and the one
using it). It is clear that this goal is easiest to achieve via long-term maintenance process
improvement and preventive maintenance.

However, in case of answering to the acute problems of dealing with current legacy systems,
other support processes are required. One of the central questions is whether to continue
maintaining the existing legacy systems or not. Their modernization might be an option.
Another (typically less favorable) main possibility might be their complete rewrite.
Modernization may require integration of the old (legacy) system to newer applications
(Robertson, 1997; Coyle, 2000) or its encapsulation (Sneed, 2000).

There exists a lot of general literature related to the (relatively scattered) preliminary objectives
set to the project. Estimating costs of building a new software system is an extensively covered
subject area. The main cost driver for this is the required effort (measured in man-months).
However, even the best of the current software cost models (e.g. COCOMO) have relatively
large error-span, even in case that the models would be backed with a relatively large project
database containing actual empirical data and properly calibrated to take into account the

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
50

19.6.2003 ELTIS-project

factors characterizing the system development process of the organization developing the
system.

In the area of software maintenance cost estimation, the situation is even worse in this regard.
In an (theoretical) ideal case there would exist a computer program (a decision support
system) which would receive as input parameters the central decision criteria for software
replacement or modernization, provide the answer to the question, and outline the arguments.
Although there exists many theoretical works on the software maintenance cost/effort
estimation area, there are no generally accepted or rigorously and successfully empirically
validated models. Most of the existing models either make unrealistic simplifications or assume
existence of versatile metrics data (or both).

One of the general problems related to this part of software engineering is the lack of really
reliable metrics for software complexity (which, however, is a prime candidate as a prime cost
driver). Main reference to this area is Kemerer (1995). The often used LOC, FP and
cyclomatic complexity measures all have severe limitations and in some cases their use may
provide completely misleading results. General collection of (technical and process) metrics
data is discussed e.g. by Grady (1994). In reality there exists a great many factors which
should be taken into account while deciding about system modernization. Many of these
factors are not even related to the metrics data which is typically collected or collectable.

Because of the reasons outlined above, there is a great need (both because of theoretical and
practical reasons), to gather versatile empirical data on the actual system portfolios, system
characteristics and actual expert decision making processes related to software modernization.
Kemerer & Slaughter (1999) have outlined the following criteria for successful empirical
software maintenance research: 1) a large data source from programs and versions, 2)
willingness of a good commercial partner to participate in the research project, and 3) highly
disciplined research approach with desire to expand the previous research.

Sahin’s & Zahedi’s (2001) work is also important since it is empirically well validated and
pays attention on customer satisfaction related to software upgrade cycle. It provides a model
for strategic decision making in software maintenance, dealing with warranties, maintenance,
and upgrades. The model can be used in analyzing organizations’ system portfolios.

Gode et al. (1990) and Chan et al. (1996) are the only ones really trying to say something
about actual software replacement timing. These models are mostly formal exercises, with very
limited real validation. The problems that the developers of these models have faced could be
interpreted as indication of inherent complexity of the replacement decision. There is also the
problem of acquiring reliable required input data for these models.

Sneed’s works (1995a; 1995b) are also interesting (despite the problems with their
proprietary nature, assumed availability of metrics data, and limited empirical validation). He
has given both a model for general software maintenance cost estimation (1995a) (discussing
maintainability factors, and maintenance scope determination) and reengineering cost

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
51

19.6.2003 ELTIS-project

estimation (1995b) (taking into account software business considerations, such as return on
investment and enhanced business value, and providing a long list of potentially useful
measurements).

It appears that all closed-form and black-box solutions providing direct decisions (assumed as
being optimal) are bound to fail due to the versatility of non-measurable factors and
unpredictable side-conditions. Providing supporting information to the expert who actually
makes the decision seems to be the right way to continue.

Also the main branches of technical support solutions for software modernization are outlined
and references to main works given. Harsu’s (2003) text-book, Warren & Ransom (2002),
Koskinen (2000), Fowler et al. (1999), and Arnold (1993) are some of the main references
in the subareas of technical modernization support. The above-cited Sneed’s (1995b) work
also relates directly to this area.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
52

19.6.2003 ELTIS-project

8 REFERENCES

1) Abran, A. & Robillard, P. (1993). "Reliability of function points productivity model for
enhancement projects (a field study)". Conference on Software Maintenance 1993,
80-97. IEEE Computer Society Press.

2) Abran, A., Silva, I. & Primera, L. (2002). “Field studies using functional size
measurement in building estimation models for software maintenance”. Journal of
Software Maintenance and Evolution: Research and Practice 14, 31-64.

3) Agans, D. (2002). “Debugging: The Nine Indispensable Rules for Finding Even
the Most Elusive Software and Hardware Problems”. AMACOM, 192 p.

4) Albrecht, A. & Gaffney, J. (1983). “Software function, source lines of code, and
development effort prediction: a software science validation”. IEEE Transactions on
Software Engineering SE-9 (6), 639-648.

5) Antoniol, G., Canfora, G., Casazza, G. & De Lucia, A. (2000). “Information retrieval
models for recovering traceability links between code and documentation”.
Proceedings of the International Conference on Software Maintenance - 2000,
40-49. IEEE Computer Soc.

6) Arnold, R. (1993). “Software Reengineering (IEEE Computer Society Press
Tutorial)”. IEEE Computer Society, 675 p.

7) Arnold, R. & Bohner, S. (Eds.) (1996). “Software Change Impact Analysis”.
Wiley-IEEE Press, 392 p.

8) Bailes, P. & Peake, I. (2003). “Incremental enhancement of the expressiveness of a
reengineering tool development platform”. Proceedings of the 21st IASTED
International Conference, APPLIED INFORMATICS, 927-934.

9) Ball, T. & Eick, S. (1996). “Software visualization in the large”. Computer 29 (4),
33-43.

10) Baniassad, E. & Murphy, G. (1998). “Conceptual module querying for software
reengineering”. Proceedings of the 1998 International Conference on Software
Engineering (ICSE’98), 64-73. IEEE Computer Soc.

11) Banker, R., Datar, S. & Kemerer, C. (1991). “A model to evaluate variables
impacting the productivity of software maintenance projects”. Management Science
37 (1).

12) Banker, R., Datar, S., Kemerer, C. & Zweig, D. (1993). “Software complexity and
maintenance costs”. Communications of the ACM 36 (11), 81-94.

13) Banker, R. & Slaughter, S. (1994). “Project size and software maintenance
productivity: empirical evidence on economics of scale in software maintenance”. In:
DeGross, J., Huff, S. & Munro, M. (Eds.) Proceedings of the Fifteenth
International Conference on Information Systems, 279-289. Distributed by ACM.

14) Basili, V. (1990). “Viewing maintenance as reuse-oriented software development”.
IEEE Software 7 (1), 19-25.

15) Baxter, I. & Pidgeon, C. (1997). “Software change through design maintenance”.
Proceedings of the International Conference on Software Maintenance - 1997,
250-259. IEEE Computer Soc.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
53

19.6.2003 ELTIS-project

16) Bellay, B. & Gall, H. (1997). “A comparison of four reverse engineering tools”.
Proceedings of the 4th Working Conference on Reverse Engineering, 2-11. Los
Alamitos, CA: IEEE Computer Society.

17) Bennett, K. (1998). “Do program transformations help reverse engineering?”.
Proceedings of the International Conference on Software Maintenance - 1998,
247-254. IEEE Computer Soc.

18) Bennett, M. & Gittens, M. (1997). ”Empirical defect modeling to extend the
Constructive Cost Model”. The Eight European Software Control and Metrics
Conference (ESCOM’97). Conf. location: Berlin, Germany.

19) Bennett, K., Lientz, B. & Swanson, E. (1980). “Software Maintenance
Management”, Addison Wesley.

20) Berlack, R. (1991). “Software Configuration Management” (Wiley Series in
Software Engineering Practice). John Wiley & Sons, 352 p.

21) Berzins, V. (Ed.) (1995). “Software Merging and Slicing”. IEEE Computer Soc.
22) Bianchi, A., Caivano, D., Marengo, V. & Visaggio, G. (2003). “Iterative

reengineering of legacy systems”. IEEE Transactions on Software Engineering 29
(3), 225-241.

23) Binder, R. (2001). “Testing Object-Oriented Systems: Models, Patterns, and
Tools” (3rd printing). Addison-Wesley.

24) Bisbal, J., Lawless, D., Wu, B. & Grimson, J. (1999). “Legacy information systems:
issues and directions”. IEEE Software 16 (5), 103-111.

25) Bitman, W. (1999). “A metrics-based decision support tool for software module
interfacing technique selection to lower maintenance cost”. Sixth IEEE International
Symposium on Software Metrics, 170-178.

26) Boehm, B. (1981). ”Software Engineering Economics”, Prentice Hall, 1981.
27) Boehm, B. (1984). “Software engineering economics”. IEEE Transactions on

Software Engineering 10 (1), 4-21.
28) Boehm, B., Horowitz, E., Madachy, R., Reifer, D., Clark, B., Steece, B., Brown,

A.W., Chulani, S. & Abts, C. (2000). “Software Cost Estimation with COCOMO
II”. Prentice Hall, 502 p.

29) Boehm, B. & Papaccio, P. (1988). “Understanding and controlling software costs”.
IEEE Transactions on Software Engineering 14 (10), 1462-1477.

30) Bray, O. & Hess, M. (1995). “Reengineering a configuration management system”.
IEEE Software 12 (1), 55-63.

31) Bredero, R., Hupkes, E. & Pagrach, D. (1995). ”Modelling maintenance cost from
factual data: a practical example”. European Software Cost Modelling Conference
(ESCOM’95). Conf. location: Rolduc Abbey, The Netherlands.

32) Briand, L., Basili, V., & Thomas (1992). “A pattern recognition approach for
software engineering analysis”. IEEE Transactions on Software Engineering 18
(11), 931-942.

33) Briand, L., El Emam, K., Surmann, D., Wieczorek, I. & Maxwell, K. (1999). “An
assessment and comparison of common software cost estimation modeling
techniques”. Proceedings of the 1999 International Conference on Software
Engineering, 313-322.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
54

19.6.2003 ELTIS-project

34) Briand, L., Langley, T. & Wieczorek, I. (2000). “A replicated assessment and
comparison of common software cost modeling techniques”. Proceedings of the
2000 International Conference on Software Engineering (ICSE 2000), 377-386.
ACM Press.

35) Brodie, M.L. & Stonebraker, M. (1995). “Migrating Legacy Systems: Gateways,
Interfaces & The Incremental Approach”. Morgan Kaufmann, 210 p.

36) Burd, E. & Munro, M. (1997). “Investigating the maintenance implications of the
replication of code”. Proceedings of the International Conference on Software
Maintenance – 1997, 322-330. IEEE Computer Soc.

37) Caivano, D., Lanubile, F. & Visaggio, G. (2001). “Software renewal process
comprehension using dynamic effort estimation”. Proceedings of the IEEE
International Conference on Software Maintenance - 2001, 209-218. IEEE
Computer Soc.

38) Calzolari, F., Tonella, P. & Antoniol, G. (1998). “Dynamic model for maintenance and
testing effort”. In: Khoshgoftaar, T. & Bennett, K. (Eds.) Proceedings of the
International Conference on Software Maintenance - 1998, 104-112. IEEE
Computer Soc.

39) Capretz, M. & Munro, M. (1994). “Software configuration management issues in the
maintenance of existing systems”. Software Maintenance: Research & Practice 6
(1), 1-14.

40) Chapin, N., Hale, J., Khan, K., Ramil, J. & Tan, W.-G. (2001). “Types of software
evolution and software maintenance”. Journal of Software Maintenance and
Evolution: Research & Practice 13 (1), 3-30.

41) Chan, T., Chung, S. & Ho, T. (1994). “Timing of software replacement”. In:
DeGross, J., Huff, S. & Munro, M. (Eds.) Proceedings of the Fifteenth
International Conference on Information Systems, 291-307.

42) Chan, T., Chung, S. & Ho, T. (1996). “An economic model to estimate software
rewriting and replacement times”. IEEE Transactions on Software Engineering 22
(8), 580-598.

43) Chen, Y.-F., Fowler, G., Koutsofios, E. & Wallach, R. (1995). "Ciao: a graphical
navigator for software and document repositories", Proceedings of the International
Conference on Software Maintenance - 1995, 66-75. IEEE Computer Soc.

44) Chen, Y.-F., Gansner, E. & Koutsofios, E. (1998). “A C++ data model supporting
reachability analysis and dead code detection”. IEEE Transactions on Software
Engineering 24 (9), 682-694.

45) Chu, W., Lu, C.-W, Shiu, C.-P. & He, X. (2000). “Pattern-based software
reengineering: a case study”. Journal of Software Maintenance and Evolution:
Research and Practice 12, 121-141.

46) Coleman, D., Ash, D., Lowther, B. & Oman, P. (1994). “Using metrics to evaluate
software system maintainability”. Computer 27 (8), 44-49.

47) Comella-Dorda, S., Wallnau, K., Seacord, R. & Robert, J. (2000). “A survey of
black-box modernization approaches for information systems”. Proceedings of the
International Conference on Software Maintenance - 2000, 173-183. IEEE
Computer Soc.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
55

19.6.2003 ELTIS-project

48) Coyle, F. (2000). “Legacy integration changing perspectives”. IEEE Software 17 (2),
37-41.

49) Cross, J.H. II, Chikofsky, E. & May, C.H. Jr. (1992). “Reverse engineering”. Yovits,
M. (Ed.) Advances in Computers 35, 199-254. Academic Press.

50) De Lucia, A., Di Penta, M., Stefanucci, S. & Venturi, G. (2002). “Early effort
estimation of massive maintenance processes”. Proceedings of the International
Conference on Software Maintenance - 2002, 234-237. IEEE Computer Soc.

51) De Lucia, A., Pannella, A., Pompella, E. & Stefanucci, S. (2001). “Assessing massive
maintenance processes: an empirical study”. Proceedings of the IEEE International
Conference on Software Maintenance, 451-458. IEEE Computer Soc.

52) Di Lucca, G., Di Penta, M. & Gradara, S. (2002). “An approach to classify software
maintenance requests”. Proceedings of the International Conference on Software
Maintenance - 2002, 93-102. IEEE Computer Soc.

53) Edelstein, D. (1993). “Report on the IEEE STD 1219-1993 – Standard for Software
Maintenance”. ACM SIGSOFT Software Engineering Notes 18 (4), p. 94.

54) Eick, S., Graves, T., Karr, A., Mockus, A. & Schuster, P. (2002). “Visualizing
software changes”. IEEE Transactions on Software Engineering 28 (4), 396-412.

55) Eisenstadt, M. (1997). “My hairiest bug war stories”. Communications of the ACM
40 (4), 30-37.

56) Engelhart, J. (1995). “FPA and maintenance”. European Software Cost Modelling
Conference (ESCOM’95). Conf. location: Rolduc Abbey, The Netherlands.

57) Ernst, M., Cockrell, J., Griswold, W. & Notkin, D. (2001). “Dynamically discovering
likely program invariants to support program evolution”. IEEE Transactions on
Software Engineering 27 (2), 99-123.

58) Fanta, R. & Rajlich, V. (1998). “Reengineering object-oriented code”. Proceedings
of the International Conference on Software Maintenance - 1998, 238-246. IEEE
Computer Soc.

59) Fanta, R. & Rajlich, V. (1999). “Removing clones from the code”. Journal of
Software Maintenance: Research and Practice 11, 223-243.

60) Fasolino, A., Natale, D., Poli, A. & Quaranta, A. (2000). “Metrics in the
development and maintenance of software: an application in a large scale
environment”. Journal of Software Maintenance: Research and Practice 12, 343-
355.

61) Feiler, J. & Butler, B. (1999). “Y2K Bible”. Hungry Minds, 541 p.
62) Fenton, N. (1994). “Software measurement: a necessary scientific basis”. IEEE

Transactions on Software Engineering 20 (3), 199-206.
63) Ferenc, R., Beszedes, A., Tarkiainen, M. & Gyimothy, T. (2002). “Columbus -

reverse engineering tool and schema for C++”. Proceedings of the International
Conference on Software Maintenance - 2002, 172-181. IEEE Computer Soc.

64) Foster (1991). “Program lifetime: a vital statistic for maintenance”. IEEE Proceedings
of the International Conference on Software Maintenance, 98-103. IEEE
Computer Soc.

65) Foster & Kiekuth (1990). “Software maintenance survey: summary”. BT
Laboratories.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
56

19.6.2003 ELTIS-project

66) Fowler, M., Beck, K., Brant, J., Opdyke, W. & Roberts, D. (1999). “Refactoring:
Improving the Design of Existing Code”. Addison-Wesley, 431 p.

67) Furey, S. (1997). “Why we should use function points”. IEEE Software 14 (2), 28-
31.

68) Gannod, G. & Cheng, B. (1999). “A framework for classifying and comparing
software reverse engineering and design recovery tehcniques”. Proceedings of the
Sixth Working Conference on Reverse Engineering, 77-88. IEEE Computer Soc.

69) Gerlich, R. & Denskat, U. (1994), “A cost estimation model for maintenance and high
reuse”. Proceedings of the European Software Cost Modelling Meeting
(ESCOM’94). May 11-13, 1994. Conf. location: Ivrea, Italy.

70) Gibson, V. & Senn, J. (1989). “System structure and software maintenance
performance”. Communications of the ACM 32 (3), 347-358.

71) Gill, G. & Kemerer, C. (1991). “Cyclomatic complexity density and software
maintenance productivity”. IEEE Transactions on Software Engineering 17 (12),
1284-1288.

72) Gode, D., Barua, A. & Mukhopadhyay, T. (1990). “On the economics of the
software replacement problem”. In: DeGross, J., Alavi, M. & Oppelland, H. (Eds.)
Proceedings of the Eleventh International Conference on Information Systems,
159-170.

73) Goedicke, M. & Zdun, U. (2002). “Piecemeal legacy migrating with an architectural
pattern language: a case study”. Journal of Software Maintenance and Evolution:
Research and Practice 14, 1-30.

74) Gorla, N., Benander, A. & Benander, B. (1990). “Debugging effort estimation using
software metrics”. IEEE Transactions on Software Engineering 16 (2), 223-231.

75) Grady, R. (1994). “Successfully applying software metrics”. Computer 27 (9), 18-
25.

76) Griswold, W. & Notkin, D. (1993). “Automated assistance for program
restructuring”. ACM Transactions on Software Engineering and Methodology 2
(3), 228-269.

77) Harsu, M. (2000). “Re-engineering Legacy Software Through Language
Conversion” (Ph.D. thesis). Department of Computer and Information Sciences,
University of Tampere.

78) Harsu, M. (2003). “Ohjelmien ylläpito ja uudistaminen” (in Finnish). Talentum, 292
p.

79) Haug, M., Olsen, E. & Cuevas, G. (Eds.) (2001). “Managing the Change:
Software Configuration & Change Management”. Springer Verlag, 297 p.

80) Henry, J., Blasewitz, R. & Kettinger, D. (1996). “Defining and implementing a
measurement-based software maintenance process”. Software Maintenance:
Research and Practice 8, 79-100.

81) Hürten R. et al. (1996). ”Estimating the effort of maintenance and enhancement”. The
Seventh European Software Control and Metrics Conference (ESCOM’96).
Conf. location: Wilmslow, Cheshire, UK.

82) ITV (2000). “Y2K maksoi Nokialle 450 miljoonaa” (in Finnish). IT Viikko
(10.2.2000).

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
57

19.6.2003 ELTIS-project

83) Jambor-Sadeghi, K., Ketabchi, M., Chue, J. & Ghiassi, M. (1994). “A systematic
approach to corrective maintenance”. The Computer Journal 37 (9), 764-778.

84) Jones, C. (1997). “Slow response to Year 2000 problem”. IEEE Software 14 (3),
114-115 (an interview).

85) Jørgensen, M. (1995). “An empirical study of software maintenance tasks”. Software
Maintenance: Research and Practice 7, 27-48.

86) Jørgensen, M. & Sjøberg, D. (2002). “Impact of experience on maintenance skills”.
Journal of Software Maintenance: Research and Practice 14, 123-146.

87) Kafura, D. & Reddy, G. (1987). “The use of software complexity metrics in software
maintenance”. IEEE Transactions on Software Engineering SE-13 (3), 335-343.

88) Kajko-Matsson, M. (2002). “Problem management maturity within corrective
maintenance”. Journal of Software Maintenance and Evolution: Research and
Practice 14, 197-227.

89) Kamkar, M. (1995). “An overview and comparative classification of program slicing
techniques”. The Journal of Systems and Software 31 (3), 197-214.

90) Kataoka, Y., Imai, T., Andou, H. & Fukaya, T. (2002). “A quantitative evaluation of
maintainability enhancement by refactoring”. Proceedings of the International
Conference on Software Maintenance - 2002, 576-585. IEEE Computer Soc.

91) Kemerer, C. (1987). “An empirical validation of software cost estimation models”.
Communications of the ACM 30 (5), 416-429.

92) Kemerer, C. (1995). “Software complexity and software maintenance: a survey of
empirical research”. Annals of Software Engineering 1, 1-22. J.C. Baltzer AG,
Science Publishers.

93) Kemerer, C. & Slaughter, S. (1999). “An empirical approach to studying software
evolution”. IEEE Transactions on Software Engineering 25 (4), 493-509.

94) Kiran, G., Haripriya, S. & Jalote, P. (1997). “Effect of object orientation on
maintainability of software”, Proceedings of the International Conference on
Software Maintenance - 1997, 114-112. IEEE Computer Soc.

95) Kitchenham, B. (1997). “The problems with function points”. IEEE Software 14 (2),
28-31.

96) Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K. &
Rosenberg, J. (2002). “Preliminary guidelines for empirical research in software
engineering”. IEEE Transactions on Software Engineering 28 (8), 721-734.

97) Kitchenham, B. & Taylor, N. (1984). “Software cost models”. ICL Technical
Journal 4 (1), 73-102.

98) Koskimies, K. (1997). “Pieni oliokirja” (in Finnish). Suomen Atk-kustannus.
99) Koskinen, J. (2000). “Automated Transient Hypertext Support for Software

Maintenance”. Jyväskylä Studies in Computing 4. University of Jyväskylä.
100) Laitinen, K. (1995). “Natural naming in software development and maintenance”

(Ph.D. thesis). VTT.
101) Landsbaum, J.B., Glass, R.L. & Glass, R.B. (1992). “Measuring and Motivating

Maintenance Programmers”. Prentice Hall, 96 p.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
58

19.6.2003 ELTIS-project

102) Lano, K. & Haughton, H. (1993). “Reverse Engineering and Software
Maintenance: A Practical Approach” (McGraw-Hill International Series in Software
Engineering). McGraw-Hill.

103) Lanning, D. & Khoshgoftaar, T. (1994). “Modeling the relationship between source
code complexity and maintenance difficulty”. Computer 27 (9), 35-40.

104) Lehman, M.M. & Belady, L.A. (1985). “Program Evolution: Processes of
Software Change” (Apic Studies in Data Processing). Academic Press.

105) Lehman, M., Perry, D. & Ramil, J. (1998). “Implications of evolution metrics on
software maintenance”. Proceedings of the International Conference on Software
Maintenance - 1998, 208-217. IEEE Computer Soc.

106) Leon, A. (2000). “A Guide to Software Configuration Management“ (Artech
House Computer Library). Artech House, 384 p.

107) Letovsky, S. & Soloway, E. (1986). “Delocalized plans and program
comprehension”. IEEE Software 3 (3), 41-49.

108) Lientz, B.P. & Swanson, E. (1980). “Software Maintenance Management: A Study
of the Maintenance of Computer Application Software in 487 Data Processing
Organizations”. Addison-Wesley: Reading, MA, 214 p.

109) Lyon, D. (1999). “Practical CM: Best Practices for the 21st Century” (2nd ed.).
Raven, 260 p.

110) Mancini, L. & Ciampoli, R. (1990). “Maintenance cost estimation: industrial point of
view”. 1990 European COCOMO User’s Group Meeting. Conf. location: Botley,
Hampshire, UK.

111) Martin, J. (1983). “Software Maintenance: The Problem and Its Solution”.
Prentice Hall, 472 p.

112) von Mayrhauser, A. (1994). “Maintenance and evolution of software products”.
Advances in Computers 39, 1-49.

113) von Mayrhauser, A. & Vans, A. (1995). “Program understanding models and
experiments”. Advances in Computers 40, 1-38.

114) McCabe, T. (1976). "A complexity measure". IEEE Transactions on Software
Engineering 2 (4), 308-320.

115) Miller, H. (1998). “Reengineering Legacy Software Systems”. Digital Press, 250 p.
116) Moreton (1988). “Analysis and results from a maintenance survey”. Proceedings of

the 2nd Software Maintenance Workshop.
117) Munson, J. & Elbaum, S. (1998). “Code Churn: a measure for estimating the impact

of code change”. In: Khoshgoftaar, T. & Bennett, K. (Eds.) Proceedings of the
International Conference on Software Maintenance - 1998, 24-31. IEEE
Computer Soc.

118) Müller, M., Typke, R. & Hagner, O. (2002). “Two controlled experiments concerning
the usefulness of assertions as a means for programming”. Proceedings of the
International Conference on Software Maintenance – 2002, 84-92. IEEE
Computer Soc.

119) Niere, J., Schäfer, W., Wadsack, J., Wendehals, L. & Welsh, J. (2002). “Towards
pattern-based design recovery”. International Conference on Software
Engineering (ICSE’02), 338-348.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
59

19.6.2003 ELTIS-project

120) Niessink, F. & van Vliet, H. (1997). “Predicting maintenance effort with function
points”. Proceedings of the International Conference on Software Maintenance -
1997, 32-39. IEEE Computer Soc.

121) Niessink, F. & van Vliet, H. (1998). “Two case studies in measuring software
maintenance effort”. Proceedings of the International Conference on Software
Maintenance - 1998, 76-85. IEEE Computer Soc.

122) Nosek & Palvia (1990). “Software maintenance management: changes in the last
decade”. Journal of Software Maintenance: Research and Practice 2 (3), 157-
174.

123) Oman, P. & Cook, C. (1990). “Typographic style is more than cosmetic”.
Communications of the ACM 33 (5), 506-520.

124) Oman, P. & Cook, C. (1991). “A programming style taxonomy”. The Journal of
Systems and Software 15 (3), 287-301.

125) Oman, P. & Hagemeister, J. (1992). ”Metrics for assessing a software system’s
maintainability”. Proceedings of the 1992 Software Maintenance Conference, 337-
344.

126) Oman, P. & Hagemeister, J. (1994). ”Construction and testing of polynomials
predicting software maintainability”. Journal of Systems and Software 24 (3), 251-
266.

127) Paakki, J., Koskinen, J. & Salminen, A. (1997). ”From relational program
dependencies to hypertextual access structures”. Nordic Journal of Computing 4
(1), 3-36.

128) Paul, S. & Prakash, A. (1996). “A query algebra for program databases”. IEEE
Transactions on Software Engineering 22 (3), 202-217.

129) Pearse, T. & Oman, P. (1995). “Maintainability measurements on industrial source
code maintenance activities”. Proceedings of the International Conference on
Software Maintenance - 1995, 295-303. IEEE Computer Soc.

130) Phua, P.K.H. (2002). ”Software engineering economics”, Chapters 8 (Software
cost-estimation methods & procedures), 9 (Software maintenance and life-cycle cost
estimation) (lecture notes). Department of Information Systems, School of Computing,
National University of Singapore, Singapore.

131) Pigoski, T.M. (1996). “Practical Software Maintenance: Best Practices for
Managing Your Software Investment”. John Wiley & Sons, 384 p.

132) Polo, M., Piattini, M. & Ruiz, F. (2001). “Using code metrics to predict maintenance
of legacy programs: a case study”. Proceedings of the IEEE International
Conference on Software Maintenance - 2001, 202-208. IEEE Computer Soc.

133) Polo, M., Piattini, M., Ruiz, F. & Mohammadian, M. (Eds.) (2003). “Advances in
Software Maintenance Management: Technologies and Solutions” (to be
published?).

134) Prechelt, L., Unger-Lamprecht, B., Philippsen, M. & Tichy, W. (2002). “Two
controlled experiments assessing the usefulness of design pattern documentation in
program maintenance”. IEEE Transactions on Software Engineering 28 (6), 595-
606.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
60

19.6.2003 ELTIS-project

135) Pressman, R. (2001). “Software process and project metrics” (Chapter 4). In:
Software Engineering - A Practitioner’s Approach (5th ed.), 79-111.

136) Pressman, R. (2001). “Technical metrics for software” (Chapter 19). In: Software
Engineering - A Practitioner’s Approach (5th ed.), 507-538.

137) Pressman, R. (2001). “Technical metrics for object-oriented systems” (Chapter 24).
In: Software Engineering - A Practitioner’s Approach (5th ed.), 653-669.

138) Queille, J.P., Voidrot, J.-F., Wilde, N. & Munro, M. (1994). “The impact analysis
task in software maintenance: a model and a case study”. Proceedings of the
International Conference on Software Maintenance (ICSM’94).

139) Ramil, J. & Lehman, M. (2000). “Metrics of software evolution as effort predictors: a
case study”. Proceedings of the International Conference on Software
Maintenance, 163-172. IEEE Computer Soc.

140) Riecken, R., Koenemann-Belliveau, J. & Robertson, S. (1991). “What do expert
programmers communicate by means of descriptive commenting”. J. Koenemann-
Belliveau, T. Moher & S. Robertson (Eds.): Empirical Studies of Programmers:
4th Workshop (ESP’91), 177-195. Norwood, NJ: Ablex.

141) Robertson, P. (1997). “Integrating legacy systems with modern corporate
applications”. Communications of the ACM 40 (5), 39-46.

142) Rombach, H. (1991). “Software reuse: a key to the maintenance problem”.
Information and Software Technology 33 (1), 86-92.

143) Rose, E. & Eriksson, I. (1998). “Development and maintenance costs: measures of
software maintainability”. In: Carlsson & Eriksson (Eds.) Global & Multiple Criteria
Optimization and Information Systems Quality, 21-35. Åbo Akademi tryckeri.

144) Sahin, I. & Zahedi, M. (2001). “Policy analysis for warranty, maintenance, and
upgrade of software systems”. Journal of Software Maintenance and Evolution:
Research and Practice 13, 469-493.

145) Schach, S. & Tomer, A. (2000). “A maintenance-oriented approach to software
construction”. Journal of Software Maintenance: Research and Practice 12, 25-
45.

146) Schneidewind, N. (1997). “Measuring and evaluating maintenance process using
reliability, risk, and test metrics”. Proceedings of the International Conference on
Software Maintenance - 1997, 232-239. IEEE Computer Soc.

147) Seaman, C. (2002). “The information gathering strategies of software maintainers”.
Proceedings of the International Conference on Software Maintenance - 2002,
141-149. IEEE Computer Soc.

148) Sheldon, F., Jerath, K. & Chung, H. (2002). “Metrics for maintainability of class
inheritance hierarchies”. Journal of Software Maintenance and Evolution:
Research and Practice 14, 147-160.

149) Singer, J. (1998). “Practices of software maintenance”. Proceedings of the
International Conference on Software Maintenance - 1998, 139-145. IEEE
Computer Soc.

150) Smith, D.D. (1999). “Designing Maintainable Software”. Springer Verlag, 169 p.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
61

19.6.2003 ELTIS-project

151) Sneed, H. (1995a). “Estimating the costs of software maintenance tasks”.
Proceedings of the International Conference on Software Maintenance - 1995,
168-181. IEEE Computer Soc. Press.

152) Sneed, H. (1995b). “Planning the reengineering of legacy systems”. IEEE Software
12 (1), 24-34.

153) Sneed, H. (1999). “Risks involved in reengineering projects”. Proceedings of the
IEEE Sixth Working Conference on Reverse Engineering, 204-211.

154) Sneed, H. (2000). “Encapsulation of legacy software: a technique for reusing legacy
software components”. Annals of Software Engineering 9, 293-313.

155) Sommerville, I. (1996). Software Engineering (5th ed.). Addison-Wesley.
156) Sommerville, I. (1996). “Software cost estimation” (Chapter 29). In: Software

Engineering (5th ed.), 589-610. Addison-Wesley.
157) Stark, G., Oman, P., Skillicorn, A. & Ameele, A. (1999). “An examination of the

effects of requirements changes on software maintenance releases”. Journal of
Software Maintenance: Research and Practice 11, 293-309.

158) Swanson, E.B. & Beath, C.M. (Eds.) (1989). “Maintaining Information Systems in
Organizations”. John Wiley & Sons.

159) Swanson, E. & Beath, C. (1990). “Departmentalization in software development and
maintenance”. Communications of the ACM 33 (6), 658-667.

160) Systä, T. (2000). “Static and Dynamic Reverse Engineering Techniques for Java
Software Systems” (Ph.D. thesis). Department of Computer Science and Information
Sciences, University of Tampere, 233 p.

161) Systä, T., Koskimies, K. & Müller, H. (2001). “Shimba - an environment for reverse
engineering Java software systems”. Software - Practice and Experience 31, 371-
394.

162) Tahvildari, L. & Kontogiannis, K. (2002). “A software transformation framework for
quality-driven object-oriented re-engineering”. Proceedings of the International
Conference on Software Maintenance - 2002, 596-605. IEEE Computer Soc.

163) Takang, A.A. & Grubb, P.A. (1996). “Software Maintenance: Concepts and
Practice”. International Thomson.

164) Tamai, T. & Torimitsu, Y. (1992). ”Software lifetime and its evolution process over
generations”. Proceedings of the Conference on Software Maintenance, 63-69.

165) Teng, J., Jeong, S. & Grover, V. (1998). “Profiling successful reengineering projects”.
Communications of the ACM 41 (6), 96-102.

166) Tichy, W. (Ed.) (1995). “Configuration Management“ (Trends in Software, no 2).
John Wiley & Sons, 170 p.

167) Tran-Cao, D., Levesque, G. & Abran, A. (2002). “Measuring software functional
size: towards an effective measurement of complexity”. Proceedings of the
International Conference on Software Maintenance - 2002, 370-376. IEEE
Computer Soc.

168) Ulrich, W. (2002). “Legacy Systems: Transformation Strategies”. Prentice Hall,
422 p.

169) Valenti, S. (2002). “Successful Software Reengineering”. IRM Press, 300 p.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST …
62

19.6.2003 ELTIS-project

170) Visaggio, G. (2000). “Value-based decision model for renewal processes in software
maintenance”. Annals of Software Engineering 9, 215-233.

171) Warren, I. (1999). “The Reneissance of Legacy Systems: Method Support for
Software-System Evolution”. Springer Verlag, 182 p.

172) Warren, I. & Ransom, J. (2002). “Renaissance: a method to support software system
evolution”. Proceedings of the 26th Annual International Computer Software and
Applications Conference (COMPSAC’02). IEEE Computer Society.

173) Weiser, M (1982). “Programmers use slices when debugging”. Communications of
the ACM 25 (7), 446-452.

174) Yeh, D. & Jeng, J.-H. (2002). “An empirical study of the influence of
deparmentalization and organizational position on software maintenance”. Journal of
Software Maintenance and Evolution: Research and Practice 14, 65-82.

175) Yin, R. & Keller, R. (2002). “Program comprehension by visualization in contexts”.
Proceedings of the International Conference on Software Maintenance, 332-
341. IEEE Computer Soc.

176) Zou, Y. & Kontogiannis, K. (2002). “Migration to object oriented platforms: a state
transformation approach”. Proceedings of the International Conference on
Software Maintenance - 2002, 530-539. IEEE Computer Soc.

