@

~—~~

UNIVERSITY OF JYVASKYLA

COST ESTIMATION AND

MODERNIZATION SUPPORT
ELTIS-project

I' SOFTWARE MAINTENANCE
]

Verson: 1.61 Clasgfication:
Authors; Juss Koskinen, Date: 19.6.2003
Henna Lahtonen, Tero Tilus Status Find verson

2

~—~~

UNIVERSITY OF JYVASKYLA

CONTENTS

1

2

3

4

INTRODUCTION... .ottt b b bbb 1

SOFTWARE MAINTENANCE ... 2

21 MAIN EMPIRICAL STUDIES
211 LeNman €t al. (1998)ccceeeiririrerereresseiresesssstsssesssssssessssssssesssssesssssssssssssssssssssssssesssssssnssssssnsesens

SOFTWARE MAINTENANCE TASKS ... 4

GENERAL SOFTWARE COST ESTIMATION MODELS........coois s 5

41 IMIATN STUDIES. ...cttuttrteeeeeeeeessessessessssssssssessssssssssesssssssssssssssssssssssssssssssssssssassssssssssssssssessssssssssssssssassns
411 Boehm(1984)........
412 Kemerer (1987)
g G T 1 - To |V (1 TR
414 Briand €t al. (2000)ccceeurerrreerrerseiessessssisse st ssssssssesesssnsesssnans

SOFTWARE MAINTENANCE COST ESTIMATION......cciiiiissssisesisssss s

51 MAIN STUDIES........cc....
511 Sneed (1995a)

5.2 EMPIRICAL METHODS
521 Kemerer & Jaughter (1999)......ccceeinireinereseseseseessesesssssesssssssssssessssssssssssssessssssssssssssssens

53 SOFTWARE LIFETIME AND REWRITING STRATEGIES
531 Godeetal. (1990)
5.3.2 FOSEr (L1991)oveieeeeereesietre s tsesesssssesesssssssessssssssssssssessensans
533 Tamai & TOrMitSU (1992)cccceerererreririsieinesessssesessestsesesssssesssssssssssessssssssssssssessssssssssssssnsens
534 Chan €t al. (1996).....ccccceirmiurirrieriiseeiriessessesssssessssssssssssssssssssssssssessssssssssssssssssssssssessssssssssssnssnsess
535 Sahin & Zahedi (2001)......ccccoorumnmerrerrerierieneeneenesneseseesesseseeseenees

54 FUNCTION POINT -BASED ESTIMATION
BAL FUFEY (1997 ceeieeeeeeeteressestetsesssssssssssse s s tss s s ssa st s ssss s s s s s ssssssssssessssssnsessnssnsnsnsnssnsns
54.2 Kitchenham (1997)
54.3 Abranetal. (2002)
5.4.4 Other works on the use of function pointsin software maintenance.

55 DYNAMIC MAINTENANCE EFFORT ESTIMATION ...cuvuiiitretetseessesseseseesessessssssssessssssssssssssssessessessesans
551 JBrgENSEN (L995)occuiierecieiririseeisiessse s ssssaessesessssssssesssesss s sesssssssssssesssssessssssnsesssssssesenssnsens
552 Caivano et al. (2001)ccccoucerrerrmrrererssesesesesssesessssesssesssssessessens
55.3 Other related WOrKS........c.cocuvrenenicnernessecsee e

56 GENERAL MAINTENANCE COST DRIVERS
56.1 NiessSink & van VIt (1998)ccccreeereririeineressesesessesssssesssssesssssssssssssssssssssssssesssssssssssssssssens
56.2 Jargensen & F@DErg (2002)ccveoeererireinerisessesesesssesessssesssssssssssssss s sssssessssssssessessssens
5.6.3 OthEr WOIKS. ..ottt sees e

5.7 SOFTWARE COMPLEXITY EFFECTS....ctuniuieneeeenesnenesseensssessesssnesees
571 Gibsonetal. (1989).....cccooierrirseereresstsesesesisssessssssssesssssessensens
572 BanKer €t al. (1993)coovicierriririeeriests s tsesessss st sss s sss st sssssesessensnsns
B5.7.3 KEMEFEN (1995) ...cooveceeeeirecisietressssessesssse s sssssetssssssssssssssssessssssssssesssssssssssssssssessssssssesssssssssssnssnsass
574 Munson & Elbaum (1998)

575 POIO Bt Al. (200L1) .oeeeeeeirieecietrereseetseests s ssssastssssssssssesessse s sesssssesssssssssssssssssessssssnsesssnssssesenssnsens
576 DeLluciat al. (2002)cccceerrirmeeereresreeressssiessssssssssssssssessssssssssessssssssssssssssssssssssssessssssssssssssssens
577 ONEI WOIKS. ..ottt

58 MAINTAINABILITY

581 Colemanetal. (1994)commrrrenrerseisesesesisssessssssssessssssssenses

582 Lanning & Khoshgoftaar (1994)........cciennrreneresieisesesssssssssssssssessssssssssssssssssssssssssssssssens
58.3 Pearse & Oman (L1995)ccirrrresieresissiesesesssssessssssssssesssssesssssssssssssssssssssssssessssssssssssnssesens
584 Other related WOrKS........c.coocuveninericnenesessecsee s

59 PROJECT SIZE EFFECTS...cotueienereereeeessessssesssssssssssssessessesssssssssssssssssssns

59.1 Banker & Saughter (1994) ... oeeirisesesese e sesessssessssssssssesssssessssssssessssssssssenssssens

2

~-
UNIVERSITY OF JYVASKYLA
5.10 OTHER POTENTIAL MAINTENANCE COST DRIVERS OR METRICS.....c.eomuuremeseseesessessssnssessesees
5.10.1 Factorsrelated tO reQUIALOTS. ...ttt nans
5.10.2 Factorsrelated to software BUSINESS PrOCESSES.........cocvvireerereserrese st sessenens
5.10.3 TeChNICal fACOTS.... ..o
5.10.4 The general type of the software and the applications area
5.10.5 USEY TEAUITEIMENES. ...cocuiiieieeeerresetessessetetsesssssessssssssessssssssesesssssssssssssssssesssnssnses
5.10.6 Quality of available NUMAN-TESOUICES..........ccccururerecieirerrsietsess e ssssens
5.10.7 Applied maintenance process MOUEIS..........cccrererrerieieresss s sens
5.10.8 Specific properties of the software.
5.10.9 Used basic programming tO0IS..........coevrenereceiercsie e ssssssssssssssens
5.10.10 DOCUMENEALION.....cuiieirierereerereesesseseseesessesees et b ess bbbttt bbbt s et esaes
5.10.11 Design of the SYSteM.........ccovvvrverrereeerrese e
5.10.12 Factorsaffecting maintainability..........cccccoovveieenerccnrennnns
5.10.13 Applied solutions supporting maintenance
APPROACHES FOR SOFTWARE MODERNIZATION AND ITSSUPPORTcocovnmunmerersereereenens 39
6.1 GENERAL ORGANIZATIONAL DECISIONS....cctueeeeeeeseeseessessesessssssssssssssssessesssssssssssssssssssssssssessessessnes 39
6.2 CONFIGURATION MANAGEMENT
6.3 RE-ENGINEERING.......ceteteeeeneensseeseesessssssssssssssssssssssessessesssssssssssssssssssns
B.3.1 SNEEA (L995D) ..ottt
6.3.2 RANSOM EL Al. (1998) ..ottt sttt s ettt en st s s ten
6.3.3 Tengetal. (1998)......ciiicerrererereee s sssssessssssssessesens
6.34 Comella-Dorda et al. (2000)
6.3.5 Warren & Ransom (2002)ccoceerrurerererrereressssssesssssssssssssssssensens
6.3.6 HAISU (2003).....cccerreeeereiririeietsessssessssssse e ssssasssssssssesessssssessssssssssesssssssssssssssssessssssssesssssssesssnssnsans
LG A |V o | - L1 o) o TP
6.3.8 Restructuring
LSRG T U= - Tox 1o 1 o PR
6.3.10 Kataoka €t @l. (2002)ccooveeerrrireeierisssiessesss s ssssssesssssssessssesssssessssssssesssssssesssssns
6.3.11 Redocumentation
6.4 REVERSE ENGINEERING......ccvutrureerereesessssssssssssssssssessessessssssssssssssssssns
6.4.1 Information request specifications
6.4.2 IMPACt @NAIYSIS SUPPOIT.....c.ceriiieeetriestetse e sesessseseesssse s sss s s s s s s s st s s st et ssssssesssssnsens
6.4.3 ProgramViSUali ZAtiON.........ccccviieeeirirestesissse st sssss e ssss s sse s sssessssssssssssnssnsens
6.4.4 Reverseengineering of object-oriented software
6.5 PREVENTIVE ACTIONS FOR MAINTENANCEcovvurirreeeeeseesssssesssssesssessesssessssssssnns
6.5.1 Enhancement of maintainability during implementation phase
6.5.2 Enhancement of maintainability during design phase.........ccocveeemnereesnenesenessesesensenns
CONCLUSIONS.......cooteieirereise ettt sssssssssess st sttt st 49

REFERENCES ...ttt bbb 52

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ... 1
19.6.2003 ELTIS-project

1 INTRODUCTION

This report describes the theoretical background studies of ELTIS Extending the Lifetime
of Information Systems) project, based on the preliminary objectives set to the project.
ELTIS is concerned with software maintenance, legacy systems, software lifetime, software
renewa/modernization support, and relevant decision criterias for software modernizations.

Chapter 2 provides a generd introduction to software maintenance and motivates the
economic importance of the area. Chapter 3 represents the usudly applied classfication of
software maintenance activities. Chapter 4 charts the area of general software cost models,
which potentidly may provide a basis for maintenance cost estimations. Chapter 5 is the
largest part of the report and deds with software maintenance cost/effort determination.
References to main theoretical works are provided. Chapter 6 provides a framework for
software modernization and its support techniques. Chapter 7 summarizes the conclusions.

This report refers to the contents of the individua studies deemed as most relevant to ELTIS,
The applicability, condraints, vaidation, maintenance cost drivers, and suggested further
research aress of those sudies are andyzed and explicated. In addition, there exists many
other articles whose reference information is provided in separate EL TIS-bibliography.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ... 2
19.6.2003 ELTIS-project

2 SOFTWARE MAINTENANCE

Usually software maintenance is defined as changes to software after its ddivery to cusomers.
The main process of maintenance is changing of source code. Changing of source code,
naturdly, aso isimportant in other latter phases of actua system development. The problems
with successfully handling large source code masses, however, typicdly are more severe in
maintenance phase. Many of the large maintenance tasks dso require versdile skills and thus
athough maintenance often does not require much innovations, it is actudly quite demanding.
In an idedl Stuation the existing code could be reused (Basili, 1990; Rombach, 1991) and
modified as flexibly as possble. That would make it possble to retain a least pat of the
origind investment of sysem development during long lifetime of the system.

The evolution of software is an empiricdly rdatively weekly sudied area. One of the main
references is Lehman & Belady (1985), which announces the so-cdled laws of Lehman. A
Characterization of maintenance which emphasizes configuration management and program
comprehenson is represented by von Mayrhauser (1994), who has distinguished hersdlf
especidly in the area of program comprehenson. Most of the text-books in the software
maintenance area are old, classic ones being Martin (1983) and Swanson & Beath (1989).
More recent ones include Takang & Grubb (1996) and Polo et al. (2003). Pigoski’s (1996)
book is practicd but remains at rather generd leve.

2.1 Main empirical studies

2.1.1 Lehman et al. (1998)

This paper describes a subset of the results obtained to the date of publication (1998) from
FEAST/1 project and implications on Lehman’s laws (listed in appendix 1 of the paper). Two
ample metrics of sysem evolution (size of system, fraction of system not touched at each
release) were observed as functions of release serial number and implications on generd
system evolution and maintenance were drawn from them.

Results suggested a minor rewording of Lehman's 8" law and increased confidence in the
vdidity of the laws. Results dso provided sgnificant support for the FEAST hypothesis
(formulated in the preprints of the three FEAST Workshops, see
http://www.doc.ic.ac.uk/~mml/feastl/).

E-type systems (which are centrd in the definitions of Lehman’s laws) mean applications for
“red-world” purposes, which are “connected” to a multi-layered and iterative “feedback
system”. Positive feedback tends to increase software size, whereas negative feedback tends
to stabilize program development.

Lehman's laws are as follows (as formulated in this paper):

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ... 3

19.6.2003 ELTIS-project

1) Continuing Change: E-type sysems must be continudly adapted or they become
progressively less satifactory.

2) Increasing Complexity: As an E-type sysem evolves its complexity increases unless
work is done to maintain or reduce it.

3) Sdf Regulation: Globa E-type system evolution processes are salf regulating.

4) Conservation of Organisational Sability: The average effective global activity rate
in an evolving E-type system tends to remain congtant over product lifetime.

5) Conservation of Familiarity: On average, the incremental growth tends to reman
constant or to decline.

6) Continuing Growth: The functiond content of E-type sysems must be continudly
increased to maintain user satisfaction over ther lifetime.

7) Declining Quality: The qudity of E-type systems will gppear to be declining unless they
are rigoroudy maintained and adapted to operationa environment changes.

8) Feedback System: E-type evolution processes conditute multi-leve, multi-loop, multi-

agent feedback systems and must be treated as such to achieve significant improvement
for other than the most primitive processes.

Validation of theresults
Data from the evolution of OS/360 (25 releases), ICL VME Kernd (30 releases) and Lucent
Technology System 1 (17 releases) and System 2 (14 rel eases) were used.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ... 4
19.6.2003 ELTIS-project

3 SOFTWARE MAINTENANCE TASKS

Generaly software maintenance tasks are classified into corrective, adaptive, perfective, and
preventive categories. The firdt three of these categories were origindly derived from the land-
mark empirica study of software maintenance by Lientz & Swanson (1980) (covering 487
organizations).

The contents and characteristics of the classes are as follows:
Corrections rdate to the diagnos's, localization, and actud fixing of errors. Debugging and
testing relate intimately to this class. Often correction-type tasks are easest and thus less
cost-producing ones, but such that they have to be performed within rigid time-bounds.
Adaptive tasks ded with interfacing existing software to changing (technica) environment.
Perfective tasks is the largest category. Additions, enhancements and modifications are
made to the code based on (generally often) changing user needs.
Preventive maintenance ams a enhancement of future maintaingbility of the system.
Preventive maintenance is least acute, but because of congtant cumulation of maintenance
codis, preventive maintenance should be considered in case of software which has long
lifetime. Thusit may be a cog-€effective srategy in long run.

A much more fine-grained classfication of maintenance tasks has been represented more
recently by Chapin et al. (2001). Maintenance aso includes such centrd (generic) tasks as
configuration management, change control, code changes, code locdizations, program
comprehenson and impact andyss. The line of empirical sudies of software maintenance
processes in case of industry-level softwareisthin (look e.g. von Mayrhauser & Vans, 1995;
Singer, 1998; Seaman, 2002).

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ... 5
19.6.2003 ELTIS-project

4 GENERAL SOFTWARE COST ESTIMATION MODELS

There exids edablished ways to determine the effort needed in software development
projects. The results received from the gpplication of the these generd modes, however,
generdly are not accurate, dthough best of them provide rdatively good estimates.

In traditional software cost models, costs are derived Smply based on required effort (which
is measured in man-months). Empiricd estimation models provide formula for determining the
effort based on statistical information (a project database) about more or less smilar projects.
The precise software development dtuation is taken into account by using the so-cdled
complexity factors. Empiricaly derived co-efficients are provided in the tables of the modds,
which take into account the effect of possible deviations from the nomind case. Models usualy
require calibration to the actual software development process of the organization.

COCOMO (Boehm, 1981) is the best known of these models. Boehm dsates that
COCOMO's intermediate modd provides estimates which deviate from the actual needed
effort (only) about 20% in average. COCOMO-II (Boehm et al., 2000) is a new updated
verson of the classc modd, with a more modern project database. Boehm (1981) has dso
represented a smple linear modd for determining maintenance cogts, but he admits that it has
many limitations. Also Phua (2002) has given generd formulas for maintenance codts.

Other software cost models include those represented e.g. by Kitchenham & Taylor (1984).
Technlques may be classfied into the following classes
Anaogy-based methods (e.g. SSM, LATURI).
Algorithmic methods (e.g. Halstead).
Compodition-based methods, most notably FPA (Function Point Anayss, Albrecht &
Gaffney, 1983) (and its variants. Jones, Symons and Reifer).
Complexity-based (e.g. cyclomatic complexity, McCabe, 1976; Gill & Kemerer, 1991)
methods.
Statistics-based methods (e.g. Prize-S).
PERT.
Putnam’s modd!.
SOFTCOST.
Other models e.g. Farr-Zagorsky, NADC, Day) which are tailored to the needs of
specific gpplication aress, such asfinancing or aviation.

4.1 Main studies

4.1.1 Boehm (1984)

This aticle summarizes the 1984 date of decison making and software cost estimation
techniques. Boehm compares Algorithmic, Expert, Analogy, Parkinson, Price-to-Win,
Top-Down and Bottom-Up software cost estimation techniques (which have been developed

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ... 6
19.6.2003 ELTIS-project

earlier by various authors) and surveys decision making under uncertainty. These
techniques are covered in detail in Boehm's classic book (Boehm, 1981).

Parkinson and Price-to-Win are judged unacceptable due to the high probability of ending up
to results that lead to hazardous decisons. None of the rest is better than the others in all
aspects. Boehm suggests that in practice a combination of applicable techniques should dways
be used, results compared and iterated when they differ.

Boehm presents a “magter key to software engineering economics decison andyss
techniques’: decision diagram. Man economic andyss techniques available to support
decison making under uncertainty are the following.

In complete uncertainty Stuation the following may be gpplied: maximax, maximin and
Laplace rules. These, however, are inadequate for practica software engineering decisions.

Expected-value techniques, where probabilities of different outcomes are estimated, and
complete expected payoff is caculated as follows:

E= 4 Pr(o)Po(o)
ol Outcomes
where E = expected payoff,
Pr(o) = probability of o,
Po(o) = payoff if 0 occurs,
and decision is made using expected payoffs.

Uncertainty may be reduced by “buying information”. Boehm suggests 5 conditions, titled
“value-of-information guidelines’, under which it makes sense to buy information (by, for
example, prototyping). There exids dtractive dternaives whose payoff varies gredtly,
depending on some Stuation-dependent uncertainty factors. These uncertainty factors have an
gopreciable probability of producing unwanted outcome (low or negative payoff). The
investigations have a high probability of accurady identifying the occurrence of the possble
unwanted outcomes. The required resources of the investigations do not exceed the value of
the information they produce. There exists ggnificant dde benefits (e.g. team-building,
customer relations) derived from performing the investigetions.

Applicability of the approach

Given “vdue-of-information guiddines’ and “master key to software engineering economics
decison analyss techniques’” are directly applicable in a decison making Stuation. They both
trandate the known limitations and condraints of decison making Srategies to dgorithmic
form,

Constraints of the approach
There are no explicated congraints.

Validation of the results

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ... 7
19.6.2003 ELTIS-project

This paper isasummary of techniques without detailed descriptions or validation.

Suggested future work

Software data collection is suggested to be performed. A fundamenta limitation to progressin
software cost estimation is the lack of unambiguous standard definitions for software data
(such as. man-months, delivered instructions).

“The software field cannot hope to have its Kepler or its Newton until it has had its
army of Tycho Brahes’ Barry W. Boehm.

Other related works
These include Boehm & Papaccio (1988); Sommerville (1996); Bennett & Gittens (1997).

4.1.2 Kemerer (1987)

Kemerer is an acknowledged authority on the field of software metrics. He has discussed the
importance of vdidating generd empiricd software cost modes. Because of the preliminary
date of maintenance cost estimation research, the need for empirica data on software
maintenance is even clearer.

In this paper four popular dgorithmic cost estimation modds. SLIM, COCOMO, Function
Points Analyss (FPA) and ESTIMACS were evaduated. Generdizability, performance of
LOC and non-LOC based models and relation between proprietary and open models were
the main targets of research effort.

LOC-based models perform poorly when used in different environment than in which they
were developed. Average error rates between the recelved cost estimates and actua
outcomes ranged from 85% to 772% with most estimates having error rate higher than 500%.
Thorough cdibration with a data from previous projects is a necessty.

Non-LOC modds (FPA, ESTIMACYS) did generdly a dightly better job. In terms of
regresson andyss results LOC modds (COCOMO, SLIM) had higher corrdations.
However, LOC data used was obtained ex post, which is — of course — accurate. In redlity
cost estimation is based on ex ante LOC counts which are nothing more than a “civilized
guess’.

No conclusive answer to question “Do proprietary models perform better?’ could be given,
because SLIM outperformed COCOMO, and FPA did somewhat better than ESTIMACS.

Applicability of the approach

This evduation clearly points out the fact which modd developers themsdves have heavily
underlined: These modes are adjuncts to, not subgtitutes for a detailed estimate done by
project managers. At the very best, agorithmic models explain 88% of the behavior of the
actud man-month effort.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ... 8
19.6.2003 ELTIS-project

Constraints of the approach
No specid congraintsin gpplying the results from this research were specified.

Validation of theresults
Validation was done againgt data collected from 15 large business data-processing projects
written mainly in COBOL. Average Size of project was 221 KLOC.

Suggested future work
More information is suggested to be acquired on what impact do the etimates themsdlves
have on project.

4.1.3 Grady (1994)

The author classfies uses of software metrics related to the following aspects.
- Project estimation and progress monitoring.

Evduation of work products.

Cyclomatic complexity.

Desgn complexity.

Process improvement through failure andysis.

Project defect patterns.

Software process defect pattern.

Experimenta validation of best practices.

He aso discusses the usefulness of these categories for engineers, project managers, process
groups and higher management. In conclusion part of the article, the author ligs the following
recommendations for strategic purposes.
- Measures of success should be defined early.
Data defect trend is useful in release decision.
Complexity should be measured targeting design decison optimization and to creation of
more maintainable product.
Defects should be categorized (this helpsin identifying product and process wesknesses).
Data which would quantify the success of best practices should be collected.

Following atributes (data which should be collected in a software project) were used in the
research: engineering effort by activity, data size, defects, relevant product metrics,
complexity and testing coverage.

Applicability of the approach

Generd results need to be refined for each project. In other words, attributes, their timely
andysis and effect on success should be conddered individudly in each project/organization.
The article presents mgjor uses of software metrics and proposes (listed above) attributes,
which should be collected in project, which is useful.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ... 9
19.6.2003 ELTIS-project

Constraints of the approach
No specific congtraints, process metrics are suggested to be collected.

Validation of theresults
Few examples without exact details are presented from Hewlett-Packard' s projects.

Suggested further research
The author claims that more effort should be reserved in research of new practices and their
bendfits.

Other related works
Fenton (1994); Henry et al. (1996); Schneidewind, N. (1997); Bitman (1999); Ramil &
Lehman (2000); Pressman (2001).

4.1.4 Briand et al. (2000)

Main gods of this research were to evaduate existing cost models with large data set and to
compare local cost models to models based on multi-organizational data. Selected
modding techniques to be evduated by MRE (Magnitude of Rdative Error) modd, PRED(I)
(Prediction at level 1) test and cross vaidation were: Ordinary Least-Squares regresson (OLS
regression), Stepwise ANOVA, Andogy, CART, and combinations of these techniques.

Reaults indicate that OLS regresson and ANOVA performed better than other evauated
techniques. However, consstently with previous research, aso the best models proved to be
inaccurate. Remarkable differences between locd cost models and general cost modes
weren't found.

Variables which were used in the research (and which potentidly are aso software
maintenance cos drivers) included the following: the domain the system was developed for,
adjusted KLOC, effort of project, team size a& any time, virtual machine volatility,
required reliability, execution time constraints main storage constraints programming
practices, software tools and programming language experience.

Applicability of the approach
The research is an accurate and repeatable evaduation of cost modeling techniques. Results
give us hints, what cost models should we examined and developed.

Constraints of the approach
No explicated congtraints.

Validation of theresults

The researchers used data from European Space Agency (ESA) multi-organization software
project database, which, a the time of the research, contained 166 projects from 69
organizations.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
10
19.6.2003 ELTIS-project

Suggested future work

More research effort is suggested to be directed into studying subjective effort estimation,
modding based on expert knowledge elicitation and combining techniques of expert opinion
and project data.

Other related works
Briand et al. (1999).

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
11
19.6.2003 ELTIS-project

5 SOFTWARE MAINTENANCE COST ESTIMATION

Software maintenance is clearly the most expensve and laborious phase of system
development. Often in case of successful software it causes 50-75% of the costs of system
development to the producing organization (Sommerville, 1996, p. 660). The reative
importance of maintenance is especidly greet in case of sysems which have long lifetime (i.e.
legacy systems, look e.g. Bishd et al., 1999) and which are large, complex and criticd to the
customers.

Generdly it is assumed that new design methodologies would dleviate aso the problems of
maintenance. However, despite the adoption of new design methods, the relative amount of
maintenance costs has in fact increased (Edelstein, 1993). Thus maintenance problems appear
to be congant problems in organizations producing software, without any imminent, highly
effective panacea.

Most of the time used to software maintenance is spent on program comprehension. Since
work-time is expengve this underlines the importance of improving the maintenance process,
e.g. by usng up-to-date CASE-tools, such as reverse engineering or reengineering tools.
Since cost-effective support tool development requires the identification of the processes
which take mogt of the maintenance time, thisis an important related question.

Because of the grest ratio of costs caused by maintenance, it would be desirable to estimate
the maintenance cogts systematically. Their reliable estimation, however, is hampered by the
fact that most of the established cost models, such as COCOMO (Boehm, 1981; Boehm et
al., 2000) do not fit well to the peculiarities of the maintenance phase. Thus, estimates often
are only “enlightened guesses’.

A good example of the importance of maintenance problems and problems of their estimation
is the Y2K-bug (Feller & Butler, 1999), which is sad to be the single most expensve
technicd problem in the higtory. The gap between many of the announced estimates €.g.
Jones, 1997) and actud red cods was wide. Generdly, the Y2K-bug was successfully
remedied. However, the required preventive code correction demanded relatively big effort,
and e.g. Nokia used about 75 million Euros to that purpose (ITV, 2000).

It would be desrable to be able to make wdl-informed and correct decisons regarding
whether to continue or not to continue maintenance of a peculiar software system (or its part).
Continued maintenance potentially enables extenson of the system’s lifetime, which may or
may not be desirable depending on the interests of the organization producing the software and
its customers.

In redlity there exists a grest amount of factors which should be consdered. Mogt of the
theoretical models represented earlier make crude smplifications regarding the actua decison

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
12
19.6.2003 ELTIS-project

gtuation. Thus it would be important to collect maxima data-set of the potentidly relevant
factors.

5.1 Main studies

5.1.1 Sneed (1995a)

This paper proposes ways (and presents an implemented method Softcalc) to extend current
cost estimation methods to cover the estimation of maintenance costs

Softcacis carried out in the following 7 steps:

1) Sze, complexity and quality of the software are measured (automaticaly, usng code
auditor).

2) Impact domain of the planned maintenance action is determined.

3) Thesize of the impact domain ismeasured, in at least two of the following metrics: LOC,
number of program statements, function-points, data-points, or object-points

4) The sze measure (step 3) is adjusted by a complexity factor (step 1).

5) The sze measureis adjusted by the external and internal quality factors (step 1, interna
quality reflects maintainability).

6) The size measure is adjusted by a productivity influence factor depending on the
estimation method used.

7) Adjusted size measure is trangposed into maintenance effort by means of a productivity
table

Applicability of the approach
The modd gives one of the inputs (estimated maintenance costs) to the decison making
process when deciding whether to rewrite current system or not.

Constraints of the approach

Supporting tools are a necessity. Softcalc gppears to be well-defined only by the (Sneed's
proprietary) tools implementing it. Even if this would not be the case, it would be far too
laborious to use it without proper supporting software providing required metrics.

Validation of the results
Sneed gives an example, but no actual empirical vaidation of any kind. In fact he presents
vdidation as “what is needed” .

Suggested future work

According to Sneed, empiricaly founded corrdations between maintenance effort and size,
complexity and quality metrics would be interesting. Adequate means of defining the impact
domain of planned modifications is aso interesting. Once this has been solved the scope of

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
13
19.6.2003 ELTIS-project

the maintenance action is measurable. Also maintenance cost drivers are interesting: the
product (software) itsdf, product (and business) environment and maintenance personnel.

5.2 Empirical methods

5.2.1 Kemerer & Slaughter (1999)

The article' s discussion is focused on empirical software maintenance research tasks and
methods. In the firgt section, the authors have summarized results found and methods used in a
few prior research articles.

The authors collected data from a large US retailler with centralized information systems
department, separate development and maintenance units and great stability of personnd.
Research included logs of 23 business systems written in COBOL, but only two systems are
compared in the article. Data was categorized into 3 types (corrections, adaptations and
enhancements) and processed with time series analys's, sequence andysis, phase mapping,
gammaandyds and gamma mapping.

At the end of the article, authors State, that many of the problems of maintenance derives from
a lack of knowledge of maintenance process and of reationships between software
practices and maintenance outcomes.

They emphasize the importance of participation of a good commercid partner in empirica
research projects. Main criteriafor agood partner are: 1) alarge data source from programs
and versions and 2) willingness to cooperate with the research. Another success factor is a
highly disciplined research approach with desire to expand the previous research.

Following attributes were used in data collection of this sudy: age, LOC, FP, number of
modules (online and batch), average module size, cyclomatic complexity per LOC,
operators per LOC (unique and total), unique operands per LOC (unique and totd),
average cost per change/FP/LOC, enhancement cost per enhancement/FP/LOC and
maintenance cost per maintenance/FP/LOC.

Applicability of the approach
The article reports guiddines for empirica research and thereforeit is useful to us.

Constraints of the approach
Results are possibly redtricted to the studied software systems.

Validation of theresults
Empiricd data of over 25,000 change events was collected from 23 commercid software
systems over a 20-year period. However, only two of the systems are reported in the article.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
14
19.6.2003 ELTIS-project

Suggested further research

Authors recommend further research based on their data. Listed examples included:

- Comparing the evolution of legacy systems developed with different approaches.
Comparing evolution patterns from different kind of industries and organizations.
Examining the data collected by the authors with other methods to predict the occurrence
of evolution patterns.

Related works
Kitchenham et al. (2002).

5.3 Software lifetime and rewriting strategies

5.3.1 Gode et al. (1990)

A modd to compare rewriting strategies (i.e. should we use the current or some new

technology) and determine the optima rewriting points is represented. The given modd is

explicit, well-formed and has only three rdaively general assumptions:

1) Maintenance cogt is convex in amount of maintenance performed (the effect of refactoring
is not taken into account),

2) Maintenance cogt is decreasing in system structur edness,

3) Maintenance cost convexity is decreasing in relaion to system structuredness.

Applicability of the approach

All the propositions made, are proven starting from the assumptions listed earlier. Modd is
very ampligic and probably doesn't contain the most important factors defining rewriting
policies. The only gpparent, but quite severe, limitation isfinite fixed planning horizon, which
isin fact fourth (hidden) assumption.

The modd is aformd exercise, not an applicable modd. Although (if possble) examining the
results from our research againgt the propositions of presented mode could be interesting.

Constraints of the approach

There exigts a huge gap between the amplicity of the modd (instantaneous rewriting, and fixed
planning horizon are assumed, and there is only a small number of parameters) and verstility
of “red life’.

Validation of the results
No validation has been performed.

Suggested future work
In concluson authors suggest: “The next step will involve empirica testing of some of the
results obtained in this phase” Also lifetime drivers, technology structuredness (level of

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
15
19.6.2003 ELTIS-project

abdraction in programming languages and environment used to develop and maintain the
software), and maintenance backlog are suggested to be studied.

5.3.2 Foster (1991)

Widely held views on software maintenance expenditures are examined in this paper. Foster
argues that in the light of then recent evidence they must be modified. The “popular view” is
summed up as. Software maintenance costs are high and rising as a proportion of software
expenditure (commonly referred as the S-curve). Thisis an undesirable Stuation.

The god of process improvement in maintenance should be the reduction in the proportion of
maintenance within software expenditure. However, actua effective maintenance costs
collected from various publications (1976-1990) clearly show that the proportion of
maintenance cogts should be considered to be congtant (not risng) over time.

The results of the paper show that if the maintenance process is improved, the results of the
effort are to be seen in increased “lives’ of maintained programs. Interestingly, there is very
little exigting data on the software system lifetimes.

Applicability of the approach
Not directly applicable.

Constraints of the approach

Results apply only to data processng systems. Embedded systems are excluded. The
economic modd referred in the article doesn't take into account the Stuation, in which
increase in development productivity and maintenance productivity occur at the sametime.

Validation of the results

This work is based on a literature survey. Maintenance effort data was gathered from the
following publications Bennett et al. (1980), Moreton (1988), Foster & Kiekuth (1990), and
Nosek & Pavia (1990).

Suggested future work

It is dated that maintenance process affects software system lifetime. Foster strongly
encourages to examine the age distribution of software systems and acquiring other software
demography data.

5.3.3 Tamai & Torimitsu (1992)

The article discusses software's lifetime over (product) generations. The authors focus their
research on collecting atistics of software lifetime, investigating the State of the practice of
software reconstruction and analyzing the factors determining software life- time. Data is
being collected in two surveys.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
16
19.6.2003 ELTIS-project

Thefirg, priminary survey was performed in one company with questionnaires. The surveyed
systems were written in COBOL with 30 KLOC average software size. The researchers
found 32 cases of software replacements from 27 systems. Software lifetime caused by
replacement varied from 2 to 20 years, average lifetime was about 9 years. Researches listed
typicad factors which cause replacement. hardware replacement, high maintenance cost,
change of system architecture, business procedures and social systems

The second survey’'s questionnaires were sent to 150 Japanese organizations and 42 were
returned with data of organizations software replacement cases within five years. Results from
the research are listed below:

Average oftware lifetime is about 10 years.

Vaiance of lifetime dataislarge.

Smadll-scae software tends to have shorter life.

Adminigrative sysems have longer lifetime than sysems supporting business more

directly.

Some of the companies st software life length at the time of release.

Software Sze grew in replacement.

There is diversfication in programming languages, but COBOL is ill dominant in business

goplications.

Factors that cause replacement are composite.

More than a hdf of replacement cases, satisfying user requirements is given as one of the

Causes.

Software, which has been replaced for reason of maintainability, has longer lifetime.

The authors point out that analyds of software lifetime gives a good support for maintenance
drategy decisons. Software with short life expectation may be maintained with quick-fix
strategy, but they should, however, be congtructed by developing reusable components.
Application area, programming languages, and user requirements aso have effect on software
lifetime.

Applicability of the approach

The atide present factors, which has effect on software lifetime. A modd including list of
replacement factors were estimated to be better than a mechanical datistical model, snce
future technology development and user requirements are difficult to predict.

Constraints of the approach
No specified congtraints.

Validation of theresults
Preiminary survey was accomplished before the research. Data was analyzed from ardlatively
large set of organizations.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
17
19.6.2003 ELTIS-project

5.3.4 Chan et al. (1996)

This article presents a normative formalized mode of software maintenance and replacement
effort over afinite fixed planning horizon. Model extends and specifies the modd of Gode
et al. (1990) and earlier work; Chan et al. (1994).

If rewriting speed linear to effort is assumed, optima timings can be given in closed-form. The
repre&nted mgor indghts are the following:
Inferior current platform implies earlier replacement and compressed rewriting
schedule.
Maintenance staff not being familiar with the existing system implies earlier replacement.
Greater functional complexity, good rewriting effectiveness or poor maintenance
quality imply compressed rewriting schedule.
With higher rate of maintenance requests, rewrite appears later and replacement earlier.
Better initid quality or poor rewriting effectiveness imply more relaxed rewriting schedule,
Potential savings from rewriting don’'t come from one single feature aone but from
better platform, quality and familiarity and stringent mai ntenance procedur e together.

Managerid implications drawn from the previous indghts are the following:
Avoid complete rewrite of large gpplication.
Organize programming saff by application (to increase familiarity).
Compress the rewriting schedule (to minimize double maintenance).
Impose gtrict qudity control to maintenance (to achieve low quality deterioration rate).

Functions and parameters of the proposed modd can be interpreted as the set of factors
relevant to optima replacement timing (and resourcing). Mode has the following (free)
variables (referred as V1-V3)

Thetime when rewriting starts

The time when the existing software systemis replaced.

The size of the rewriting team.

Model functions (referred as F1-F7)
The speed of the rewriting team (function of team size, V3).
Functional complexity of the existing software system at timet.
Functional complexity of the new software system & timet.
Code quality of the exidting software sysem at timet.
Code quality of the new software system at timet.
Maintenance productivity on the exiding software sysem a time t (function of
complexity F2 and qudity F4).
Maintenance productivity on the new software system at time t (function of complexity
F3 and qudlity F5).

Model parameters are the following:

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
18
19.6.2003 ELTIS-project

Effort required to develop a function point equivdent of code with the existing
technology platform; it reflects the structuredness of the existing technology platform.
Effort required to develop a function point equivaent of code with the new technology
platform; it reflects the structuredness of the new technology platform.

Marginal effort required to dedl with the functional complexity of the existing software
system; it reflects gaff familiarity with the existing software system.

Marginal effort required to ded with the deteriorating code quality of the existing
software system; it reflects gaff familiarity with the existing software system.

Marginal effort required to dea with the functional complexity of the new software
system; it reflects gaff familiarity with the new software system.

Marginal effort required to dedl with the deteriorating code quality of the new software
system; it reflects gaff familiarity with the new software system.

Code quality of the existing software syssem when it became operationd; it reflects the
control impaosed on code qudlity during the development of the existing software system.
Code quality of the new software syssem when it becomes operationd; it reflects the
control imposed on code qudity during the development of the new software system.
Deterioration rate of code quality of the existing software system; it reflects the control
imposed on code quality during the maintenance of the exigting software system.
Deterioration rate of code quality of the new software system; it reflects the control
imposed on code qudity during the maintenance of the new software system.

Functional complexity of the existing software syssem when it became operationd; it
reflects the complexity of the functiond domain of the software system.

Average complexity of each maintenance request.

Average rate of arrival of requests it reflects the volatility of the busness environment.

Applicability of the approach

The presented model is one step closer to redl life as compared to the one presented by Gode
et al. (1990). Even though the modd is rather ampligtic, dl the parameters are now
measurable in the redl world and optimal (in the sense of this moddl; see condraints) timing
and replacement policies can be determined (while required parameters are given).

Constraints of the approach
Reqw red parameters for existing and new system are the following:
Devel opment and maintenance efficiency (person hoursFP),
Marginal effort required to ded with the complexity of system (person hour/FP) and
deteriorating code quality (person-hours),
Initial code quality (no dim.) and complexity (FP),
Maintenance quality (1/request),
Average complexity of maintenance request (FP), and
Rate of arrival of requests (request/month).

Even if this input parameter data st is avalable, the modd is (dill) limited in finite fixed
planning horizon and leaves out a number of cost drivers (refactoring, changing regulations
etc.) which have amgor effect on the process as awhole.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
19
19.6.2003 ELTIS-project

It's rather evident that this modd doesn't take into account al factors necessary to determine
the optimal replacement policy. And there' s dso this finite planning horizon which feds like a
very unredistic gpproach.

Validation of theresults

The results deduced from the modd have not been vdidated, but model parameters and
assumptions come from field data. Constant maintenance request arriva rate is supported by
field data of 10 gpplications over a 7 year period. Assumptions concerning system growth
(Lehman’s laws), maintainability (Gibson, Senn, Jones, Kafura, Reddy), complexity increase
(Swanson, Beath) and maintenance productivity (Chan, Ho) are taken from results of separate
research projects.

Suggested future work

1) Determindtion of the effect of maintenance backlogs is suggested. Usudly some
maintenance requests must be postponed (forever) to satisfy more urgent ones. When system
is rewritten this backlog can be incorporated into new system.

2) Collection of data on lifetime drivers such as user environment, effectiveness of
rewriting, technology platform, development quality, software familiarity and
maintenance quality of the existing and the new software systems.

Software lifetime drivers
See modd functions and model parameters abowe.

5.3.5 Sahin & Zahedi (2001)

The article presents a modd for strategic decision making in software maintenance. The
modd is described a genera level. Accurate formulas are presented in authors' other article.

The modd’s horizon axis is upgrade cycle of the software product and verticd axis is
customer satisfaction index. Customer satisfaction can be classfied into eight policy
baselines based on three categories of change actions. warranty, maintenance and upgrade.
Each baseline has a recommendation for needed action to increase the satisfaction or to keep
it a the same levd.

The authors found that high quality is a very rdevant variable and with higher quality of
design and implementation, higher average returns are achieved. Furthermore, if software
product is of high qudity, customer’ s reactions have less severe influence on average return.

The results indicate that average return is higher under high volatility markets than under less
volatile markets due to the larger possibilities to upgrade the system. But on the other hand, in

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
20
19.6.2003 ELTIS-project

high volatility markets, quality and technological obsolescence have more important roles to
customers satisfaction and average return.

Applicability of the approach

The modd presented in the aticle is rdevant to ELTIS. It can be usad to andyze
organizations portfolio of software systems and to give support in decison making of needed
mai ntenance actions.

Constraints of the approach
Details of the mode are presented in another article.

Validation of the results
Modd is vaidated with 3,840 base scenarios and 23,040 variations of scenarios in 487
organizations.

5.4 Function point -based estimation

5.4.1 Furey (1997)

In this short article the author argues that function points (FP) should be used as a size and
complexity measure. He prefers function points, because they are independent of devel opment
tool and technology, consistent and repestable, thanks to defined and documented process,
and they help normdize data. In addition, function points enable comparisons between
different technologies. They can be counted in an early phase and used in effort, schedule and
defect estimation.

Applicability of the approach

This article lists arguments, why function points should be used ingteed of LOC in software
Sze edimations.

Constraints of the approach

No explicated congtraints.

Validation of theresults
The article doesn’t present any kind of testing or comparing of FP with LOC.

5.4.2 Kitchenham (1997)

In this short article the author tates that specific types of function points (FP, Albrecht’s and
Symons Mak 2 versons) aren't reliable, since they are not draightforward and smple
measures and have fundamentd flaws in their congtruction. In addition, counter judgements
have an effect in function points counting. However, the author doesn't prefer LOC as a Sze

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
21
19.6.2003 ELTIS-project

measure. She proposes that function points should be further improved and used by taking into
account ther limitations.

Applicability and constraints of the approach

The article ligts arguments, why function points should be used only with caution. Congraints
have to be taken into account adso in our research (in case that function points would be used
as software size measure).

Validation of the results
The article does't present any kind of testing or comparing of FP with LOC.

5.4.3 Abran et al. (2002)

This research apply functional size measurement in building estimation models for software
maintenance. Authors describe two separate software maintenance research projects.
Deveopment of enhancive maintenance effort estimation modds using functiond Sze was
gudied. Following two hypothesis were examined: 1) maintenance effort is increasing
relative to functional size, 2) if corrdation between maintenance effort and functiond dze is
not sgnificant, there exigts other factors which together with functiona size have influence on
required maintenance effort.

Functiond szes were measured using verson 2.0 of second generation function point method
cdled COSMIC-FFP. Data from field research A (a web-based system) was best explained
with functional size, project difficulty and experience of maintenance personnel as
variables (explanatory power, R = 0.83 and R = 0.57 in separate groups). Data from fidd
ressarch B (a red-time system) was best explaned with 2 variable regresson modd
y=ax+hz+cxz+d (x =dgze y=difficulty). Usng that mode coefficient of determination
rose to significant level R = 0.84. Functiona size done doesn't explain maintenance effort.
However, together with project difficulty it does. Second hypothess was supported by these
research projects.

Applicability of the approach

This research shows that there exists domans where accurate early maintenance effort
edimation is possible. It would be surprising if this would gppear to be possble only in the
domains examined here. However, due to the use of regresson models, no extra information
(supporting decison making, references to legacy data, etc.) besides the effort estimate vaue
IS provided.

Constraints of the approach
These results are domain specific and shouldn’t be wildly generalized.

Validation of the results

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
22
19.6.2003 ELTIS-project

There were 36 maintenance projects, 21 of which were maintenance of large red-time system
(field research B) and 15 maintenance of web-based linguistic system (field research A).

Suggested future work
Better defined metrics for project difficulty are needed to refine results. More maintenance
datafrom different domains of business is needed to further test the second hypothess.

5.4.4 Other works on the use of function pointsin software
maintenance

Other works include Abran & Robillard (1993); Engelhart (1995); Tran-Cao et al. (2002).

5.5 Dynamic maintenance effort estimation

5.5.1 Jargensen (1995)

This article describes experiences from the development and use of 11 software maintenance
effort prediction modes fdling into 3 base categories. regresson anayss, neurd networks and

pattern recognition.

Best modds achieved 50% MAMRE (Median Magnitude of Relative Error). Expert
predictions ranged from 10% to 20% on the same scale. However, there's amgor difference
between environments. While modds were compared to historica data, the managers (most
likely) had therr data from an environment where the maintainers knew about the predictions
(interpreted by the maintainers as “plans’) in advance!

Jargensen suggests that prediction models should be used as instruments to support the expert
estimates and to andyze the impact of the maintenance variables on the maintenance process
and product. Pattern recognition approach seems to have the potentia for being superior to
the other approaches in supporting the expert. Pattern recognition models (described e.g. in
Briand et al., 1992) are able to point out a set of smilar maintenance tasks to the one to be
predicted.

Applicability of the approach

Results are important to us. If we are aming at supporting decison making, we need to have
something more than a black box competing with the expert. Pattern recognition or hybrid
aoproach is cgpable of producing supporting information in addition to the estimated
maintenance effort.

Constraints of the approach
Not explicated.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
23
19.6.2003 ELTIS-project

Validation of the results

Data was collected from 109 randomly sdected maintenance tasks executed by 110
maintainers of 70 gpplications written in COBOL or some 4GL, ranging 5-500 KLOC in sze
and 1-20 yearsin age.

Suggested future work

Comparison of the prediction accuracy of expert predictions and the prediction accuracy of
forma prediction models, when both types of predictions are carried out under the same
conditions.

5.5.2 Caivano et al. (2001)

This article presents a dynamic maintenance effort estimation model and supporting tool
(DEE). The model expects process performance to change during project and tries to adapt
itsdlf to reflect the changes. Firgt estimator is deduced from previous projects pretty much the
same way as in other estimation models (regresson analyss). That estimation is then further
refined during project execution using newly collected metrics.

DEE is built on Access 2000® and StatSoft STATISTICA®. Externad inputs come from past
experience and current project. Used econometric modd is built autometically using (forward
sepwise multiple) regresson andysis. Modd refinement is done every time the accuracy of
estimation drops below given threshold value.

There were the following lessons which were learned on system renewal process.
A renewal project can be more efficient if supported by tested tools.
A restoration process (a process resembling reverse engineering and reengineering) is
useful when intention is to improve qudity without dtering software ructure.
Expectations for some variables (e.g. complexity gain) can be limited to reduce required
effort.

These “lessons’ seem quite self evident and the connection between them and the subject of
research was |l eft unclear.

Applicability of the approach

The results are not directly applicableto ELTIS. Thetool (implementing the presented model)
is used when refining effort forecast during rgjuvenation (reengineering) process. At that point
the decision has dready been made to modernize the old system.

Constraints of the approach
Mode is defined only by the tool (DEE) implementing it, thus the tool is a requirement.

Validation of the results

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
24
19.6.2003 ELTIS-project

There are no convincing vdidation. There exigts only an experimenta test with one renewa
project of aged banking application and some smulations with legecy data.

5.5.3 Other related works

Theseinclude Cazolari et al. (1998).

5.6 General maintenance cost drivers

5.6.1 Niessink & van Vliet (1998)

The article presents results from two measurements of cost drivers of software maintenance.
Research included two organizations. the first IT depatment is responsble for Dutch socid
security system (A) and the second is a part of the Dutch indudtrid organization (B). The
selection of possble drivers was based on literature and interviews of managers and engineers.
To andyze the data, researchers used principa component andysis and multiple regresson
andyss.

Although the environments and measurement programs were quite Smilar in organizations,
data from organization A was conddered more useful to explain a variance in effort to
implement change request than organization B’'s data. The authors point out the implication of
aconsistent use of standardized measurement process. To improve the overdl prediction,
authors suggest looking for variables redevant to andysis and testing.

There were a versdtile set of data collected (of which many potentid maintenance cost
drivers). These included the following: maintenance type, software complexity,
requirement changes, size, fault correction effort (fault locality, cumulative changes
made to the software, characteristics of the defective software components), work
needed to convert data, changed use of database, user interface change, code attributes
(structuredness, readability and quality), experience (of the engineer with the code), kind
of database used, relationship with other applications, relationship with other change
reguests, documentation (readability, completeness, clarity and structure), availability of
test sets, tests performed, complexity and size of the change, size of the code to be
changed and other application characterigtics.

Applicability of the approach

The reaults are redtricted to the studied organizations and more research is required to
determine the presented formulas for maintenance effort more accurately. As noted earlier, the
atideincludesawide lig of attributes possbly having effect on maintenance codts.

Constraints of the approach
As noted in the previous paragraph.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
25
19.6.2003 ELTIS-project

Validation of the results
Data was collected from two organizations but results aren’t generdizable.

Other related works
Niessink & van Vliet (1997).

5.6.2 Jargensen & Saberg (2002)

The research focuses on experience's effect on maintenance skills. The sills were
measured as a frequency of unexpected major problems and as accuracy of prediction of
maintenance problems Also maintainers learning from experience was sudied.

The research was accomplished in a software maintenance department of a Norwegian
company. The department maintained over 70 gpplications, mainly written in COBOL, 4GLs
or C. The ages of the software varied from less than a year to more than 20 years and Sizes
varied from a few thousand to 500,000 lines of code. From 110 workers, 54 maintainers
were randomly sdected for interviews. The maintainers average experience in maintaining
and/or developing was 7.7 years, from which 3.4 on average were spent in maintaining the
certain software.

The mgor findings were the following:
Experience decreases the frequency of unexpected mgor problemsto a certain skill level.
The maintainers general experience and application specific experience didn't have a
greet effect on maintenance problem prediction accurecy.
A smple one-variable modd produces more accurate predictions than maintainers.

Following data-attributes were collected during the research: total maintenance experience,
maintenance experience on the application to be maintained, application development
experience, task solving confidence, major unexpected problems prediction accuracy
and size of the task.

Applicability of the approach

According to the article, it is important to consgder maintainers skills as an attribute to
maintenance productivity (which affects required maintenance effort and thus profitability of
extended systerm maintenance and modernization).

Constraints of the approach
No specific congraints.

Validation of the results
As noted earlier, empiricad data was collected. Findings are smilar to previous studies. The
author ligs the following possible effects on the validity of the results:

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
26
19.6.2003 ELTIS-project

Bias in the alocation of maintenance tasks; difficult tasks were given to most experienced
maintainers.

Lack of redism of prediction process; interviewer's identity (researcher versus project
leader) may have an effect on answers.

Low qudity of the data; there is arisk for misunderstanding a question in interviews.

Lack of meaningful measures, it is difficult to measure experience.

Suggested further research
At the end of the article, the authors Sate their interest to extend the research by focusing on
learning and training processes’ effect on maintenance and prediction kills.

5.6.3 Other works

Other works in the area include Gorla & Benander (1990); Mancini & Ciampoli (1990);
Gerlich & Denskat (1994); Bredero et al. (1995); Hirten R. et al. (1996).

5.7 Software complexity effects

5.7.1 Gibson et al. (1989)

The authors of this aticle have examined the system structure’s impact on software
mai ntenance performance. Motivation for the research is afact, that most of the maintainers
time is spent on underganding the system to be maintained. There is dso empirica evidence,
that complex programs need more maintenance than less complex ones.

Three professond programmers were assgned to do three maintenance tasks to three
different verdons of a sysem written in COBOL. Sx metrics Halstead's E, McCabe's
V(G), Woodward's K Gaffney’s Jumps, Chen’s MIN and Benyon tinker’'s C2) were
tested.

Reaults indicate that improvements in system structure decreased total maintenance time and
eror frequency. This agpplies only across a portfolio of tasks, not in specific task.
Programmers were not found to be aware of Sructurd differences dthough differences
improved performance. Also metrics were consdered as a potential tool for project
management. However, programmers couldn't separate complexity of the system from
complexity of the maintenance task and therefore systems were not ranked inconsstently by
them.

Following atributes were used in the research: participants background (age, titles,
general/development/maintenance experience, and COBOL/ISAM experience),
programmer’s performance (maintenance time accuracy of modification, confidence
and perceptions) and maintenance task’s difficulty and complexity metrics (as described
earlier).

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
27
19.6.2003 ELTIS-project

Applicability of the approach

Also in our research sructure of the syslem must be considered. The article gives a darting
point by representing empiricad andysis of the effect of system dructure to maintenance, but
reported research offers only thin research data and has some flaws, for example, in estimation
of complexity (in methods).

Constraints of the approach
The results aren't directly generdizable.

Validation of the results
Only three versons of asingle program were investigated.

Suggested future work

Future research is stated to be needed related to the dimensions of programmer perceptions of
complexity and determination whether the received results of reationship between system
Sructure and maintenance performance exist in “real-world” settings.

5.7.2 Banker et al. (1993)

The aticle analyzes the rdation between software complexity and maintenance codts by
further developing an economic mode of software maintenance presented in an earlier article
of Banker et al. (1991). Previous works on the topic are also summarized.

Complexity’s effect on maintenance costs was measured through software comprehension and
project factors (e.g., expended hours, software size). The researchers found that complexity
has a sgnificant impact on maintenance cogts.

Following maintenance cogt drivers can be identified:
- Maintainer skill,

Maintainer application experience,

Structured analysis/design methodology used,

Operational quality,

Hardware response time, and

Complexity (measured in three dimensions. module size, procedure size, and branching

complexity).

Size was measured with source lines of code and function points and effort with hours
charged to the project. Modularity was mentioned as a measure of complexity.

Applicability of the approach

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
28
19.6.2003 ELTIS-project

The mode is described accurately and results can be used as a guiddine for future research.
Researchers Stated, that results of the research are vaid only in case of the specified (large) set
of commercid 1S gpplications. Other sites need future research.

Constraints of the approach
Vaues of parameters (e.g., optima module Sze) differ based on used programming languages.

Validation of the approach
The research included 65 maintenance projects from 17 applications from a large commercia
bank. The applications were written in COBOL.

5.7.3 Kemerer (1995)

The article presents areview of empirica research literature focused on a relationship between
software complexity and software maintenance performance. The survey included 61
articles, which the author had briefly summarized and classified into categories.

The firg category includes articles discussng modularity and structure metrics. Researches
have find out, that larger modules have fewer errors than smdler ones and optima module size
is not too small nor too large. In addition, global variables and high degree of coupling
cause more source code modifications and incresse error rete.

The complexity metrics section presents, that SLOC is a rdiable metric for measuring
complexity. The last section; comprehension research, lists main problems in comprehension:
personnel turnover, difficulty in understanding the program and difficulty in determining
impact domain. According to research results, experience (in years), breadth of
experience, knowledge of the system and efficiency of the aids have a pogtive effect on
maintenance.

Applicability of the approach
Since the article summarizes main results from previous sudies it is a good reference to a
literature in software maintenance complexity research.

Constraints of the approach
No specified congtraints.

Validation of theresults
The article summarizes previous research results.

Suggested further research
The author points out, that software maintenance has been understudied relative to its practica
importance.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
29
19.6.2003 ELTIS-project

5.7.4 Munson & Elbaum (1998)

Complexity metrics can provide vauable information on software modules to be used during
testing. This study presents metrics depicting how each software system revision differs from
it's successor and predecessor in terms of faults.

Relative complexity is a weighted sum of basic (raw) source code metrics of single release.
Code delta and code churn are derived from relative complexities of severd rdleases. This
study proves that relative complexity together with code delta and code churn are closaly
related to code quality. Code churn and rate of trouble reports had (Pearson) correlation of
0.65 (dgnificant corrdation). Reative complexity provides information on fault injection
process (which directly correlates to change in relaive complexity).

Applicability of the approach

The study shows that complexity metrics redly can provide information on fault proneness
and presumable fault insertion rate This information is vitd when trying to predict the
development trend of maintenance effort.

Constraints of the approach

Metrics are not specificadly defined in this paper. The research team of Munson & Elbaum
developed their own supporting software including raw metrics andyzer CMA, C Métric
Andyzer), rdaive complexity caculation (RCM, Relative Complexity Metric) and code churn
cdculation (EVOLYV).

Validation of theresults
A large embedded real-time system (300 KLOC, 3,700 modules, programmed in C) was
evaluated over 19 successive versons.

5.7.5 Polo et al. (2001)

This paper presents an empirical study on the correation of smple code metrics (LOC,
module count per application) and maintenance effort. It ams (but only partly succeeds)
to provide a method for the estimation of maintenance in the initid stages of outsourcing
maintenance projects when there is very little information available on the software to be
maintained.

Logigtic regresson andyss is used to derive the modd. Resulting prediction equations
(functions of metrics) for corrective maintenance alow to categorize applications to
“problematic’ and “non-problematic” (from the Service Level Agreements point of view).
Other (negative) results confirm the results from other researchers stating that Size is not a
good predictor of fault-proneness.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
30
19.6.2003 ELTIS-project

Applicability of the approach

Taken other results in account, it does not seem very likdly that this gpproach (only measuring
sze) would appear to be useful. Defects requiring corrective maintenance are focused on few
modules and the need of perfective maintenance does not heavily depend on the sze of the
software system.

Constraints of the approach
No explicate congtraints.

Validation of theresults

Validation data was collected from two sets of banking applications over maintenance period
of two years. Both sets of applications were developed in COBOL/CICS on top of DB2.
They conssted of severd MLOC and they are maintained by Atos ODS.

Suggested future work
Authors present correlation between code metrics and maintenance effort as future work.

5.7.6 DeLuciaet al. (2002)

This paper presents a modd for an early maintenance effort estimation. Metrics were chosen
using corrdation andyss. The modd was built usng regresson analysis and vadidated agangst
massi ve adaptive maintenance process used by EDS SC.

The used metrics were the following:
- Number of software code components in the work-packet (incrementa part of software
iN massive maintenance process),
LOC,
McCabe cyclomatic complexity,
Number of control variables,
Halstead softwar e science volume,
Number of logical branches not used, and
Actual effort of the work-packet (measured in man-days).

Applicability of the approach

This estimation method is (in principle) directly applicable, at least on Y 2K or euro-converson
— and like massive maintenance projects. In addition, it is likely that required parameters are
ealy (i.e. before the project is started) and easily available, which are important features when
trying to support decison making. Due the nature of the modd, it's a black-box model, and
does't provide any additiond information besides the effort estimation.

Constraints of the approach

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
31
19.6.2003 ELTIS-project

The gpplication of the mode requires a sample set of maintenance projects and needed
metrics from them, such as. number of programs, one dimensond metric, and one sructurd
metric, LOC and cyclomatic complexity (which were used in this paper).

Validation of the results

The presented model was vdidated against data collected from a large Y2K remediation
project. There were 40 KLOC of components, and 15 KLOC of them were modified. The
programs were written in COBOL/CICS, PL/1, JCL, and Assembler. A leave-one-out cross-
vaidation was performed. Average prediction error was 47% with 10% sample, 42% with
30% sample and 35% with full data. Thus the modd works pretty wdl with rdatively small
sample sets.

Other related works
Other work by the authorsis De Luciaet al. (2001).

5.7.7 Other works

Y et another relatively recent experience report on collecting maintenance metrics data in case
of industry-software is (Fasolino et al., 2000).

5.8 Maintainability

5.8.1 Coleman et al. (1994)

This article represents a comparison of metrics based maintainability evaluation models.
These evauation models can be used to determine when a system should be reengineered.
There exigs the following five modds for this purpose hierarchicd multidimensond moded,
polynomid regression modd, aggregate complexity modd, principa component analyss, and
factor andyss.

By expert review, two (hierarchica, and polynomid) of these five models were sdected to be
actualy gpplied to industrid software systems. Both of them produced results corresponding
to the maintenance engineers intuition and aso provided useful additiond data. Aim was to
develop a smple maintenance assessment mechanism for “ling’ engineers to use in ensuring
that sysem maintainability doesn’'t decline on modifications.

Applicability of the approach

Metrics-based modd of syssem maintainability evauation is smple and based soldly on source
code metrics. It could be of use when informaion on generd profiling of sysem
maintainability or especidly on guiding how to focus refactoring is required. However, wesk
vaidation suggests that this mode should be gpplied with caution.

Constraints of the approach

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
32
19.6.2003 ELTIS-project

Tools to obtain the required metrics are needed.

Validation of the results

Two C/Unix systems (240 KLOC, and 3 KLOC) were used as test cases of the modd.
Expert judgment on the mantainability of sysem A was “low” and of sysem B “high”.
Maintainability index given by the polynomid regresson modd suggested that 33.4% of the
code of sysem A had low maintaingbility and only 2.8% of system B. Maintainability indices
obtained by the models were not vaidated againgt actual maintenance costs/effort required or
agang wider expert judgments on maintainability.

5.8.2 Lanning & Khoshgoftaar (1994)

The article discusses code complexity s effect in maintenance difficulty. The relationship
between these two factors can't be measured directly and authors apply canonica correlation
andydis in ther investigation. The method is gpplied in the system test phase of a commercid
real-time product. The product congsts of about 223,000 lines of Assembly code in 152 files.
Product’ s main purpose is to provide stable interface for software products, which are written
to avarying hardware base.

Following attributes were used in the research: complexity (number of unique operators
and operands, total number of operators and operands, number of executable
statements, McCabe's cyclomatic number, number of times the control flow crosses
itself, number of calls out and calls in, average information content classification) and
maintenance difficulty (added/deleted/moved, noncomment source lines, number of
program faults and number of design changes).

Applicability of the approach
The method is presented exactly, but is't rdiable without further development, becauise model
omitsinfluences on maintenance difficulty.

Constraints of the approach
Results can't be used in generd, because the research includes only one project.

Validation of the results

Researchers invedtigated system test phase of a one commercid red-time product. The
authors note, that results are redtricted to their investigations, because canonica correlation
andysis is presented as a redricted form and the modd omitted some influences on
maintenance difficulty. However, they consdered canonica correlation analysis as a ussful
exploratory toal.

Suggested further work
Authors future research will focus on developing generd soft modds of the software
development process for both exploratory analysis and prediction of future performance.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
33
19.6.2003 ELTIS-project

5.8.3 Pearse & Oman (1995)

The article presents a research, in which maintainability metrics are used to measure the effect
of adaptive and perfective maintenance. There are three aspects in maintenance which are
discussed here: management practices, operational environment and target software
system. The authors restrict their investigation into source code of the target software system.

The researcher congtructed approximately 50 regresson models. The best of these models
was based on Halstead's Volume the extended verson of McCabe's cyclomatic
complexity, lines of code and percent of comment lines. These four metrics were used in
caculaion of Maintainability Index (MI). Researches selected four maintenance activities.
unused code remova, compiler warning removal, code restructuring and integrating new
features. Pre-post analysis was used to measure maintainability before and after maintenance
task.

Good results were achieved in testing of MI-model. However, the researcher noticed that it
doen't reflect to any kind of maintenance tasks, for example unused code remova and
compiler warning removal. These results suggest that assessment tools should aso provide
data with Ml for interpreting the vaue.

Applicability of the approach
Ml isasmple modd, and therefore it misses detailed information. Thusit is not useful to us.

Constraints of the approach
Two tools: UX-metrics and Micac, were used in research to calculate the MI-value.

Validation of the results
The models were congtructed in cooperation with Hewlett-Packard.

Other related works

Oman & Hagemeiger (1994) and Oman & Hagemeister (1992) in which is provided a
classfication of target sysem metrics.

5.8.4 Other related works

Theseinclude: Rose & Eriksson (1998); Sheldon et al. (2002).

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
34
19.6.2003 ELTIS-project

5.9 Project size effects

5.9.1 Banker & Slaughter (1994)

The article focuses on the relationship between maintenance project size and productivity.
Project 9z€'s influence on productivity was andyzed by usng Daa Enveopment Anayss
(DEA) and DEA-based heuristics were used to examine returns to productivity scae.

It was found that project size's effect to productivity should be an important measure in
maintenance and development projects. Smaller maintenance actions should be grouped into
larger releases. Presence or absence of scale economies a given maintenance project size has
influence on maintenance productivity. Researchers aso noticed, that the most productive size
for the project is larger than 90% of the projects within the sample of this study. Identifigble
maintenance cogt drivers included work efficiency (measured with hours and function points).

Applicability of the approach

The research focused in project Size's effect on maintenance productivity. Results are useful to
project managers. In our point of view, usng DEA-based heurigtics to examine returns to
scae for the projectsis possbly interesting.

Constraints of the approach
No explicated congtraints.

Validation of the results

Data was collected from 27 software maintenance projects from a mgor mass merchandising
retailer in two years period. Programs were written in COBOL. Research results were dso
tested with heuristics and analyses. Test results gppear to confirm the robustness of research
results.

Suggested future work

Authors mentioned a few possible extensons to research:
Determining whether the received findings can be replicated in case of other software
mai ntenance projects.
Identifying factors contributing organizations ability to manage maintenance projects.
|dentifying other factors effects on maintenance productivity.
Identifying DEA methodology’s usability to assess the performance of an organization
which utilizes a proactive change management program.

5.10 Other potential maintenance cost driversor metrics

There are d 0 at least the following classes of decision criteria to be considered while making
software modernization decisons. Some of these factors have dready been mentioned above
related to the individud gtudies. Since an incomplete modd may give mideading results, it

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
35
19.6.2003 ELTIS-project

should be noted that the modds should be iteratively enhanced, calibrated and vaidated within
the target-organizations. If a quantitative model would be a god, it should be ensured that
sufficiently complete metrics detais available.

For recelving sufficient explanatory power for the decison mode, the key dements
characterizing the maintenance Stuation should be identified. These additiond factors include
characterigtics describing the organization, project and system. Time aspect should dso be
noted. It would be good if reliable and rdevant Satistical or metrics data would be available,
athough the rdigbility of many of the quantitative basc metrics, such as LOC and cyclomatic
complexity is questionable.

5.10.1 Factorsrelated to regulators

Jurisdiction and other regulations, which pose more or less rigid boundary conditions to
the acceptable solutions.

5.10.2 Factorsrelated to software business processes

Real needs of customers (customer-driven development) vs assumed needs.

Redlly useful technologica opportunities.

“Hype’ (i.e. needs and expectations crested merely by unfounded promises and wishful
thinking) (including merdly technology-driven devel opment).

5.10.3 Technical factors

Technica options (possibilities) and ther technica qudity metrics.

Maintainability (pre & post modernization) and costs due to maintenance.

Lifetime of technologies (some possbly becoming obsol ete).

Posshilities to change the system sufficiently quickly to meet changing customer
requirements (version cycles).

Effects of new adoptedito be adopted modernization techniques and support
technologies (such as reverse engineering) etc.

5.10.4 The general type of the software and the applications area

Type of software (adminigtrative, embedded, real-time system etc.).

Novelty of the gpplication area (e.g. Sandard invoicing vs. newest mobile technology).
Effects of changes in environment (in addition to above-mentioned regulator-based
changes).

Generd requirements (efficiency-, timing-, memory restrictions (RAM, disk-space)).

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
36
19.6.2003 ELTIS-project

5.10.5 User requirements

Typicdl, average amount of source lines changed (added, deleted or modified)/totd sze
of the sysem/time unit.
Requirements volatility (look: Stark et al., 1999; Di Luccaet al., 2002).

5.10.6 Quality of available human-resources

Availability of the origina coders (as councellors for new ones).
Relevant technica work experience.

Relevant work experience on the gpplication domain.

Generd maintenance experience.

Maintenance experience of the system to be maintained.

Work efficiency.

5.10.7 Applied maintenance process models

Systemdtic configuration management (e.g. Capretz & Munro, 1994).

Quadity/sufficiency of the used CM-tools.

Sysematic process models of eror-corrections (Jambor-Sadeghi et al., 1994,
Eisenstadt, 1997; Kgko-Matsson, 2002; Agans, 2002).

Collected feedback from the users (error-reports etc.), and related process improvement.

5.10.8 Specific properties of the software

Sze of the sysem (KLOC, KDS, number of tokens).

Age of the system.

Software complexity (e.g. average module sze, number of modules, McCabe's
cyclomatic complexity, control complexity, Halstead’'s data complexity, code
redundancy (Burd & Munro, 1997), metrics values of object hierarchy; Kiran et al.
(1997). Software complexity is one of the main maintenance cost-drivers (Banker et al.,
1991; 1993). The reiability of complexity data is enhanced if versatile metrics data is
collected (Kafura & Reddy, 1987), dthough its collection may be laborious, and thus
potentiadly not cost-effective.

(Un)structuredness (e.g. gotos).

Delocalization of system logic (delocalized program plans, Letovsky & Soloway,
1986).

(Module) cohesion.

(Module) coupling.

Number of versions.

Number of variants.

Number of releases.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
37
19.6.2003 ELTIS-project

Leve of usng established standards (e.g. programming languages, graphica interfaces,
databases).

Reuse (components acquired from e sewhere/those devel oped within the organization).
Program comprehenshility, affected by numerous factors, e.g. naming conventions of
symbals (Laitinen, 1995), length of identifiers.

5.10.9 Used basic programming tools

Programming language(s) (and its abstraction level: Assembler,... C,..., C++,... gpplication
generators).
Used compilers and debuggers.

5.10.10 Documentation

Amount of documentation (pages).

Quality of documentation (completeness, accuracy, timeliness, compactness,
comprehensibility, readability, consistency, history information about system
development and errors).

Amount of comments (and its adequacy).

Quality of comments (focus. functions, modules, data-structures, definitions, complex
sructures etc.; Riecken et al., 1991).

Programming style (applied standards, coherence; Oman & Cook, 1990; 1991).
Traceability of design decisions.

5.10.11 Design of the system

Applied quality assurance techniques (e.g. code inspections, testing procedures).

Generd qudity (metrics e.g. mean time to failure; MTTF; rate of failure (ROCOF);
probability of failure on demand; POFOD; usability, mean time to change; MTTC,
eror correction cods after sysem ddivery; i.e. spoilage, security; robustness,
integrity).

Applied desgn principles (e.g. logicality, structuredness, modularity, object-
orientation, information hiding, speculative design, flexibility).

5.10.12 Factors affecting maintainability

Expected lifetime (neglected maintainability reduces this, due to e.g. prototyping,
optimizations).

Process metrics (number of corrective maintenance requests average time used to
impact analysis, number of considerable change-requests amount of user-
interaction; Sommerville, 1996).

Generality (preparedness to operation on e.g.: different hardware, operating systems,
input/output formats, data-structures, dgorithms, and portability).

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
38

19.6.2003 ELTIS-project

5.10.13 Applied solutions supporting maintenance

The effects of applying sophisticated maintenance support techniques should be taken into
account while estimating the effort that maintenance requires. These techniques are listed in the
following chapter.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
39
19.6.2003 ELTIS-project

6 APPROACHESFOR SOFTWARE MODERNIZATION AND
I'TS SUPPORT

In this chapter we compactly list the main avalable branches of solutions for software
modernization and its support. Since the project objectives in the focus area of this chapter are
yet not sufficiently specified, we will here not delve into the detalls of the many branches of
potentia solutions.The purpose is to provide initid framework of the factors affecting the
success of software modernization. Reengineering and reverse enginering are the most
important sub-categories. Two last categories relate to the long-term, proactive maintainability
enhancements.

6.1 General organizational decisions

Managers may affect the following aspects, which provide frames for software maintenance.
Principles of selecting maintenance personnd (per system).
Training, compensations, incentives, status (Landsbaum, 1992).
Maintenance organization (Swanson & Beath, 1990; Yeh & Jeng, 2002).
Decisonsregarding e.g. tools to be used, standards to be followed and attitude towards
reuse, code change practices, and applied process models.

6.2 Configuration management

Systematic configuration management (Berlack, 1991; Capretz & Munro, 1994; Tichy, 1995;
Lyon, 1999; Leon, 2000; Haug et al., 2001) is a necessty while maintaining large sysems
and its importance is emphasized at the latter phases of sysem’s life-cycle. In practice,
configuration management is done by CM-tools (e.g. RCS, SCCS, make, ClearCASE,
CVYS), which typicaly support control of code change rights, determination of base lines,
automeatic change reporting, change accept control, and determination of program deltas.

6.3 Re-engineering

Re-engineering means sudying the software sysem and changing it into (often aso)
functionaly new form. Main text-books written in English are the following: Arnold, 1993;
Miller, 1998; Warren, 1999; Ulrich, 2002; Vaenti, 2002. Other related relatively recent
works include Bray & Hess (1995); Baniassad & Murphy (1998); Fanta & Rajlich (1998;
1999); Chu et al. (2000); Tahvildari & Kontogiannis (2002); Zou & Kontogiannis (2002).
Look aso Bianchi et al. (2003) for data reengineering.

6.3.1 Sneed (1995h)

In the article the author presents a five-step reengineering planning process for esimating
whether reengineering is worth the required effort. The process modd includes following five

steps:

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
40
19.6.2003 ELTIS-project

1) Portfolio justification: cdculating return on investment by andyzing enhanced
business value, software’ s quality increase and improvement in maintenance process.

2) Portfolio analysis: applications need for reengineering is prioritized according to their
technical quality and current business value.

3) Cost estimation: caculating estimated costs by identifying and weighting the software's
components.

4) Cost-benefit analysis: comparing the estimated costs with benefits to be achieved in A)
reengineering, B) redeveloping and C) doing nothing &t dl.

5) Contracting: contract can be based on time and materia or results.

The aticle mentions the following possble messurements. lines of code, number of
databases, number of files, number of fields, database accesses, number of function
points, data complexity, cyclomatic complexity, interface complexity, data-access
complexity, number of relationships among files, degree of module coupling, distance
between variable references, general quality, data dependency rate number of
elementary data elements modularity, testability, portability, test environment, test
support, number of test cases, average cost of test case, productivity rate, annual
maintenance cost (current cost, cost after reengineering and cost after redevelopment),
operation cost (specified more precisdy asin case of the previous atribute), business value
(current business value, business value after reengineering and business value of a new
system), estimated reengineering costs and redeveloping costs, time and risk factor,
expected life(-time) of a system, user satisfaction and maintenance programmer morale.

Applicability of the approach
Accurate formulas are presented and the reengineering planning processisrelevant to ELTIS.

Constraints of the approach
Measurement program is needed in project judtification.

Validation of theresults
The presented planning process has been developed with 25 years programming experience.

Related works
A newer work on reengineering risksis (Sneed, 1999).

6.3.2 Ransom et al. (1998)

Article presents an assessment method (planning part of RENAISSANCE method) that
examines a legacy system from its technical, business and organizationd perspectives. The
method guides users through assessment of these perspectives and provides further guidance
on interpreting the results obtained from assessment. Method s iterative by nature and it
supports quick rough estimates and more detailed ones by further iterations.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
41
19.6.2003 ELTIS-project

There are thefallowing two base principles for the method:

- Reengineering must be company and project specific. The method is designed o that it
can be ingtantiated according to particular company and project requirements.
Both the reengineered process and the reengineered system must be continuoudy refined.
The principa product of gpplying the method is a system transformed to evolutionary State
(from whatever “legacy” dtate it had before).

The product of the assessment method is to gain a sufficient depth of understanding of the
Iega:y system. Typica questions answered during assessment are

Isthe system criticd to the organisation in which it operates?

What are the organization’s business goas?

What are the evolution requirements?

What is the anticipated lifetime of the system?

What isthe required lifetime of the sysem?

What isthe technicd dtate of the system?

Is the organization that operates the system amenable to change?

Does the organization responsible for evolving the syssem have sufficient resources?

Assessment process starts with method ingtantiation. Next phase includes business value,
externd environment and agpplication assessments, which are carried out in pardld. Findly
results are interpreted to find the optimal evolution Srategy.

Ingtantiation includes defining assessment technique (expert judgement, quantitative metrics)
and levd of detall. The god of business vaue assessment is to determine the importance of the
system to the organization.

The externd (technical) environment of a system is the union of hardware, supporting software
and organization's infrastructure. The following hardware characteristics are suggested to be
considered: vendor/supplier rating, maintenance costs, failure rate age, ability to
peform function, performance. The following supporting software characteristics are
suggested to be considered: License costs Frequency of fixes/patches, Quality of support
personnel. The following organizationa factors are suggested to be considered: Type of
organization and system users (how skilled is the system user’s work? what is in-house and
what is outsourced? etc.), Technical maturity of the organisation, Training procedures in
the organization, Skill levels of system support, and Organizational attitude to change.

Application assessment is concerned with the application software of the legacy system in
question. The following characteristics are consdered: complexity, data, documentation,
external dependencies, legality, maintenance record, size, security and test bed.

Applicability of the approach

The represented method framework is highly relevant to the decison making support gods of
ELTIS. In addition a great ded of factors the authors believe to be relevant to the optima
software evolution strategy are listed.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
42
19.6.2003 ELTIS-project

Constraintsof the approach
These are not explicated.

Validation of the results

“The assessment method is currently being evauated as part of the RENAISSANCE method
by indudtrid organizations involved in the project. We am to incorporate their feedback in
subsequent refinement of the method.”

6.3.3 Teng et al. (1998)

In the article authors have collected empirical data from 105 organizations (Szes vary from
5,000 to 10,000 employees) business process reengineering projects by comparing projects’
radicalness and stage-effort profile to projects implementation success. The researchers
use correlation andysis in evaluation of responses.

The authors found a strong positive relationship between radicaness and implementation
success. Also roles and responsibilities, information technology and changes in the work
flow patterns have a great influence to perceived success. Additiondly, attributes used in the
work included dso the following: extend of change, strength of effort, goal fulfillment,
number of employees, business processes, organization's type, used formal
methodol ogies.

Applicability of the approach
The method used in the article is useful in analyzing companies reengineering processes.

Constraints of the approach
No congraints for using this research method.

Validation of the results

As noted empiricd data was collected from a large s&t of organizations. In the discusson
section the authors note, that the selected projects may not be a comprehensive variety of the
reengineering projects. Therefore the results should be interpreted with caution.

Suggested further research

The authors emphasize, that more atention should be shifted from analyzing the exiding
business procedures to socia design and process transformation in reengineering projects.

6.3.4 Comella-Dorda et al. (2000)

In the atide sysem evolution is defined as a continuum of sysem maintenance,
moder nization and replacement. The authors describe maintenance, replacement and white-

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
43
19.6.2003 ELTIS-project

box modernization in generd and focus on black-box modernization, in which understanding
of the system is gained by examining merdy its inputs and outputs.

The authors emphasize, that al options to modernize a legacy system must be thoroughly
explored and evauated. Following techniques are discussed:

User interface modernization
Screen scraping for user interface modernization (in which old, text-based interfaceis
wrapped with graphica interface).
+ cost
— mantainability

Data moder nization for accessing data with a different interface or protocol.
Database gateway. (wrapping legacy data with standard protocol)
+ cost
+ tool support
—maintainability
XML integration. (convert proprietary connection between systems to XML -server
based)
+ flexibility
— evolving technology

Functional modernization for encapsulating the data and businesslogic.

- CGl integration. (wrap legacy data and functionaity behind web-interface)
+ cost
—flexibility
Object-oriented wrapping.
+ flexibility
— cost
Component wrapping.
+ flexibility
— cost

All the black-box techniques require the legacy system to be sable, because the new
functiondity completdly relies upon the old. Especidly screen scraping (sometimes referred as
“whipped cream over road kill”) is very sengtive to the underlying gpplication.

Object wrapping and componentization come in handy when the legacy system is to be
incrementdly replaced. Modernization creates new interfaces between subsystems which can
then be replace one by one.

Applicability of the approach
The aticle is a good overview of modernization techniques and ligs ther grengths,
weaknesses, targets, and use.

Constraints of the approach
Presented techniques are suitable for specific types of software and system environments.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
44
19.6.2003 ELTIS-project

Validation of the results
There is no vdidaion, dnce the aticle is a survey of generd black-box modernization
techniques.

6.3.5 Warren & Ransom (2002)

In this article an overview of a method, and a process framework caled Renaissance, is
presented. It supports system evolution by first recovering a stable basis using reengineering,
and subsequently continuoudy improving the system by a stream of incremental changes. The
extent of evolution is determined by taking into account technica, business, and organizationd
factors.

Providing a controlled gpproach to system change means reducing the costs and risks. Key
requirements of amethod to support controlled system evolution are
The method should support incrementa evolution
Where gppropriate the method should emphasize reengineering rather than system
replacement.
The method should prevent the legacy phenomena from reoccurring.
It should be possible to customize the method to particular organizations and projects.

Process framework consists of two main phases:
Evolution planning: “What to do”, see detailed description in Ransomet al. (1998).
Evolution project management: “How to do”, contains implementation of evolution Strategy
and ddlivery and deployment of the products.

Applicability of the approach
The represented framework is highly relevant to some of the gods of ELTIS.

Constraints of the approach
Not explicated

Validation of the results
No actua vdidatiion. Authors have recieved a great ded of feedback and refinement
suggestions from indudtriad partners of the RENAISSANCE project.

The key findings of companies which have evauated RENAISSANCE were:
Framework is well-defined and easy to follow.
It integrates successfully with different project management processes.
It helps risk reduction and cost distribution.
Evolution strategy sdection was proven useful.
Overhead of adopting framework is high.
Overheed for managing small projects was high.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
45
19.6.2003 ELTIS-project

Other related works
Other works on reengineering include Bailes & Pesake (2003).

6.3.6 Harsu (2003)

Harsu's text book covers software maintenance and especialy reengineering. Harsu (2000)
has dso written a Ph.D. thess on the subject area. Following aspects are discussed in the
book:
- Reverse engineering/design recovery.

Software renovation/modernization (modds of renovation, language conversion,
wrapping).

Data reengineering.

Reusability improvements.

Applicability of the approach
The book describes gpproaches, which are highly relevant for the modernization support part
of the project’ s objectives.

Validation of the results
Vadidation is not explicated, since the book describes exigting techniques at non-detailed leve.

6.3.7 Migration

The term migration refers here to the process of making legacy systems to function in new
technica environment (Brodie & Stonebraker, 1995). Proactive actions towards system
portability affect to the possibilities of codt-effective migration. Other recent works include
Goedicke & Zdun (2002).

6.3.8 Restructuring

Restructuring (Griswold & Notkin, 1993) means the change of the internd representation of a
system without changing the abstraction leve of the representations (the externd behaviour is
neither affected).

6.3.9 Refactoring

Refactoring (Fowler et al., 1999) means the generd “polishing” of a sysem, often in
conjunction to its changes for other reasons. The targets of development may be, e.g.: syle,
comprehengility, flexibility or reusability.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
46
19.6.2003 ELTIS-project

6.3.10 Kataoka et al. (2002)

A (tool-supported) method, which hdps finding out how refactoring will affect
maintainability and choose correct refactorings to be carried out is presented. The method
uses coupling metrics as ameasure of maintainability.

Refactoring process congst of improvement planning, execution and vaidation. Planning
begins with detecting “bad smell” (potentid refactoring candidates. duplicate code, etc.) from
source code. Then the candidates are analyzed and the most potential ones are selected to be
included in a comprehensive refactoring plan. The plan produced is then evaluated in terms of
cost and effect. Improvement execution starts with refactoring deployment as actua program
modifications, which are then carried out and evauated.

It's (dill) totaly unclear how this method helps to choose appropriate refactorings. It just
meagicaly happens during refactoring planning: “After andyzing various “bad-amels’, a number
of refactoring candidates would be identified.” If it's (as one would assume) done by
comparing metrics before and after refactoring, then where did the after refactoring -
coupling metrics vaue come from before the refactoring was actualy carried out. The paper
doesn't talk about estimated metrics, only the actual ones.

Applicability of the approach

The only result gpplicable is the information: “there exigts refactorings on which maintainability
messured by expert judgment and coupling metrics correlate.” The method presented doesn't
seem gpplicable a dl for various reasons. It's totaly, completely and entirely unclear how the
refactoring candidates are sdlected from “bad smells’ and how cod-effect-evauation of
improvement plan is actualy carried out. The number of refactorings whose effect can be
evauated from coupling metrics viewpoint is limited. In “vdideation” the refactorings sdected
could well have been the ones whose effect is measurable by coupling metrics.

Constraints of the approach
Tool support (Refactoring Assistant) is required.

Validation of the results
There is no actud vdidation. A single experiment with single 5 year old software project (sze
unknown) written in C++ was used as a case study.

Related works
Visaggio (2000) may be relevant.

6.3.11 Redocumentation

Redocumentation means the creetion of a new more illustrative representation for the system,
which dill is equivdent to the origina one. In effect, the am is to creete the documentation,

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
47
19.6.2003 ELTIS-project

which should have been created in the past (look e.g.: Antoniol et al., 2000). Look also
Prechdt et al. (2002).

6.4 Reverseengineering

Reverse engineering means the identification and representation of system components and
ther interrdations, in a new form, which typicdly is a a higher abgraction leve than the
origind one (Cross et al., 1992; Lano & Haughton, 1993). Thus reverse engineering
produces representation tranformations (Bennett, 1998), which support eqg.
comprehengbility (von Mayrhauser & Vans, 1995). Reverse enginesring usudly ams at
design recovery (look e.g. Gannod & Cheng, 1999; Niere et al., 2002). A thorough and
extensve dasgfication of the reverse engineering techniques is found in (Koskinen, 2000;
Introduction and overview, Appendix 1).

The applicahility of reverse engineering tools is limited by ther availability to the needed
platform, operating system and programming language. Old technologies (which often are most
troublesome) are not necessarily well supported. Some representative examples of the
modern, versatile tools of this category, which dso support a relaively wide range of
programming languages indlude: Telelogic LogiScope, Imagix 4D, SNiFF+, and Refine/C
(look e.g. Bellay & Gdll, 1997, for comparisons). Look aso Chen et al. (1995).

6.4.1 Information request specifications

Information requests, which the maintainer formulates initiate the andysis operations of the
support tool. The specification mechanisms affect the possbilities of sufficiently exact and
detailed queries. There exists good mechanisms for these purposes, dthough they are il a
research stage. E.g. Paul & Prakash (1996) have proposed a dedicated query language for

this purpose.
6.4.2 Impact analysis support

The purpose of impact andyss (Quellle et al., 1994; Arnold & Bohner, 1996) is to identify
the possible sde-effects of code changes. In principle each code change should be followed
by regresson testing, which would guarantee that the changed system 4ill medts dl the
requirements. In practice, in case of large systems, it is not possble to perform complete
impact andyss relaed to dl changes. Focusing of impact andyss may be supported (in
principle) e.g. by program dicing, especidly its Satic form.

6.4.2.1 Program slicing

One of the gpproaches which is theoreticdly very well suited especidly for maintenance
support, is program dicing (Weser, 1982, Berzins, 1995; Kamkar, 1995). The most
important of the program dependencies which should be checked while programs are changed
are data- and control flow dependencies (Paakki et al., 1997). Program dices are formed

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
48
19.6.2003 ELTIS-project

based on these dependencies. The main redtriction of program dicing isits limited efficiency in
case of andyzing industry-sze programs.

It is dso important to identify (related to code changes) those parts of the code which have
been changed or which are not changed (“frozen parts’), or on only which necessary
preconditions changes should be dlowed (invariants) (look e.g. Erngt, 2001).

6.4.3 Program visualization

The results of the reverse engineering are represented to the user ether in text-form or
grephically. Hierarchicd and graphica representations typicdly ad in the comprehension of
large information collectiong'structures (Bal & Eick, 1996; Eick et al., 2002; Yin & Kdler,
2002).

6.4.4 Reverse engineering of object-oriented software

As an application area of reverse engineering legacy systems are very important. However,
some effort has also been targeted to the support of more modern object-oriented programs,
which are more and more important in the future (Chen et al., 1998; Systd, 2000; Systa et
al., 2001; Ferenc et al., 2002).

6.5 Preventive actions for maintenance

6.5.1 Enhancement of maintainability during implementation phase

Often proactive, preventive actions towards higher maintainability (Smith, 1999) of sysemsis
cod-effective. The posshilities for this are affected e.g. by the gpplied programming
languages. E.g. for enhancing correctness (and thus reducing needed effort for future
corrective maintenance) some languages provide such mechanisms as. defensive
programming (error recovery), pre/post conditions of procedures, assertions (e.g. Binder
(2001); Miiller et al., 2002) and tracing mechanisms

6.5.2 Enhancement of maintainability during design phase

In principle, maintainability should be taken into account dready in the design phase of the
system by trying to anticipate the probable changes (Iook e.g. Kaskimies, 1997). Thisis caled
speculative design and it should, in one form or ancother, be noted during whole software
quality assurance process. Look also Baxter & Pidgeon (1997); Schach & Tomer (2000) on
the subject.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
49
19.6.2003 ELTIS-project

7 CONCLUSIONS

This report has summarized the theoretica background studies of the ELTIS project. Software
maintenance is generdly an undervalued area of research and development, while taking into
account its actual importance. It causes most of the total software costs (often 50-75% in case
of successful systems with long lifetime). 1) Thus effective process improvements which take
into account the effects on maintainability gppear beneficid in long-term. 2) Maintenance
appears to be (in genera) a congtant problem, despite the earlier process improvements and
development of system design methodologies (most likely because of the congtant increases of
system sizes and program complexity). 3) These two points underline the importance of paying
attention to this area and identifying the actua cost drivers, whose improvement could have
subgtantid effect on the process profitability.

Software maintenance is often aso quite demanding (despite the common view of it being
more or less routine work), especidly in case of maintaining large legacy sysems. These
systems are typicaly hard to maintain, but they cannot be replaced because of their great
business vaue and the gpplication domain knowledge that they contain. Thus they tend to have
long lifetime. Lehman (1998) has gathered longitudind empirica evidence on large-scde
industry-level software development and derived generd laws of system evolution described in
this report.

Software maintenance is further complicated in case of large tasks of adaptive maintenance
category (i.e. software modifications made due to changing technicad environment) without
proper sysem documentation (or other useful information sources) available. In an ided
gtuation the existing code could be reused and modified flexibly by the origind developers.
That would support the process of gaining the origind investment back, and thus to improve
return on investment (potentialy for both the organization developing the software and the one
using it). It is dear that this god is easest to achieve via long-term maintenance process
improvement and preventive maintenance.

However, in case of answering to the acute problems of dedling with current legacy systems,
other support processes are required. One of the centrad questions is whether to continue
maintaining the exiding legacy sysems or not. Their modernizetion might be an option.
Another (typicdly less favorable) man posshbility might be their complete rewrite.
Modernization may require integration of the old (legacy) system to newer gpplications
(Robertson, 1997; Coyle, 2000) or its encapsulation (Sneed, 2000).

There exigts alot of generd literature related to the (relatively scattered) preliminary objectives
et to the project. EStimating costs of building a new software system is an extensively covered
subject area. The main cost driver for this is the required effort (measured in man-months).
However, even the best of the current software cost models (e.g. COCOMO) have relatively
large error-span, even in case that the models would be backed with a relaively large project
database containing actual empirica data and properly calibrated to take into account the

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
50
19.6.2003 ELTIS-project

factors characterizing the system development process of the organization developing the
sysem.

In the area of software maintenance cost estimation, the Stuation is even worse in this regard.
In an (theoretical) idedl case there would exist a computer program (a decision support
system) which would recelve as input parameters the central decison criteria for software
replacement or modernization, provide the answer to the question, and outline the arguments.
Although there exigts many theoreticad works on the software maintenance cos/effort
edimation area, there are no generdly accepted or rigoroudy and successfully empiricaly
vdidated modds. Mogt of the exising modds either make unredigtic amplifications or assume
existence of versdtile metrics data (or both).

One of the generd problems related to this part of software engineering is the lack of redly
reliable metrics for software complexity (which, however, is a prime candidate as a prime cost
driver). Main reference to this area is Kemerer (1995). The often used LOC, FP and
cyclomatic complexity measures dl have severe limitations and in some cases thelr use may
provide completely mideading results. Generd collection of (technical and process) metrics
data is discussed e.g. by Grady (1994). In redity there exists a great many factors which
should be taken into account while deciding about sysem modernization. Many of these
factors are not even related to the metrics data which is typicaly collected or collectable.

Because of the reasons outlined above, there is a great need (both because of theoretical and
practical reasons), to gather versatile empirica data on the actud system portfolios, system
characterigtics and actua expert decison making processes related to software modernization.
Kemerer & Saughter (1999) have outlined the following criteria for successful empirica
software maintenance research: 1) a large data source from programs and versons, 2)
willingness of a good commercid partner to participate in the research project, and 3) highly
disciplined research approach with desire to expand the previous research.

Sahin's & Zahedi’s (2001) work is dso important since it is empiricdly wdl vdidated and
pays attention on customer satisfaction related to software upgrade cycle. It provides a model
for drategic decison making in software maintenance, dealing with warranties, maintenance,
and upgrades. The modd can be used in andlyzing organizations system portfolios.

Gode et al. (1990) and Chan et al. (1996) are the only ones redly trying to say something
about actud software replacement timing. These models are mostly forma exercises, with very
limited redl vaidation. The problems that the developers of these modes have faced could be
interpreted as indication of inherent complexity of the replacement decison. There is dso the
problem of acquiring reliable required input deata for these models.

Sneed’'s works (1995a 1995b) are dso interesting (despite the problems with their
proprietary nature, assumed availability of metrics data, and limited empiricd vdidation). He
has given both a modd for generd software maintenance cost estimation (1995a) (discussing
mantainability factors, and maintenance scope determinaion) and reenginesring cost

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...
51
19.6.2003 ELTIS-project

estimation (1995b) (taking into account software business considerations, such as return on
invesment and enhanced budgness vdue, and providing a long lig of potentidly useful
measurements).

It appears that dl closed-form and black-box solutions providing direct decisions (assumed as
being optima) are bound to fal due to the versatility of non-measurable factors and
unpredictable side-conditions. Providing supporting information to the expert who actudly
makes the decison seemsto be the right way to continue.

Also the main branches of technical support solutions for software modernization are outlined
and references to main works given. Harsu's (2003) text-book, Warren & Ransom (2002),
Koskinen (2000), Fowler et al. (1999), and Arnold (1993) are some of the main references
in the subareas of technical modernization support. The above-cited Sneed’s (1995b) work
aso relaes directly to thisarea.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...

19.6.2003

52
ELTIS-project

8 REFERENCES

1

2)

3)

4)

5

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

Abran, A. & Rohillard, P. (1993). "Rdiakility of function points productivity model for
enhancement projects (afield sudy)". Conference on Software Maintenance 1993,
80-97. IEEE Computer Society Press.

Abran, A., Silva, I. & Primera, L. (2002). “Fdd sudies usng functiond size
measurement in building estimation modds for software maintenance’. Journal of
Software Maintenance and Evolution: Research and Practice 14, 31-64.

Agans, D. (2002). “Debugging: The Nine Indispensable Rules for Finding Even
the Most Elusive Software and Hardware Problems’. AMACOM, 192 p.
Albrecht, A. & Gaffney, J. (1983). “Software function, source lines of code, and
development effort prediction: a software science vdidation”. |EEE Transactions on
Software Engineering SE-9 (6), 639-648.

Antoniol, G., Canfora, G., Casazza, G. & De Lucia, A. (2000). “Information retrieval
models for recovering tracegbility links between code and documentation”.
Proceedings of the International Conference on Software Maintenance - 2000,
40-49. |EEE Computer Soc.

Arnold, R. (1993). “Software Reengineering (IEEE Computer Society Press
Tutorial)”. IEEE Computer Society, 675 p.

Arnold, R. & Bohner, S. (Eds) (1996). “Software Change Impact Analysis'.
Wiley-1EEE Press, 392 p.

Bales, P. & Peake, I. (2003). “Incremental enhancement of the expressiveness of a
reenginering tool devdlopment platform”. Proceedings of the 21% IASTED
International Conference, APPLIED INFORMATICS, 927-934.

Bdl, T. & Eick, S. (1996). “ Software visudization in the large’. Computer 29 (4),
33-43.

Baniassad, E. & Murphy, G. (1998). “Conceptud module querying for software
reengineering”. Proceedings of the 1998 International Conference on Software
Engineering (ICSE’'98), 64-73. IEEE Computer Soc.

Banker, R., Datar, S. & Kemerer, C. (1991). “A modd to evauate variables
impacting the productivity of software maintenance projects’. Management Science
37 (2).

Banker, R., Datar, S., Kemerer, C. & Zweig, D. (1993). “ Software complexity and
mai ntenance cogts’. Communications of the ACM 36 (11), 81-94.

Banker, R. & Saughter, S. (1994). “Project sSze and software maintenance
productivity: empirical evidence on economics of scae in software maintenance’. In:
DeGross, J, Huff, S. & Munro, M. (Eds) Proceedings of the Fifteenth
International Conference on Information Systems 279-289. Digtributed by ACM.
Badli, V. (1990). “Viewing maintenance as reuse-oriented software development”.
|EEE Software 7 (1), 19-25.

Baxter, 1. & Pidgeon, C. (1997). “Software change through design maintenance’.
Proceedings of the International Conference on Software Maintenance - 1997,
250-259. |[EEE Computer Soc.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...

19.6.2003

53
ELTIS-project

16)

17)

18)

19)
20)
21)
22)
23)
24)
25)
26)
27)

28)

29)
30)

31)

32)

33)

Bdlay, B. & Gdl, H. (1997). “A comparison of four reverse engineering tools’.
Proceedings of the 4th Working Conference on Reverse Engineering, 2-11. Los
Alamitos, CA: IEEE Computer Society.

Bennett, K. (1998). “Do program transformations help reverse engineering?’.
Proceedings of the International Conference on Software Maintenance - 1998,
247-254. |EEE Computer Soc.

Benneit, M. & Gittens, M. (1997). "Empirical defect modding to extend the
Congtructive Cost Moddl”. The Eight European Software Control and Metrics
Conference (ESCOM’ 97). Conf. location: Berlin, Germany.

Bennett, K., Lientz, B. & Swanson, E. (1980). “Software Maintenance
Management”, Addison Wedey.

Berlack, R. (1991). “Software Configuration Management” (Wiley Series in
Software Engineering Practice). John Wiley & Sons, 352 p.

Berzins, V. (Ed.) (1995). “Software Merging and Sicing”. IEEE Computer Soc.
Bianchi, A., Cavano, D., Marengo, V. & Visaggio, G. (2003). “lterative
reengineering of legacy sysems’. |EEE Transactions on Software Engineering 29
(3), 225-241.

Binder, R. (2001). “Testing Object-Oriented Systems. Models, Patterns, and
Tools’ (3rd printing). Addison-Wedey.

Bishd, J, Lawless, D., Wu, B. & Grimson, J. (1999). “Legacy information systems.
issues and directions’. |EEE Software 16 (5), 103-111.

Bitman, W. (1999). “A metrics-based decison support tool for software module
interfacing technique selection to lower maintenance cost”. Sxth |EEE International
Symposium on Software Metrics, 170-178.

Boehm, B. (1981). " Software Engineering Economics’, Prentice Hall, 1981.
Boehm, B. (1984). “Software engineering economics’. |IEEE Transactions on
Software Engineering 10 (1), 4-21.

Boehm, B., Horowitz, E., Madachy, R., Reifer, D., Clark, B., Steece, B., Brown,
A.W., Chulani, S. & Abts, C. (2000). “Software Cost Estimation with COCOMO
11”. Prentice Hall, 502 p.

Boehm, B. & Papaccio, P. (1988). “Understanding and controlling software costs’.
| EEE Transactions on Software Engineering 14 (10), 1462-1477.

Bray, O. & Hess M. (1995). “Reengineering a configuration management system”.
|EEE Software 12 (1), 55-63.

Bredero, R., Hupkes, E. & Pagrach, D. (1995). "Modeling maintenance cost from
factud data: a practical example’. European Software Cost Modelling Conference
(ESCOM’ 95). Conf. location: Rolduc Abbey, The Netherlands.

Briand, L., Badli, V., & Thomas (1992). “A pattern recognition gpproach for
software engineering andyss’. |[EEE Transactions on Software Engineering 18
(11), 931-942.

Briand, L., El Emam, K., Surmann, D., Wieczorek, I. & Maxwdll, K. (1999). “An
asessment and comparison of common software cost estimation modeling
techniques’. Proceedings of the 1999 International Conference on Software
Engineering, 313-322.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...

19.6.2003

54
ELTIS-project

34)

35)

36)

37)

39)

39)

40)

41)

42)

43)

44)

45)

46)

47)

Briand, L., Langley, T. & Wieczorek, |. (2000). “A replicated assessment and
comparison of common software cost modding techniques’. Proceedings of the
2000 International Conference on Software Engineering (ICSE 2000), 377-386.
ACM Press.

Brodie, M.L. & Stonebraker, M. (1995). “Migrating Legacy Systems. Gateways,
Interfaces & The Incremental Approach”. Morgan Kaufmann, 210 p.

Burd, E. & Munro, M. (1997). “Invedtigating the maintenance implications of the
replication of code’. Proceedings of the International Conference on Software
Maintenance — 1997, 322-330. IEEE Computer Soc.

Cavano, D., Lanubile, F. & Visaggio, G. (2001). “Software renewa process
comprehenson usng dynamic effort esimation”. Proceedings of the IEEE
International Conference on Software Maintenance - 2001, 209-218. IEEE
Computer Soc.

Cdzolari, F., Tondla, P. & Antonial, G. (1998). “Dynamic modd for maintenance and
testing effort”. In: Khoshgoftaar, T. & Bennett, K. (Eds) Proceedings of the
International Conference on Software Maintenance - 1998, 104-112. IEEE
Computer Soc.

Capretz, M. & Munro, M. (1994). “ Software configuration management issues in the
maintenance of exiding sysems’. Software Maintenance: Research & Practice 6
(2), 1-14.

Chapin, N., Hae, J.,, Khan, K., Ramil, J. & Tan, W.-G. (2001). “Types of software
evolution and software maintenance’. Journal of Software Maintenance and
Evolution: Research & Practice 13 (1), 3-30.

Chan, T., Chung, S. & Ho, T. (1994). “Timing of software replacement”. In:
DeGross, J, Huff, S. & Munro, M. (Eds) Proceedings of the Fifteenth
International Conference on Information Systems 291-307.

Chan, T., Chung, S. & Ho, T. (1996). “An economic modd to estimate software
rewriting and replacement times’. |EEE Transactions on Software Engineering 22
(8), 580-598.

Chen, Y .-F., Fowler, G., Koutsofios, E. & Wadlach, R. (1995). "Ciao: a graphical
navigator for software and document repositories’, Proceedings of the International
Conference on Software Maintenance - 1995, 66-75. IEEE Computer Soc.

Chen, Y .-F., Gansner, E. & Koutsofios, E. (1998). “A C++ data model supporting
reachability anadyss and dead code detection”. |EEE Transactions on Software
Engineering 24 (9), 682-694.

Chu, W., Lu, C-W, Shiu, C-P. & He, X. (2000). “Pettern-based software
reengineering: a case sudy”. Journal of Software Maintenance and Evolution:
Research and Practice 12, 121-141.

Coleman, D., Ash, D., Lowther, B. & Oman, P. (1994). “Using metrics to evauate
software system maintainability”. Computer 27 (8), 44-49.

Comeélla-Dorda, S., Wallnau, K., Seacord, R. & Robert, J. (2000). “A survey of
black-box modernization gpproaches for information systems’. Proceedings of the
International Conference on Software Maintenance - 2000, 173-183. IEEE
Computer Soc.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...

19.6.2003

55
ELTIS-project

48)
49)

50)

51)

52)

53)
54)
55)
56)

57)

58)

59)

60)

61)
62)
63)

64)

65)

Coyle, F. (2000). “Legacy integration changing perspectives’. IEEE Software 17 (2),
37-41.

Cross, JH. II, Chikofsky, E. & May, C.H. J. (1992). “Reverse enginesring”. Y ovits,
M. (Ed.) Advances in Computers 35, 199-254. Academic Press.

De Lucia, A., Di Penta, M., Stefanucci, S. & Venturi, G. (2002). “Early effort
esimation of massve maintenance processes’. Proceedings of the International
Conference on Software Maintenance - 2002, 234-237. IEEE Computer Soc.
DelLucia A., Panndla, A., Pompdla, E. & Stefanucci, S. (2001). “Assessing massve
maintenance processes. an empirica study”. Proceedings of the IEEE International
Conference on Software Maintenance, 451-458. |EEE Computer Soc.

Di Lucca, G., Di Penta, M. & Gradara, S. (2002). “An gpproach to classfy software
maintenance requests’. Proceedings of the International Conference on Software
Maintenance - 2002, 93-102. IEEE Computer Soc.

Edestein, D. (1993). “Report on the IEEE STD 1219-1993 — Standard for Software
Maintenance’. ACM SIGSOFT Software Engineering Notes 18 (4), p. 94.

Eick, S., Graves, T., Kar, A., Mockus, A. & Schugter, P. (2002). “Visudizing
software changes’. |EEE Transactions on Software Engineering 28 (4), 396-412.
Eisengtadt, M. (1997). “My hairiest bug war stories’. Communications of the ACM
40 (4), 30-37.

Engdhart, J. (1995). “FPA and maintenance’. European Software Cost Modelling
Conference (ESCOM’ 95). Conf. location: Rolduc Abbey, The Netherlands.

Erngt, M., Cockrdl, J., Grisnvold, W. & Notkin, D. (2001). “Dynamicaly discovering
likely program invariants to support program evolution”. |EEE Transactions on
Software Engineering 27 (2), 99-123.

Fanta, R. & Ralich, V. (1998). “Reengineering object-oriented code’. Proceedings
of the International Conference on Software Maintenance - 1998, 238-246. |EEE
Computer Soc.

Fanta, R. & Ralich, V. (1999). “Removing dones from the code’. Journal of
Software Maintenance: Research and Practice 11, 223-243.

Fasolino, A., Natde, D., Poli, A. & Quaranta, A. (2000). “Metrics in the
devdopment and maintenance of software an application in a large scde
environment”. Journal of Software Maintenance: Research and Practice 12, 343-
355.

Feller, J. & Butler, B. (1999). “Y2K Bible’. Hungry Minds, 541 p.

Fenton, N. (1994). “Software measurement: a necessary scientific bass’. IEEE
Transactions on Software Engineering 20 (3), 199-206.

Ferenc, R., Beszedes, A., Tarkiainen, M. & Gyimothy, T. (2002). “Columbus -
reverse engineering tool and schema for C++”. Proceedings of the International
Conference on Software Maintenance - 2002, 172-181. IEEE Computer Soc.
Fogter (1991). “Program lifetime: avital gatistic for maintenance’. |EEE Proceedings
of the International Conference on Software Maintenance, 98-103. |EEE
Computer Soc.

Foser & Kiekuth (1990). “Software maintenance survey: summay”. BT
Laboratories.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...

19.6.2003

56
ELTIS-project

66)
67)

68)

69)

70)

71)

72)

73)

74)
75)

76)

)

78)
79)

80)

81)

82)

Fowler, M., Beck, K., Brant, J.,, Opdyke, W. & Roberts, D. (1999). “Refactoring:
Improving the Design of Existing Code”’. Addison-Wedey, 431 p.

Furey, S. (1997). “Why we should use function points’. |EEE Software 14 (2), 28-
31.

Gannod, G. & Cheng, B. (1999). “A framework for classfying and comparing
software reverse engineering and design recovery tehcniques’. Proceedings of the
Sxth Working Conference on Reverse Engineering, 77-88. |EEE Computer Soc.
Gerlich, R. & Denskat, U. (1994), “ A cost estimation modd for maintenance and high
reuse’. Proceedings of the European Software Cost Modelling Meeting
(ESCOM’ 94). May 11-13, 1994. Conf. location: Ivreg, Itay.

Gibson, V. & Senn, J. (1989). “Sysem dructure and software maintenance
performance’. Communications of the ACM 32 (3), 347-358.

Gill, G. & Kemerer, C. (1991). “Cyclomatic complexity dendty and software
maintenance productivity”. IEEE Transactions on Software Engineering 17 (12),
1284-1288.

Gode, D., Barua, A. & Mukhopadhyay, T. (1990). “On the economics of the
software replacement problem”. In: DeGross, J,, Alavi, M. & Oppdland, H. (Eds)
Proceedings of the Eleventh International Conference on Information Systems,
159-170.

Goedicke, M. & Zdun, U. (2002). “FPlecemed legacy migrating with an architectura
pattern language: a case study”. Journal of Software Maintenance and Evolution:
Research and Practice 14, 1-30.

Gorla, N., Benander, A. & Benander, B. (1990). “Debugging effort estimation using
software metrics’. IEEE Transactions on Software Engineering 16 (2), 223-231.
Grady, R. (1994). “ Successfully applying software metrics’. Computer 27 (9), 18-
25.

Griswold, W. & Notkin, D. (1993). “Automated assstance for program
restructuring”. ACM Transactions on Software Engineering and Methodology 2
(3), 228-2609.

Harsu, M. (2000). “Re-engineering Legacy Software Through Language
Conversion” (Ph.D. thess). Department of Computer and Information Sciences,
Univergty of Tampere.

Harsu, M. (2003). “Ohjelmien yll&pito ja uudistaminen” (in Fnnigh). Talentum, 292
p.

Haug, M., Olsen, E. & Cuevas, G. (Eds) (2001). “Managing the Change:
Software Configuration & Change Management”. Springer Verlag, 297 p.

Henry, J, Blasawitz, R. & Kaettinger, D. (1996). “Defining and implementing a
measurement-based software maintenance process’. Software Maintenance:
Research and Practice 8, 79-100.

Hiurten R. et al. (1996). " Edtimating the effort of maintenance and enhancement”. The
Seventh European Software Control and Metrics Conference (ESCOM’ 96).
Conf. location: Wilmdow, Cheshire, UK.

ITV (2000). “Y2K maksoi Nokidle 450 miljoonad’ (in Finnish). IT Viikko
(10.2.2000).

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...

19.6.2003

57
ELTIS-project

83)
84)
85)
86)
87)

88)

89)

90)

91)

%)

93)

94)

95)

96)

97)

98)
99)

100)

101)

Jambor-Sadeghi, K., Ketabchi, M., Chue, J. & Ghiass, M. (1994). “A sydematic
gpproach to corrective maintenance’. The Computer Journal 37 (9), 764-778.
Jones, C. (1997). “Sow response to Year 2000 problem”. |EEE Software 14 (3),
114-115 (an interview).

Jargensen, M. (1995). “An empirical study of software maintenance tasks’. Software
Maintenance: Research and Practice 7, 27-48.

Jargensen, M. & Saberg, D. (2002). “Impact of experience on maintenance skills’.
Journal of Software Maintenance: Research and Practice 14, 123-146.

Kafura, D. & Reddy, G. (1987). “The use of software complexity metrics in software
maintenance’. |EEE Transactions on Software Engineering SE-13 (3), 335-343.
Kako-Matsson, M. (2002). “Problem management meaturity within corrective
maintenance’. Journal of Software Maintenance and Evolution: Research and
Practice 14, 197-227.

Kamkar, M. (1995). “An overview and comparative classfication of program dicing
techniques’. The Journal of Systems and Software 31 (3), 197-214.

Kataoka, Y., Imai, T., Andou, H. & Fukaya, T. (2002). “A quantitative evauation of
maintainability enhancement by refactoring”. Proceedings of the International
Conference on Software Maintenance - 2002, 576-585. IEEE Computer Soc.
Kemerer, C. (1987). “An empirical vdidation of software cost estimation models’.
Communications of the ACM 30 (5), 416-429.

Kemerer, C. (1995). “Software complexity and software maintenance: a survey of
empirica ressarch”. Annals of Software Engineering 1, 1-22. JC. Bdtzer AG,
Science Publishers.

Kemerer, C. & Saughter, S. (1999). “An empiricad approach to sudying software
evolution”. |EEE Transactions on Software Engineering 25 (4), 493-509.

Kiran, G., Haripriya, S. & Jdote, P. (1997). “Effect of object orientation on
maintainebility of software’, Proceedings of the International Conference on
Software Maintenance - 1997, 114-112. IEEE Computer Soc.

Kitchenham, B. (1997). “The problems with function points’. IEEE Software 14 (2),
28-31.

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K. &
Rosenberg, J. (2002). “Prdiminary guiddines for empiricd research in software
enginering”. | EEE Transactions on Software Engineering 28 (8), 721-734.
Kitchenham, B. & Taylor, N. (1984). “Software cost models’. ICL Technical
Journal 4 (1), 73-102.

Koskimies, K. (1997). “Feni dliokirja’ (in Finnish). Suomen Atk-kustannus.
Koskinen, J. (2000). “Automated Transient Hypertext Support for Software
Maintenance’. Jyvaskyla Studies in Computing 4. University of Jyvaskyla

Laitinen, K. (1995). “Natural naming in software development and maintenance”
(Ph.D. thesis). VTT.

Landsbaum, JB., Glass, R.L. & Glass, R.B. (1992). “Measuring and Motivating
Maintenance Programmers’. Prentice Hall, 96 p.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...

19.6.2003

58
ELTIS-project

102)

103)
104)

105)

106)
107)

108)

109)

110)

111)
112)
113)
114)

115)
116)

117)

118)

119)

Lano, K. & Haughton, H. (1993). “Reverse Engineering and Software
Maintenance: A Practical Approach” (McGraw-Hill International Seriesin Software
Enginesring). McGraw-Hill.

Lanning, D. & Khoshgoftaar, T. (1994). “Modding the relaionship between source
code complexity and maintenance difficulty”. Computer 27 (9), 35-40.

Lehman, M.M. & Bedady, L.A. (1985). “Program Evolution: Processes of
Software Change” (Apic Studiesin Data Processing). Academic Press.

Lehman, M., Perry, D. & Ramil, J. (1998). “Implications of evolution metrics on
software maintenance’. Proceedings of the International Conference on Software
Maintenance - 1998, 208-217. IEEE Computer Soc.

Leon, A. (2000). “A Guide to Software Configuration Management” (Artech
House Computer Library). Artech House, 384 p.

Letovky, S. & Soloway, E. (1986). “Delocalized plans and program
comprehenson’. |EEE Software 3 (3), 41-49.

Lientz, B.P. & Swanson, E. (1980). “Software Maintenance Management: A Sudy
of the Maintenance of Computer Application Software in 487 Data Processing
Organizations’. Addison-Wedey: Reading, MA, 214 p.

Lyon, D. (1999). “Practical CM: Best Practices for the 21st Century” (2nd ed.).
Raven, 260 p.

Mancini, L. & Ciampali, R. (1990). “Maintenance cost estimation: indugtria point of
view”. 1990 European COCOMO User’s Group Meeting. Conf. location: Baotley,
Hampshire, UK.

Martin, J. (1983). “Software Maintenance: The Problem and Its Solution”.
Prentice Hall, 472 p.

von Mayrhauser, A. (1994). “Maintenance and evolution of software products’.
Advances in Computers 39, 1-49.

von Mayrhauser, A. & Vans, A. (1995). “Program understanding models and
experiments’. Advances in Computers 40, 1-38.

McCabe, T. (1976). "A complexity measure’. |EEE Transactions on Software
Engineering 2 (4), 308-320.

Miller, H. (1998). “Reengineering Legacy Software Systems’. Digita Press, 250 p.
Moreton (1988). “Andyss and results from a maintenance survey”. Proceedings of
the 2™ Software Maintenance Workshop.

Munson, J. & Elbaum, S. (1998). “Code Churn: a measure for estimating the impact
of code change’. In: Khoshgoftaar, T. & Bennett, K. (Eds) Proceedings of the
International Conference on Software Maintenance - 1998, 24-31. |EEE
Computer Soc.

Miller, M., Typke, R. & Hagner, O. (2002). “Two controlled experiments concerning
the usefulness of assartions as a means for programming”. Proceedings of the
International Conference on Software Maintenance — 2002, 84-92. |IEEE
Computer Soc.

Niere, J., Schéfer, W., Wadsack, J., Wendehdls, L. & Welsh, J. (2002). “Towards
pattern-based design recovery”. International Conference on Software
Engineering (ICSE’02), 338-348.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...

19.6.2003

59
ELTIS-project

120)

121)

122)

123)
124)

125)

126)

127)

1289)

129)

130)

131)

132)

133)

134)

Niessnk, F. & van Vliet, H. (1997). “Predicting maintenance effort with function
points’. Proceedings of the International Conference on Software Maintenance -
1997, 32-39. IEEE Computer Soc.

Niessnk, F. & van Vliet, H. (1998). “Two case studies in measuring software
maintenance effort”. Proceedings of the International Conference on Software
Maintenance - 1998, 76-85. |EEE Computer Soc.

Nossk & Pavia (1990). “Software maintenance management: changes in the last
decade’. Journal of Software Maintenance: Research and Practice 2 (3), 157-
174.

Oman, P. & Cook, C. (1990). “Typographic style is more than cosmetic’.
Communications of the ACM 33 (5), 506-520.

Oman, P. & Cook, C. (1991). “A programming style taxonomy”. The Journal of
Systems and Software 15 (3), 287-301.

Oman, P. & Hagemeger, J (1992). "Metrics for assessng a software system's
maintaingbility”. Proceedings of the 1992 Software Maintenance Conference, 337-
344.

Oman, P. & Hagemeger, J (1994). "Condruction and testing of polynomias
predicting software maintainability”. Journal of Systems and Software 24 (3), 251-
266.

Pagkki, J, Koskinen, J & Sdminen, A. (1997). "From redationa program
dependencies to hypertextua access structures’. Nordic Journal of Computing 4
(2), 3-36.

Paul, S. & Prakash, A. (1996). “A query agebra for program databases’. |EEE
Transactions on Software Engineering 22 (3), 202-217.

Pearse, T. & Oman, P. (1995). “Maintainability measurements on industrial source
code maintenance activities’. Proceedings of the International Conference on
Software Maintenance - 1995, 295-303. | EEE Computer Soc.

Phua, P.K.H. (2002). "Software engineering economics’, Chapters 8 (Software
cost-estimation methods & procedures), 9 (Software maintenance and life-cycle cost
estimation) (lecture notes). Department of Information Systems, School of Computing,
Nationa University of Singapore, Singapore.

Pigoski, T.M. (1996). “Practical Software Maintenance: Best Practices for
Managing Your Software Investment”. John Wiley & Sons, 384 p.

Polo, M., Riattini, M. & Ruiz, F. (2001). “Using code metrics to predict maintenance
of legacy prograns a case sudy”. Proceedings of the IEEE International
Conference on Software Maintenance - 2001, 202-208. IEEE Computer Soc.

Polo, M., Rattini, M., Ruiz, F. & Mohammadian, M. (Eds) (2003). “Advances in
Software Maintenance Management: Technologies and Solutions” (to be
published?).

Prechdt, L., Unger-Lamprecht, B., Philippsen, M. & Tichy, W. (2002). “Two
controlled experiments assessing the usefulness of design pattern documentation in
program maintenance’. |EEE Transactions on Software Engineering 28 (6), 595-
606.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...

19.6.2003

60
ELTIS-project

135)
136)
137)

138)

139)

140)

141)

142)

143)

144)

145)

146)

147)

148)

149)

150)

Pressman, R. (2001). “Software process and project metrics’ (Chapter 4). In:
Software Engineering - A Practitioner’s Approach (5th ed.), 79-111.

Pressman, R. (2001). “Technica metrics for software’” (Chapter 19). In; Software
Engineering - A Practitioner’s Approach (5th ed.), 507-538.

Pressman, R. (2001). “Technica metrics for object-oriented systems’ (Chapter 24).
In: Software Engineering - A Practitioner’s Approach (5th ed.), 653-669.

Quellle, JP., Voidrat, J-F., Wilde, N. & Munro, M. (1994). “The impact andysis
task in software maintenance: a modd and a case sudy”. Proceedings of the
International Conference on Software Maintenance (ICSM’ 94).

Ramil, J. & Lehman, M. (2000). “Metrics of software evolution as effort predictors. a
case sudy”. Proceedings of the International Conference on Software
Maintenance, 163-172. |IEEE Computer Soc.

Riecken, R., Koenemann-Belliveau, J. & Robertson, S. (1991). “What do expert
programmers communicate by means of descriptive commenting”. J. Koenemann-
Bdliveau, T. Moher & S. Robertson (Eds): Empirical Sudies of Programmers:
4th Workshop (ESP’91), 177-195. Norwood, NJ: Ablex.

Robertson, P. (1997). “Integrating legacy systems with modern corporate
goplications’. Communications of the ACM 40 (5), 39-46.

Rombach, H. (1991). “Software reuse: a key to the maintenance problem”.
Information and Software Technology 33 (1), 86-92.

Rose, E. & Eriksson, 1. (1998). “Development and maintenance cods. measures of
software maintainability”. In: Carlsson & Eriksson (Eds) Global & Multiple Criteria
Optimization and Information Systems Quality, 21-35. Abo Akademi tryckeri.
Sahin, I. & Zahedi, M. (2001). “Policy andyds for warranty, mantenance, and
upgrade of software systems’. Journal of Software Maintenance and Evolution:
Research and Practice 13, 469-493.

Schach, S. & Tomer, A. (2000). “A maintenance-oriented approach to software
congruction”. Journal of Software Maintenance: Research and Practice 12, 25-
45,

Schneidewind, N. (1997). “Measuring and evaduating maintenance process using
religbility, risk, and test metrics’. Proceedings of the International Conference on
Software Maintenance - 1997, 232-239. IEEE Computer Soc.

Seaman, C. (2002). “The information gathering drategies of software maintaners’.
Proceedings of the International Conference on Software Maintenance - 2002,
141-149. |EEE Computer Soc.

Sheldon, F., Jerath, K. & Chung, H. (2002). “Metrics for maintainability of class
inheritance hierarchies’. Journal of Software Maintenance and Evolution:
Research and Practice 14, 147-160.

Singer, J. (1998). “Prectices of software maintenance”. Proceedings of the
International Conference on Software Maintenance - 1998, 139-145. |IEEE
Computer Soc.

Smith, D.D. (1999). “Designing Maintainable Software”. Springer Verlag, 169 p.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...

19.6.2003

61
ELTIS-project

151)

152)
153)
154)

155)
156)

157)

158)
159)

160)

161)

162)

163)
164)
165)
166)

167)

168)

169)

Sneed, H. (199539). “Edimating the costs of software maintenance tasks'.
Proceedings of the International Conference on Software Maintenance - 1995,
168-181. |IEEE Computer Soc. Press.

Sneed, H. (1995b). “Planning the reengineering of legacy systems’. |EEE Software
12 (1), 24-34.

Sneed, H. (1999). “Risks involved in reengineering projects’. Proceedings of the
|EEE Sxth Working Conference on Reverse Engineering, 204-211.

Sneed, H. (2000). “Encapsulation of legacy software: a technique for reusing legecy
software components’. Annals of Software Engineering 9, 293-313.

Sommerville, 1. (1996). Software Engineering (5™ ed.). Addison-Wedley.
Sommerville, 1. (1996). “Software cost estimation” (Chapter 29). In: Software
Engineering (5" ed.), 589-610. Addison-Wesley.

Sark, G., Oman, P., Skillicorn, A. & Amede, A. (1999). “An examination of the
effects of requirements changes on software maintenance releases’. Journal of
Software Maintenance: Research and Practice 11, 293-3009.

Swanson, E.B. & Beath, C.M. (Eds.) (1989). “Maintaining Information Systems in
Organizations’. John Wiley & Sons.

Swanson, E. & Besath, C. (1990). “ Departmentdization in software development and
maintenance’. Communications of the ACM 33 (6), 658-667.

Systq, T. (2000). “Satic and Dynamic Reverse Engineering Techniques for Java
Software Systems’ (Ph.D. thesis). Department of Computer Science and Information
Sciences, University of Tampere, 233 p.

Systa, T., Koskimies, K. & Miiller, H. (2001). “Shimba - an environment for reverse
engineering Java software systems’. Software - Practice and Experience 31, 371-
394.

Tahvildari, L. & Kontogiannis, K. (2002). “A software transformation framework for
qudity-driven object-oriented re-engineering”. Proceedings of the International
Conference on Software Maintenance - 2002, 596-605. |EEE Computer Soc.
Takang, A.A. & Grubb, PA. (1996). “Software Maintenance: Concepts and
Practice’. International Thomson.

Tama, T. & Torimitsy, Y. (1992). ” Software lifetime and its evolution process over
generations’. Proceedings of the Conference on Software Maintenance, 63-69.
Teng, J,, Jeong, S. & Grover, V. (1998). “Profiling successful reengineering projects’.
Communications of the ACM 41 (6), 96-102.

Tichy, W. (Ed.) (1995). “Configuration Management* (Trends in Software, no 2).
John Wiley & Sons, 170 p.

Tran-Cao, D., Levesque, G. & Abran, A. (2002). “Measuring software functional
dze towads an effective measurement of complexity”. Proceedings of the
International Conference on Software Maintenance - 2002, 370-376. |IEEE
Computer Soc.

Ulrich, W. (2002). ‘Legacy Systems. Transformation Strategies’. Prentice Hall,
422 p.

Valenti, S. (2002). “Successful Software Reengineering”. IRM Press, 300 p.

INFORMATION TECHNOLOGY RESEARCH INSTITUTE SOFTWARE MAINTENANCE COST ...

19.6.2003

62
ELTIS-project

170)
171)

172)

173)

174)

175)

176)

Visaggio, G. (2000). “Vaue-based decison mode for renewa processes in software
maintenance’. Annals of Software Engineering 9, 215-233.

Warren, 1. (1999). ‘The Reneissance of Legacy Systems. Method Support for
Software-System Evolution”. Springer Verlag, 182 p.

Warren, |. & Ransom, J. (2002). “Renaissance: a method to support software system
evolution”. Proceedings of the 26th Annual International Computer Software and
Applications Conference (COMPSAC’ 02). IEEE Computer Society.

Weiser, M (1982). “Programmers use dices when debugging”. Communications of
the ACM 25 (7), 446-452.

Yeh, D. & Jeng, J-H. (2002). “An empiricd <udy of the influence of
deparmentdization and organizationa position on software maintenance’. Journal of
Software Maintenance and Evolution: Research and Practice 14, 65-82.

Yin, R. & Kdler, R. (2002). “Program comprehenson by visudization in contexts’.
Proceedings of the International Conference on Software Maintenance, 332-
341. IEEE Computer Soc.

Zou, Y. & Kontogiannis, K. (2002). “Migration to object oriented platforms. a Sate
transformation approach’. Proceedings of the International Conference on
Software Maintenance - 2002, 530-539. IEEE Computer Soc.

