Static Control-Flow Analysis for Reverse Engineering of
UML Sequence Diagrams

Atanas Rountev
Ohio State University

rountev@cse.ohio-state.edu

ABSTRACT

UML sequence diagrams are commonly used to represent the
interactions among collaborating objects. Reverse-engineered
sequence diagrams are constructed from existing code, and
have a variety of uses in software development, maintenance,
and testing. In static analysis for such reverse engineering,
an open question is how to represent the intraprocedural
flow of control from the code using the control-flow primi-
tives of UML 2.0. We propose simple UML extensions that
are necessary to capture general flow of control. The paper
describes an algorithm for mapping a reducible exception-
free intraprocedural control-flow graph to UML, using the
proposed extensions. We also investigate the inherent trade-
offs of different problem solutions, and discuss their implica-
tions for reverse-engineering tools. This work is a substantial
step towards providing high-quality tool support for effective
and efficient reverse engineering of UML sequence diagrams.

1. INTRODUCTION

The Unified Modeling Language (UML) has become a de
facto standard for modeling of different aspects of software
structure and behavior. Sequence diagrams are key UML ar-
tifacts for representing the behavior of a software system [9].
A sequence diagram shows a set of interacting objects and
the sequence of messages exchanged among them. The di-
agram may also contain additional information about the
flow of control during the interaction, such as if-then condi-
tions (“if ¢ send message m”) and iteration (“send message
m multiple times”) [9]. An example of a sequence diagram
is shown in Figure 1b.

1.1 Reverse-Engineered Sequence Diagrams

Various software tools provide support for reverse engi-
neering, often based on UML design models. In UML tools,
reverse engineering through static code analysis is typically
restricted to class diagrams. The reverse engineering of se-
quence diagrams through static analysis is the next logical
step for these tools. The need to generate sequence diagrams
from program code is important enough that a request to
UML tool vendors to provide such advanced functionality is
included in one popular book on modern software develop-
ment [6]. Some commercial modeling tools already incorpo-
rate reverse engineering of sequence diagrams (e.g., Together
ControlCenter by Borland and EclipseUML by Omondo).

Reverse-engineered sequence diagrams can play a role in
the maintenance of complex object-oriented systems. Sys-
tem evolution is often problematic in the absence of the
original designers and developers due to incomplete or non-

Olga Volgin
University of Michigan

onv@eecs.umich.edu

Miriam Reddoch
Hewlett Packard

miriam.reddoch@hp.com

existent design information. Reverse-engineered diagrams
provide essential insights for software understanding of such
systems. Sequence diagrams are also the basis of several ap-
proaches for testing of object-oriented software [1]. These
approaches test the interactions among collaborating ob-
jects, and sequence diagrams can be used to identify the
interactions that must be covered. A coverage tool can em-
ploy static analysis to extract sequence diagrams from the
tested code, and then use them to perform run-time cover-
age analysis during the execution of the given tests [13].

1.2 Using UML Control-Flow Primitives

Despite the significant practical importance of reverse-
engineered sequence diagrams, there is a limited body of
work on static analyses for constructing such diagrams. The
work in this paper is part of the ongoing effort to build
the RED tool for reverse engineering of sequence diagrams®.
The goal of the tool is to provide comprehensive, effective,
and efficient reverse engineering of UML sequence diagrams
through static analysis of Java code.

The effort to build this tool revealed many challenging
static analysis problems, and led to the definition and im-
plementation of several analyses such as call chain analysis
[12] and object naming analysis [11]. One of the key issues
we had to address early in this project was the following:

How should the intraprocedural flow of control in
the code be represented in the reverse-engineered
sequence diagrams?

Intraprocedural behavioral features (e.g., conditional and it-
erative behavior) presented some challenging problems for
the tool. Attempts to use first-generation UML (versions 1.x)
showed that the UML control-flow primitives do not provide
enough expressive power to represent correctly the full gen-
erality of intraprocedural flow of control.

This experience motivated the work described in this pa-
per. We use second-generation UML (version 2.0), which
defines a richer set of control-flow primitives for sequence
diagrams [9]. The following questions are considered:

e Theoretically, is it possible to use UML 2.0 to represent
general intraprocedural flow of control? Even with the
new features in version 2.0, the answer to this question
is still negative.

o What minimal extensions to UML 2.0 could be intro-
duced to allow handling of general flow of control? We

'Details are available at presto.cse.ohio-state.edu/red

identify two simple UML extensions such that it be-
comes possible to represent the flow of control in an
arbitrary reducible exception-free control-flow graph

(CFG).

e How should a CFG be mapped to UML? Using the pro-
posed extensions, we define a novel control-flow anal-
ysis for mapping a control-flow graph to UML. To the
best of our knowledge, this is the first time an analysis
for this problem has been presented.

The analysis algorithm has two important properties. First,
it is general: the approach handles any reducible exception-
free CFG. Second, it is precise: the produced diagrams rep-
resent precisely the control-flow semantics of the code. This
paper outlines the basic ideas of the algorithm; a detailed
description is available elsewhere [14].

We consider this algorithm to be a first step in solving the
problem of representing intraprocedural behavior in reverse-
engineered sequence diagrams. Future work can easily lever-
age our approach. For example, if a tool designer decides
that some control-flow details should be omitted for the sake
of easier diagram comprehension, she can augment our tech-
nique with filtering mechanisms for these particular details,
while ensuring that all of the remaining flow of control is
still represented in the final diagram.

The work on the algorithm highlighted the following trade-
off for RED: in the general case, either the tool can use
standard UML control-flow primitives, or it can represent
precisely the flow of control in the code, but not both. An-
other important issue is that the same CFG node may have
to be represented multiple times in the diagram. Thus, a
tool can either represent precisely the flow of control, or it
can create a diagram in which CFG nodes are not replicated,
but not both. In addition to a discussion of these two trade-
offs, we present experimental results to determine how often
the need for such tradeoffs occurs in practice. These results
provide new insights for the creators of reverse-engineering
tools for UML sequence diagrams.

1.3 Contributions

e UML extensions: We identify two simple and in-
tuitive UML extensions that are sufficient to capture
general flow of control.

e Analysis algorithm: The paper outlines an algo-
rithm for precisely mapping intraprocedural flow of
control to UML, using the proposed extensions. Ex-
perimental results indicate that the analysis has prac-
tical cost.

e Investigation of tradeoffs: We describe two inher-
ent tradeoffs of the problem, and discuss their impli-
cations for reverse-engineering tools. Our experiments
indicate that these tradeoffs could have significant im-
pact for realistic Java software.

2. BACKGROUND

Given a set of Java classes, a RED user can choose a
method m from these classes and can generate a sequence
diagram that represents the interactions triggered by an in-
vocation of m. For each method that is shown in the di-
agram, the control flow analysis examines the CFG of the

method and creates a method-level data structure that en-
codes relevant aspects of the method’s control-flow behav-
ior. Subsequent display of the reverse-engineered diagram
(implemented in a prototype visualization tool [15]) uses the
data structures created for the individual methods. The tool
interface allows a user to explore the diagram interactively—
e.g., fragments can be collapsed and expanded on demand,
and they can be filtered out based on user-defined criteria.

Note that the separate method-level data structures are
simply building blocks for the entire multi-method diagram.
This paper discusses only the problem of constructing the
data structure for an individual method; related problems
(e.g., inter-method control flow) are described in [11, 12].
The results of all static analyses (including the control-flow
analysis) are combined in a single diagram which contains
the appropriate messages, objects, object lifelines, control-
flow information, etc.

By analyzing a method’s CFG, we define a general ap-
proach that is independent of the peculiarities of any specific
programming language. Thus, it would be trivial to use our
algorithm in tools for languages other than Java, since CFG
construction is simple to design and implement. Our ap-
proach could be used even in the absence of source code, as
long as the object code can be analyzed to construct CFGs.

2.1 Running Example

Consider some method m in a class X, and suppose that
the CFG of m is as shown in Figure la. The structure of
this CFG is loosely based on methods from the standard
library package java.text. For brevity, the CFGs for the
methods called by m are not shown. The shaded nodes 5, 6,
and 13 represent statements that are irrelevant to sequence
diagrams (e.g., i = 5;). Typically, in real code most CFG
nodes are irrelevant to the diagram.

Suppose that the tool user wants a sequence diagram that
represents the interactions triggered by a call tom. Figure 1b
shows an example of such a diagram. For the sake of the
example, assume that the calls to p1,..., pb are made by
methods m2 through m7, and no other calls exist in any of
the CFGs for any of the methods. The loop, opt, break,
and alt elements represent the flow of control during the
interactions, as described shortly. These elements are based
on the data structure produced by our CFG analysis.

2.2 UML Control-Flow Primitives

A sequence diagram contains objects and messages ex-
changed among them. UML 2.0 also defines interaction
fragments as diagram entities that represent various aspects
of the interaction [9]. For the purposes of this work, four
kinds of interaction fragments are of particular importance:
opt, alt, loop, and break fragments. They provide the funda-
mental control-flow primitives that are used in the reverse-
engineered sequence diagrams. Examples of these fragments
are shown in Figure 1.

An opt/loop/break fragment encloses an ordered sequence
of other fragments. A sequence of fragments represents one
or more sequences (traces) of run-time events [9]. An opt
fragment describes optional behavior guarded by some con-
dition. The sub-trace represented by the fragments inside an
opt fragment is executed if the condition is true and skipped
if the condition is false. For example, the opt fragment in
Figure 1 is guarded by the condition !c2 corresponding to
CFG edge (4,7).

1: entry

X (aa] [m8] [eg]
m()
m1() N
i
loop1[ci]
opt 2,
(2] el i P,
m3() |
T
loop2 4
3 = T2 :
break|loop1 m5() 1
[c4] T B30 1)
break lggp1 m7
fesIcel . T
mé() p5()
11]
g e
[16:am6() | [17:am7() | I L L
lc7
18ifcr) o | e m9()
T F
\ 19: this.m8() \ \ 20: this.m9() \ Y
21: exit

Figure 1: (a) Control-flow graph for a method m (b) Reverse-engineered sequence diagram for m

An alt fragment describes two or more mutually-exclusive
alternatives in behavior. Each alternative is represented by
a separate ordered sequence of fragments and is guarded by
some condition. The set of traces defined by an alt fragment
is the union of the sets of traces for the alternatives. For
example, the alt fragment in Figure 1 has two alternatives,
the first one guarded by c7 and the second one by !c7.
An alternative inside an alt fragment could be empty: for
example, when the corresponding behavior does not result
in any messages being sent. If only one alternative is non-
empty, the alt fragment is equivalent to an opt fragment.

The sequence enclosed in a loop fragment is repeated until
the guard condition becomes false. For the outer loop in
Figure 1, the sequence of fragments enclosed in the loop
is repeated until c1 becomes false. The loop can also exit
through two break fragments. A break fragment represents
a “breaking” scenario: first the fragment sequence inside the
break fragment is executed, and then the execution of the
fragment enclosing the break completes immediately.

2.3 Generalized Break Fragments

A break fragment, as defined by UML 2.0, breaks out
of the immediately surrounding fragment. This definition
makes it impossible to express the semantics of real-world
code, in which control can “jump” over several levels of nest-
ing. We propose a generalized break fragment that allows
breaking out of multiple enclosing fragments. The fragment
specifies the enclosing fragment out of which it is breaking.
For example, if a break fragment F3 is enclosed in F» which
in turn is enclosed in F4, F3 could be of the form “break out
of F1”. The UML notation can be easily augmented to rep-
resent this extension by labeling the corresponding enclosing

fragment; Figure 1 illustrates this approach.

2.4 Multiple CFG Exits

A CFG could have multiple exit nodes, where each exit
node is guarded by a condition. For example, “if (¢) {
a.m(); return; }” should be mapped to a fragment similar
to a break fragment, with a guarding condition ¢ and with
the message m inside it. However, in this case the flow of
control breaks out of the entire method and returns back to
the caller. UML 2.0 does not define explicit notation for this
situation. We define a return fragment which is similar to a
break fragment. All “premature” CFG exits are represented
by return fragments.

Strictly speaking, in some cases this effect could be achieved
without return fragments; instead, artificial alt fragments
could be used. For the example from above, it may be
possible to have an alt fragment in which one alternative
corresponds to a.m() and the other alternative corresponds
to the remaining part of the CFG. In our experience, this
approach produces deeply nested fragments that are very
unnatural and hard to comprehend. Thus, we believe that
the use of return fragments is essential for multi-exit CFGs.

2.5 Precision vs. Interoperability

A reverse-engineering tool can either use standard UML
control-flow primitives, or it can represent precisely the flow
of control in the code, but not both. Furthermore, the ex-
tent of non-standard UML additions determines the level of
imprecision in the mapping to UML. Our decision was to
use the UML extensions described earlier in order to obtain
precise mappings from CFGs, since these extensions were
conceptually simple and easy to visualize. However, if the

results of RED need to be exported to other UML tools in the
future (e.g., using tool-independent formats such as XMI),
we will need to introduce precision-losing mappings back
to standard UML 2.0. The creators of any similar reverse-
engineering tool will also be faced with this issue, and will
have to consider this precision-vs-interoperability tradeoff.

3. CONTROL-FLOW ANALYSIS

The two simple UML extensions described above are both
necessary and sufficient to capture the full complexity of
an arbitrary reducible exception-free CFG. Given the CFG,
our analysis produces a set of interaction fragments that
precisely represents the control-flow behavior which affects
the messages being sent by this method. These fragments
encode all and only sequences of call statements that occur
along all CFG control-flow paths. This section provides a
high-level overview of the analysis; more details are available
in [14].

The analysis computes branch successors and loop suc-
cessors for certain CFG nodes. This computation is based
on the well-known notion of post-dominance. CFG node n2
post-dominates ni if every path from n; to an exit node con-
tains n2. Node ng immediately post-dominates ni if na post-
dominates n1 and any other post-dominator of n; is also a
post-dominator of n2. The immediate post-dominance rela-
tion can be represented by a tree in which each parent node
is the immediate post-dominator of its children.

3.1 Branchesand Branch Successors

A CFG node is a branch node if it has at least two outgo-
ing edges. For some of these nodes the analysis creates alt
fragments. In this case it is necessary to determine which
CFG nodes should be considered when building the con-
tents of this new fragment. Intuitively, we need to determine
where the fragment “stops”; this stopping point is the start
of the fragment that will follow the new alt fragment. For
example, for node 4 in Figure 1, the analysis will create an
alt fragment.? The fragment following the alt in the loop’s
fragment sequence will be constructed starting from node 8,
which is the “merge point” of the branches coming out of 4.

Consider a branch node n with outgoing edges (n,n;).
The branch successor of n is defined to be the lowest common
ancestor of all n; in the post-dominance tree for the CFG. A
common ancestor represents a merge point for all branches
coming out of n. The lowest such ancestor is the merge
point that is the “closest” to n. The paths from n to this
node define the CFG nodes that should be considered when
building the contents of the alt fragment created for n.

If n is inside a loop, the notion of a branch successor
must be restricted to the flow of control that stays within
the loop. For this, we define the notion of post-dominance
inside a loop. Consider nodes n1 and ns2 in some loop L.
Node ny post-dominates n; inside L if ne belongs to every
loop-only path from n; to the loop header. This means that
if ny is reached during some iteration of L and subsequently
the iteration completes successfully—i.e., the header of L is
eventually reached—then ns is reached after ni as part of
that same iteration. If a node m has more than two suc-
cessors n; in its enclosing loop L, the branch successor of

2 As shown in Figure 1, this fragment can later be transformed
into an opt fragment, because one of its alternatives does not
contain.

n is the lowest common ancestor of all such n; in the post-
dominance tree for L. For example, for node 14 in Figure 1,
the branch successor is node 16. This definition can be easily
generalized for nested loops.

3.2 Loopsand Loop Successors

The notion of a reducible CFG is standard in program
analysis research. A loop in a reducible CFG is a strongly-
connected subgraph L such that exactly one node n € L
has a predecessor that is not in the loop. Node n is the
header node of L. The control-flow features of Java ensure
that the CFG of a method is reducible. UML 2.0 cannot
represent precisely the semantics of code with irreducible
CFGs, because a loop fragment has only one entry point.

Whenever the analysis encounters the header node of a
loop, it creates a loop fragment. In this case, the analy-
sis needs to decide which nodes should be considered when
building the contents of this loop fragment. For example,
for node 3 in Figure 1, the analysis will create a loop frag-
ment. Node 18 is the merge point for the three different
possible ways to exit the loop, and thus the analysis needs
to consider all nodes occurring on paths from 3 to 18.

For each loop L we determine a loop successor. In the
case of an outermost loop, the loop successor is the low-
est common ancestor for all targets of loop exit edges in
the method-level post-dominance tree. For example, for the
outer loop in Figure 1, these targets are nodes 12, 17, and
18, and the loop successor is 18. This is the earliest common
point for all possible executions after the loop terminates.
The generalization for nested loops is presented in [14].

3.3 Multiple CFG Exits

The algorithm becomes more complicated in the presence
of multiple CFG exits. In particular, it becomes necessary to
compute and use information about control dependencies [3]
between branch nodes and exit nodes, and to create return
fragments for CFG subgraphs which lead to exit nodes. The
general treatment of multiple exit nodes is described in [19];
our implementation fully handles this general case.

3.4 Exceptions

The handling of exceptional flow of control depends on
the language mechanisms for creating such flow. In Java, ex-
ceptions may be synchronous (occurring at well defined pro-

gram points) or asynchronous (occurring non-deterministically).

Synchronous exceptions can be raised explicitly with a throw
statement, or implicitly as the result of an expression eval-
uation, a linking/loading error, or a resource error. Asyn-
chronous exceptions occur as the result of an error in the
virtual machine. Synchronous exceptions may be checked
or unchecked. Unchecked exceptions are instances of class
java.lang.RuntimeException, java.lang.Error, or any of
their subclasses; a typical example is NullPointerException.
All other exceptions are considered to be checked exceptions.

Our algorithm essentially ignores exceptional flow of con-
trol in Java. First, implicitly-thrown exceptions (i.e., with-
out explicit throw) are not considered. Since such exceptions
could occur implicitly at a large number of program points,
their representation in a diagram will produce significant vi-
sual clutter without providing any useful information. Thus,
we believe that only explicitly-thrown exceptions should be
considered for reverse-engi-neered diagrams. Second, we do
not try to identify pairs of CFG nodes (n1,n2) such that nq

(o] [aa] [b2]
[c1=mi(Q_|
A —
el |[c2=m20 | |

[4:if(c2) ﬁ{ 5:am3() |

F opt m3()
[c2 L

L]

Figure 2: Message m3 is replicated.

explicitly throws an exception using throw, and ns is a catch
clause that may catch that exception. In most cases, n; and
na will belong to two different methods, and exception-flow
analysis must be an interprocedural analysis (e.g., [16]). At
present we do not employ such an analysis; as a result, our
implementation ignores all catch clauses. Furthermore, it
is unclear what UML notation should be used to represent
the exceptional flow of control from n; to ne.

In the case of a throw statement, the algorithm treats
this statement as a CFG exit node and applies the same
techniques we use for return statements, as described in
Section 3.3. The resulting fragment is similar to a return
fragment, but instead of leading to a method exit it should
lead to a catch clause. In our future work we will investigate
how this throw fragment can be associated with the corre-
sponding catch, and how this association can be visualized
in the diagram.

3.5 Fragment Construction

After computing branch/loop successors, the analysis tra-
verses the CFG and creates the corresponding fragments.
As nodes are encountered during the traversal, the current
fragment sequence is “populated”. New interaction frag-
ments are created as necessary, and branch/loop successors
are used to decide when to exit the current fragment. This
approach is guaranteed to produce fragments that encode
precisely all and only sequences of calls in the CFG [14].

4. MAPPING WITHOUT REPLICATION

Consider the following code fragment:

if (a.m1Q) |l b.m20) { 2.m30; } b.mdQ);

Figure 2 shows the corresponding CFG subgraph and the
interaction fragments produced by the analysis. Clearly, in
this mapping from the CFG to UML, CFG node 5 is repre-
sented in the diagram two times, once in each of the alter-
natives of the alt fragment. We will say that node 5 is repli-
cated by the mapping. It is easy to show that for this CFG,
there does not exist a no-replication mapping which repre-
sents precisely the sequence of run-time events encoded by
the CFG. There are several possible no-replication mappings
that are not precise: two examples are given in Figure 3.
In the general case there will be CFGs for which a no-
replication mapping does not exist. The next section presents
experimental evidence that such CFGs do occur in real-
world Java code. Intuitively, in these cases the “sequen-
tiality” of the control-flow primitives makes the diagrams

[xx | | [b8 | [xx | =] [b8 |
" ct=mi(), | cl=mi()_ |
c2=m2()
0 oy |
SN — ey
m4() ma4() R
I v] .

Figure 3: Possible imprecise mappings.

less expressive than the arbitrary flow of control in a CFG,
and full generality can be achieved only through replication
of CFG nodes.

Depending on the intended uses of reverse-engineered dia-
grams, tool designers have to decide on a particular tradeoff
between size and precision. For example, for program un-
derstanding purposes it may be desirable to avoid replica-
tion altogether, even if this means that the diagrams repre-
sent only a subset of the possible run-time event sequences.
ControlCenter and EclipseUML seem to have taken this ap-
proach. On the other hand, if the diagrams are used as
the basis for test coverage measurements, precision may be
more important than diagram size: e.g., if testing attempts
to cover all possible sequences of messages [1, 13].

The full-precision choice and the no-replication choice de-
fine the two ends of the design spectrum. Tool builders could
decide that a particular point somewhere in the middle of
this spectrum is the appropriate choice. Tools could even
implement multiple choices, and allow the user to adjust the
tradeoff. This is the approach we plan to take in RED. The
current implementation of RED allows mappings that have
replication, in order to achieve full precision. We are inves-
tigating a set of precision-losing transformations that would
allow systematic exploration of the spectrum of possibilities
for this tradeoff. Furthermore, we will augment this work
with effective visualization techniques that allow a tool user
to investigate the diagrams. Our prototype provides highly-
interactive diagram visualization and exploration [15], and
it will be easy to incorporate user-defined tradeoff adjust-
ments.

Another possibility is to introduce additional UML exten-
sions (i.e., new control-flow primitives) for increased expres-
sive power. A disadvantage of this approach is the “drift”
from the standard, which will create problems for the inter-
operability with other UML tools. This is another decision
that tool designers have to face: if interoperability is not a
concern, it may be justifiable to add tool-specific UML ex-
tensions. We do plan to integrate our tool with other UML
tools (including commercial ones), and we decided against
using additional UML enhancements beyond the minimal
extensions described in Section 2.

5. EMPIRICAL STUDY

This section summarizes some of the experimental results
from our evaluation of the analysis; additional results are
available in [14, 19]. The 20 subject components used in the
study are listed in Table 1. The second column shows the
number of non-abstract methods in each component.

First we considered the cost of the analysis. The third col-
umn in Table 1 shows the analysis running times, in seconds.

Component | Meth || Time (s) (a) (b) (c)

collator 157 4.84 || 44.9% 4.3% 5.8%
date 136 543 || 54.2% | 16.7% | 41.7%
decimal 136 0.77 || 60.0% | 16.0% | 32.0%
message 176 1.33 || 45.0% | 12.5% | 32.5%
boundaries 74 0.54 [71.4% 0% 0%
gzip 41 0.21 [[23.1% 0% 0%
zip 118 0.54 [42.2% 3.0% 0%
math 241 0.96 || 89.9% 1.7% 8.4%
pdf 344 0.74 [40.3% 0% 2.7%
mindbright 4388 2.08 || 36.4% | 4.0% | 4.0%
sql 350 0.53 || 31.8% 9.1% | 13.6%
html 298 1.42 || 51.8% 1.8% 6.3%
jess 627 2.83 [39.2% 3.2% | 11.1%
io 86 0.34 || 68.2% 0% 4.5%
jflex 313 14.65 || 59.5% 1.4% 2.7%
bytecode 625 6.65 || 41.4% 0% | 7.6%
checked 15 0.12 || 33.3% 0% 0%
bigdecimal 33 0.25 || 100% 0% 0%
vector 38 0.19 || 53.3% 0% 0%
pushback 20 0.12 30% 0% 0%

Table 1: Subject components.

This is the total time to run the analysis for all methods in
a component, on a 900 MHz Sun Fire 280-R machine. The
results strongly suggest that the analysis cost is practical.

For each method m with a non-trivial body, we ran the
control-flow analysis and used its output to answer the fol-
lowing questions:

e Is it necessary to use return fragments in order to ob-
tain a precise mapping for m?

e Is it necessary to use a generalized break fragment
(crossing multiple levels of fragment nesting) to obtain
a precise mapping for m?

e [s it impossible to have a precise no-replication map-
ping for m, using only UML 2.0 and the extensions
from Section 27

Column (a) in Table 1 shows the percentage of meth-
ods for which a return fragment was a necessity in order
to obtain a precise mapping. The results indicate that the
number of such methods is substantial, and therefore the
handling of multiple method exits is an important issue for
reverse-engineered sequence diagrams. If return fragments
(or some equivalent notation) are not used, the loss of infor-
mation is likely to be substantial.

Column (b) shows the percentage of methods for which
a precise mapping was possible only if we used a general-
ized break fragment that “jumps” out of multiple enclosing
fragments. The results suggest that the handling of this
situation is not as important as for return fragments. Nev-
ertheless, CFGs that require such handling do occur in the
subject components. In this situation a tool designer has
two obvious choices. One possibility is to introduce the gen-
eralized break fragments described in Section 2. The second
option is to use only “regular” UML 2.0 break fragments,
and to ignore the flow of control that requires the generalized
version. The control-flow analysis can be easily modified to
support this second option: intuitively, whenever a CFG
edge “jumps too far out”, the edge can be simply ignored.

Column (c) contains the percentage of methods for which
a precise no-replication mapping was not possible. For some
components, this tradeoff is clearly not an issue. However,

the overall conclusion from these experiments is that this
tradeoff occurs frequently enough to justify careful future
studies. To gain further insights, we examined the three
components with the highest percentages. These compo-
nents are from the standard Java package java.text and
they contain highly-complex code for parsing and formatting
of data. For code with complicated internal logic, we be-
lieve that the practical solution is to sacrifice some precision
for the sake of reduced diagram complexity. As discussed
in Section 4, we plan to define precision-losing transforma-
tions and to make them available for interactive user-defined
tradeoff adjustments.

6. RELATED WORK

Several techniques employ dynamic analysis of run-time
program behavior to perform reverse engineering of sequence
diagrams or similar representations [17, 10, 4, 8, 2]. An ad-
vantage of these approaches is that they create diagrams
that represent the actual behavior of the software. How-
ever, in many cases input data for run-time execution is not
available, especially for incomplete systems (e.g., reusable
modules) that cannot be executed in stand-alone manner.
Furthermore, it is not known how well the execution covers
all possible interactions. For example, it is not possible to
have high confidence in the consistency between design and
code, if this consistency is judged from sequence diagrams
that were constructed from execution traces. As another
example, sequence diagrams produced only with dynamic
analysis cannot be used for evaluating the adequacy of test-
ing. Some dynamic reverse-engineering analyses take into
account conditions and iterations [17, 2], but the quality
of the results depends on pattern matching heuristics that
identify certain sequences of run-time events and attempt to
extract from them control-flow primitives.

Reverse engineering of sequence diagrams through static
analysis avoids these problems. The ControlCenter and Eclip-
seUML modeling tools include such functionality as an ad-
vanced feature for support of round-trip engineering. These
tools do not appear to handle correctly more complicated
flow of control (e.g., due to break statements). Kollman and
Gogolla [5] define a static analysis for reverse engineering of
collaboration diagrams (similar to sequence diagrams), but
do not discuss the representation of conditional and iterative
behavior. Tonella and Potrich [18] present a static analysis
for reverse engineering of sequence diagrams and collabora-
tion diagrams from C++ code, but do not perform analysis
of intraprocedural flow of control.

The Dava decompiler [7] uses a static analysis that maps
CFGs to the control-flow constructs of Java. Our work has
a similar goal, but the target are UML control-flow prim-
itives, which are simpler and less expressive than those in
Java. There are some significant technical differences be-
tween the two approaches. For example, in [7] the body
of a conditional statement is determined by considering the
nodes dominated by a branch node, while our approach con-
siders post-dominance relationships to determine a branch
successor and the scope of an alt fragment. Our algorithm
traverses the hierarchical structure of the CFG in order. The
technique in Dava uses a sequence of stages where each stage
attempts to identify particular constructs (e.g., only loops).

7. CONCLUSIONSAND FUTURE WORK

This work describes a novel algorithm for mapping re-
ducible exception-free control-flow graphs to UML interac-
tion fragments. As part of RED, the analysis solves one
important problem for reverse engineering of sequence dia-
grams. We plan to perform additional investigations of the
tradeoffs discussed earlier, in order to find the right balance
between precision and practicality for different uses of the
analysis results—for example, for program understanding,
for software testing, etc.

Acknowledgments. We would like to thank the PASTE
reviewers for their helpful comments and suggestions.

8. REFERENCES

[1] R. Binder. Testing Object-Oriented Systems: Models,
Patterns, and Tools. Addison-Wesley, 1999.

[2] L. Briand, Y. Labiche, and Y. Miao. Towards the
reverse engineering of UML sequence diagrams. In
Working Conference on Reverse Engineering, pages
57-66, 2003.

[3] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systems, 13(4):451-490, Oct. 1991.

[4] W. DePauw, E. Jensen, N. Mitchell, G. Sevitsky,

J. Vlissides, and J. Yang. Visualizing the execution of
Java programs. In Software Visualization, LNCS 2269,
pages 151-162, 2002.

[5] R. Kollman and M. Gogolla. Capturing dynamic
program behavior with UML collaboration diagrams.
In European Conference on Software Maintenance and
Reengineering, pages 58-67, 2001.

[6] C. Larman. Applying UML and Patterns. Prentice
Hall, 2nd edition, 2002.

[7] J. Miecznikowski and L. Hendren. Decompiling Java
using staged encapsulation. In Working Conference on
Reverse Engineering, pages 368-374, 2001.

[8] R. Oechsle and T. Schmitt. JAVAVIS: Automatic
program visualization with object and sequence
diagrams using the Java Debug Interface (JDI). In
Software Visualization, LNCS 2269, pages 176190,
2002.

[9] OMG. UML 2.0 Infrastructure Specification. Object
Management Group, www.omg.org, Sept. 2003.

[10] T. Richner and S. Ducasse. Using dynamic
information for the iterative recovery of collaborations
and roles. In International Conference on Software
Maintenance, pages 34-43, 2002.

[11] A. Rountev and B. H. Connell. Object naming
analysis for reverse-engineered sequence diagrams. In
International Conference on Software Engineering,
pages 254-263, 2005.

[12] A. Rountev, S. Kagan, and M. Gibas. Static and
dynamic analysis of call chains in Java. In
International Symposium on Software Testing and
Analysis, pages 1-11, July 2004.

[13] A. Rountev, S. Kagan, and J. Sawin. Coverage criteria
for testing of object interactions in sequence diagrams.
In Fundamental Approaches to Software Engineering,
LNCS 3442, pages 282-297, 2005.

[14] A. Rountev, O. Volgin, and M. Reddoch. Control flow
analysis for reverse engineering of sequence diagrams.
Technical Report OSU-CISRC-3/04-TR12, Ohio State
University, Mar. 2004.

[15] R. Sharp and A. Rountev. Interactive exploration of
UML sequence diagrams. In IEEE Workshop on
Visualizing Software for Understanding and Analysis,
2005.

[16] S. Sinha and M. J. Harrold. Analysis and testing of
programs with exception handling constructs. IEEE
Transactions on Software Engineering, 26(9):849-871,
Sept. 2000.

[17] T. Systa, K. Koskimies, and H. Muller. Shimba—an
environment for reverse engineering Java software
systems. Software—Practice and Experience,
31(4):371-394, Apr. 2001.

[18] P. Tonella and A. Potrich. Reverse engineering of the
interaction diagrams from C++ code. In International
Conference on Software Maintenance, pages 159-168,
2003.

[19] O. Volgin. Control flow analysis for reverse
engineering of sequence diagrams. Master’s thesis,
Ohio State University, June 2004.

