
Verifying Web Services Composition Based
on Hierarchical Colored Petri Nets

YanPing Yang
Computer School, National University

of Defense Technology
Changsha, Hunan, P.R.China

yanpingyang@nudt.edu.cn

QingPing Tan
Computer School, National University

of Defense Technology
Changsha, Hunan, P.R.China

eric6508@21cn.com

Yong Xiao
PDL, National University of Defense

Technology
Changsha, Hunan, P.R.China

yongxiao@nudt.edu.cn

ABSTRACT
Current Web services composition proposals, such as BPML,
BPEL, WSCI, and OWL-S, provide notations for describing the
control and data flows in Web service collaborations. However,
such proposals remain at the descriptive level, without providing
any kind of mechanisms or tool support for verifying the
composition specified in the proposed notations. In this paper, we
present to verify Web services composition by using CP-nets. CP-
nets combine the strengths of Petri nets with the expressive
power of high-level programming and have sound
mathematical semantics. These services composition proposals
can be transformed by transformation rules into CP-nets, which
can be used to analyze the performance and to investigate
behavioral properties such as deadlock or livelock by CP-nets
tools.

Categories and Subject Descriptors
.D.2.4 [Software Engineering]: Software/Program Verification –
Formal methods, Reliability, Validation.

General Terms
Reliability, Experimentation, Languages, Verification.

Keywords
Web service, Composition, Verification, Transformation, CP-net.

1. INTRODUCTION
Web Services receive significant research recently from both
academia and industry due to its broad applications and flexible
architecture supporting re-composition and reconfiguration.

Web services composition is an emerging paradigm for enabling
application integration within and across organizational
boundaries. Accordingly, a current trend is to express the logic of
a composite web service using a business process modeling
language tailored for web services. A landscape of such languages
such as Business Process Modeling Language (BPML), Business
Process Execution Language (BPEL) [17] and Web service

Choreography Interface (WSCI) [18] has emerged and is
continuously being enriched with new proposals from different
vendors and coalitions. Practical experience indicates that the
definition of real world Web services composition is a complex
and error-prone process. However, all these proposals still remain
at the descriptive level, without providing any kind of
mechanisms or tool support for verifying the composition
specified in the proposed notations.

Therefore, there is a growing interest for the verification
techniques which enable designers to test and repair design errors
even before actual running of the service, or allow designers to
detect erroneous properties (such as deadlock and livelock) and
formally verify whether the service process design does have
certain desired properties (such as consistency with the
conversation protocols of partner service).

In this paper, we want to use Colored Petri Nets (CP-nets) [1]
analysis and verification technique to raise the reliability of Web
Services composition. CP-nets were formulated by Jensen [1] as a
formally founded graphically oriented modeling language. CP-
nets are useful for specifying, designing, and analyzing concurrent
systems. In contrast to ordinary Petri nets, CP-nets provide a more
compact way of modeling complex systems, which makes CP-nets
a powerful language for modeling and analyzing industrial-sized
systems. This is achieved by combining the strengths of Petri nets
with the expressive power of high-level programming languages.
Petri nets provide the constructions for specifying synchronization
of concurrent processes, and the programming language provides
the constructions for specifying and manipulating data values, and
the latter point is very important to model business process. For
the lack capability of ordinary CP-nets to model the recursive
definition among business activities, here we use a kind of high-
level CP-net called hierarchical CP-nets.

The basic idea underlying hierarchical CP-nets is to allow the
modeler to construct a large model from a number of smaller CP-
nets called pages. These pages are then related to each other in a
well-defined way as explained below.

In a hierarchical CP-net, it is possible to relate a so-called
substitution transition (and its surrounding places) to a separate
CP-net called a subpage. A subpage provides a more precise and
detailed description of the activity represented by the transition.
Each subpage has a number of port places and they constitute the
interface through which the subpage communicates with its
surroundings. To specify the relationship between a substitution
transition and its subpage, we must describe how the port places
of the subpage are related to so-called socket places of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IHIS’05, November 4, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-184-5/05/0011...$5.00.

47

substitution transition. This is achieved by providing a port
assignment. When a port place is assigned to a socket place, the
two places become identical. The port place and the socket place
are just two different representations of a single conceptual place.
More specifically, this means that the port and the socket places
always have identical markings. It should be noted that
substitution transitions never become enabled and never occur.
Substitution transitions work as a macro mechanism. They allow
subpages to be conceptually inserted at the position of the
substitution transitions – without doing an explicit insertion in
the model.

Since Web service modeler may be unfamiliar with CP-nets, we
provide translation rules of composition language into CP-nets
and the techniques to analyze and verify them for investigating
behavioral properties and techniques to simulate them to evaluate
the performance of system.

The formal verification of Web Services composition based on
transformation requires not only that the target model has the
ability to verify the properties we need, but also that the
transformation can transform the source model correctly and even
effectively. So we verify the transformation itself based on some
recognized criteria.

The rest of this paper is organized as follows: our verification
approach is presented in section 2; a composition language
transformation example is shown in section 3; section 4 describes
the verification of transformation itself; section 5 gives the related
work and the paper is concluded in section 6.

2. VERIFICATION APPROACH
Figure 1 shows our analyses and verification approach. Web
services composition description are translated into CP-nets, the
input of Design/CPN1 or CPN tools2 , which are two outstanding
tools with a variety of analysis techniques and computing tools for
CP-nets. The formalization mainly concerns with the translation
of composition specification into CP-net models. This is
particularly important in discussions with Web services modelers
unfamiliar with CP-nets.

The formal verification of Web Services composition based on
transformation requires not only that the target model has the
ability to verify the properties we need, but also that the
transformation can transform the source model correctly and even
effectively. So we verify the transformation itself based on the
recognized criteria.

CP-net models are executable. This implies that it is possible to
investigate the behavior of the system by making simulations of

1 http://www.daimi.au.dk/designCPN/
2 http://www.daimi.au.dk/CPNtools/

the CP-net model. Simulations can well serve as a basis for
investigating the performance of the considered system.

The state space method of CP-nets makes it possible to validate
and verify the functional correctness of systems. The state space
method relies on the computation of all reachable states and state
changes of the system, and is based on an explicit state
enumeration. By means of a constructed state space, behavioral
properties of the system can be verified. The properties of CP-nets
to be checked include boundness, deadlock-freedom, liveness,
fairness, home, and application specific properties. The
application specific properties are expressed as reachability of CP-
nets. The properties of CP-nets mentioned above have their
specific meaning in verifying Web services composition:

9 Reachability－The possibility of reaching a given state. By
formulate application specific properties as reachability of
CP-net models, we can validate whether the models of the
composition process can achieve the desired result.

9 Boundness－The maximal and minimal number of tokens
which may be located on the individual places in the
markings. As the prototype of the composition process, if a
place of it is Control Place, then the number of tokens it
contains is either o or 1, otherwise this indicates errors in
the process. If a place of it is a Message Place, then
boundedness can be used to check whether the buffer
overflows or not.

9 Dead Transitions－ The transitions which will never be
enabled. There are no activities in the process that cannot be
realized. If initially dead transitions exist, then the
composition process is bad designed.

9 Dead Marking － Markings having no enabled binding
element. The final state of process instance is one of dead
marking. If the number of dead markings reported by state
space analysis tool is more than expected, then there must
be errors in the design.

9 Liveness－A set of binding elements remaining active. It is
always possible to return to an activity if we wish. For
instance, this might allow us to rectify previous mistakes.

9 Home － About markings to which CP-net is always
possible to return. It is always possible to return to a state
before. For instance, to compare the results of applying
different strategies to solve the same problem.

9 Fairness － How often the individual transitions occur.
Fairness properties can be used to show the execution

Figure 1. Verification and analysis approach

Composition
Specification

CP-net
models

Model
transformation

CP-nets
toolsinput

Simulati
on report

State space
report

output output

Verification

48

numbers in each process. We can find the dead activity that
will never be executed.

9 Conservation－Tokens never destroyed. Certain tokens such
as resources maintained in the system are never destroyed.

2.1 Verification Examples
Our approach is essentially independent of the language
describing composition, so we use UML Activity diagram as
platform independent model to illustrate Web Services
composition. Figure 2 shows a typical Web services composition
example for handling a purchase order within a virtual enterprise
comprising a Customer, an InvoiceProvider, a ShippingProvider
and a SchedulingProvider.

On receiving the purchase order from a customer, the process
initiates three tasks concurrently: calculating the final price for the
order, selecting a shipper, and scheduling the production and
shipment for the order. While some of the processing can proceed
concurrently, there are control and data dependencies between the
three tasks. In particular, the shipping price is required to finalize
the price calculation, and the shipping date is required for the
complete fulfillment schedule. When the three tasks are completed,
invoice processing can proceed and the invoice is sent to the
customer.

The corresponding CP-nets model of Purchase Order process is
illustrated in Figure 3. The syntactical elements of a CP-net
consist of places (drawn as ellipses), transitions (drawn as
rectangles), arcs (connecting places and transitions), and
inscriptions (text strings associated with places, transitions, and
arcs). Places are used to model the state in a system. A state in the
context of CP-nets is called a marking which represent a
distribution of data values (called tokens) on the places of the CP-
net. Each place has a color set (or type) which specifies the colors
(or values) of the tokens that the place can hold. The initial
distribution of tokens is called the initial marking. Transitions are
used to model the dynamics or actions in the system. Arcs
pointing to a transition are called input arcs, while arcs pointing
from a transition are called output arcs. The arc expressions on
input arcs determine what tokens have to be present on input
places to enable the transition. The arc expressions on output arcs
specify the tokens that will be added to the output places when the

transition occurs. In other words, when a transition is enabled, it
may occur and thereby remove tokens from the input places as
specified by the expressions on the input arcs, and add the tokens
to the output places as specified by the expressions on the output
arcs.

Here is part of state space analysis result of Purchase Order
process generated by State Space tools of CPN tools.

Boundedness Properties
--
 Best Integers Bounds Upper Lower
 CustomerSubPage'CS1 1 0 0
 CustomerSubPage'CS2 1 0 0
 CustomerSubPage'CS3 1 0 0
 CustomerSubPage'INV 1 1 1
 CustomerSubPage'PO 1 0 0
 CustomerSubPage'Purchasing__End 1 1 1
 CustomerSubPage'Purchasing__Start 1 0 0
 CustomerSubPage'SCH 1 1 1
 InvoiceSubPage'IS1 1 0 0
 InvoiceSubPage'IS2 1 0 0
 ScheduleSubPage'SD1 1 0 0
 ShipSubPage'SP1 1 0 0
 SuperPage'FL1 1 0 0
 SuperPage'FL2 1 0 0
 SuperPage'FL3 1 0 0
 SuperPage'FL4 1 0 0
 SuperPage'FL5 1 0 0
 SuperPage'FL6 1 0 0
 SuperPage'Input_send_Invoice 1 0 0
 SuperPage'Input_send_PurchaseOrder 1 0 0
 SuperPage'Input_send_Schedule 1 0 0
 SuperPage'Input_send_ShippingPrice 1 0 0
 SuperPage'Input_send_ShippingSchedule1 0 0
 SuperPage'SE1 1 0 0
SuperPage'SE2 1 0 0

Home Properties
--
 Home Markings: All

Liveness Properties
--
 Dead Markings: None
 Dead Transitions Instances: None
 Live Transitions Instances: All

Fairness Properties
--

No infinite occurrence sequences.

Next, consider an example process model that shows a faulty
behavior (Figure 4). The model consists of six activities numbered
from 1 to 6. The activity 5 has two input control links, coming
from the activities 2 and 3, and a join condition of AND. It further
has an output data link to the activity 6. The activity 6 has a
control link from the activity 4 and two data links from 4 and 5.
According to the operational semantics, the activity 5 can be fired
when the two input control links have definite values and also the
join condition becomes true. The activity 5, after the completion
of its internal activity body, puts out some data on the data link to
the activity 6.

Figure 2. Purchase Order example of composition

49

Imagine a situation that one of the input control links to the
activity 5 is false and thus the join condition is not satisfied. The
activity 5 is not put into execution, and the data link input to the
activity 6 does not have a definite value. It results in a faulty
situation where the activity 6 waits for the value indefinitely. CP-
net tools can detect the faulty situation as a deadlock.

3. TRANSFORING WSCI TO CP-NETS
Our approach is essentially independent of the language
describing composition. As an example, to show the effectiveness
of our technique, we pick up WSCI and present the transformation
from WSCI to CP-nets.

The aim of this section is to provide a transformation from WSCI
specification to CP-nets in a constructive way. The overview of
the transformation idea can be concluded as follows:

9 The interface element describes the WSCI view of a Web
service participating in a choreographed, long-lasting and
stateful message exchange with other services. Each
interface is represented by a CP-net called Interface Net (I-
Net).

9 Messages are represented by tokens. Different message type
can be represented by the products type of the component
part type of messages.

9 A WSCI activity is usually mapped to a CP-net transition.
We do so for several reasons. First, mapping subactivities

into places poses the following problem: if a place
represents a subactivity state, when the actor returns the
subactivity will start again. Thus, to represent the leaving
point where a subactivity continues would be impossible.
Secondly, the hierarchical modeling technique is by means
of substitution transitions, and therefore if a transition
represents a subactivity, there always remains the possibility
of decomposing it into various actions (other transitions)
and resting points (places) that enable interruptions and
returns. Thirdly, modeling subactivities by transitions allows
us to model data flow in the places of the subactivity flow
more clearly. The detailed transformations of activity can be
found in [15].

9 The control flow relations between activities specified by
WSCI semantics are captured with CP-nets token firing
rules and the arc inscriptions and transition guard
expressions.

9 Each WSCI model is represented by a hierarchical CP-net
called Composition Net (C-Net).

3.1 Interface Net
WSCI aims to describe how Web services participate in
choreographed, long-lasting and stateful message exchanges. The
focus of the described behavior is on the temporal and logical
dependencies among the messages the Web service exchanges
with one or more other services in the context of a given scenario.
WSCI maps this description to the notion of an interface. We
transform an interface into an I-Net.

I-Net is a hierarchical CP-net where:

9 Places are of three different types, specifically control
places, referred to as CP, input message places,
referred to as IMP, and output message places,
referred to as OMP; let us define MP = IMP∪OMP
and P = CP∪MP;

9 Transitions are of three different types. The fist type is
auxiliary transition, referred to as AUT, which is used
to implement composite construct such as loop or

Figure 3. Purchase Order SuperPage

Figure 4. Process with Deadlock

50

conditional fork. The second type is substitution
transition, referred to ST, which is abstract
representation of subpages modeling sub processes.
The third type is activity transition, referred to as
ACT; let us define T= AUT∪ST∪ACT;

9 Tokens placed on control (input/output message)
places are referred to as control (message,
respectively) tokens;

9 Arc connected with control (input/output message)
places are referred to as control (message,
respectively) arcs.

9 Each place∈MP is labeled with a message, i.e., a
function mess: MP→ εεεε is defined (εεεε is the set of
messages specified for the Web service, according to
the formalization provided in [20])

3.2 Composition Net
WSCI describes the coordination by means of the WSCI Model.
The global Model is described by a collection of interfaces of the
participating services, and a collection of links between the
operations of communicating services. Links between operations
indicate that the respective services will exchange messages
across those links.

Each Model can be represented as an Composition Net, which is a
specific net connecting at least two I-Nets, and specifying the
routing of messages and the act of passing the task of the
orchestration from an organization to another one.

Composition Net (C-Net) is a hierarchical CP-net where:

9 Places are of one type, specifically message places. Each
place will be assigned to input/output message places
belong to different I-Nets.

9 Transitions are also of one type, specifically organization
transitions. Each transition is an abstract representation of
I-Net in the superpage .They are labeled with an
organization; the availability of a token in an place
connecting the organization transition means that the task
of the composition of the overall process is currently
assigned to the organization labeling the transition.

9 For each place p, there exist omp∈ OMP and imp∈ IMP
such that p, omp and imp are members of one fusion set,
meanwhile omp and imp necessarily belong to different I-
Nets.

4. VERIFYING TRANSFORMATION
The formal verification of Web Services composition based on
model transformation requires not only that the target model
language has the ability to verify the properties we need, but also
that the transformation can transform the source model correctly

and even effectively. In [2], the fundamental properties of a
correct transformation are summarized as that the transformation
should be complete, unique, syntactic correct, semantic correct
and could terminate.

9 Syntactic correctness, i.e., to guarantee that the generated
model is a syntactically well–formed instance of the target
language. Syntactic completeness is to completely cover the
source language by transformation rules, i.e., to prove that
there exists a corresponding element in the target model for
each construct in the source language.

9 Termination, i.e., to guarantee is that a model transformation
will terminate.

9 Uniqueness (Confluence, functionality): As non-
determinism is frequently used in the specification of model
transformations, we must also guarantee that the
transformation yields a unique result.

9 Semantic correctness (Dynamic consistency): In theory, a
straightforward correctness criterion would require to prove
the semantic equivalence of source and target models.
However, as model transformations may also define a
projection from the source language to the target language
(with deliberate loss of information), semantic equivalence
between models cannot always be proved. Instead we define
correctness properties (which are typically transformation
specific) that should be preserved by the transformation.

And for a transformation for verification, the performance
requirement that the transformation should be effective should
also be considered, i.e. the contents that need to be verified of the
source model should be transformed to some properties of the
target model that can be analyzed. This additional requirement is
correlated with the semantic correctness, because the semantics
are usually one part of the contents to be verified.

Because we transform the composition specification through
traversing the xml document in a constructive way, the
termination, completeness and uniqueness of the transformation
can be easily proved. The syntactic correctness can be preserved
by checking the generated nets against CP-net metamodel. For the
verification technique of the semantic correctness and
effectiveness of transformation, we propose to exploit Information
Capacity presented in [19] to verify that there is no semantic
information lost.

5. RELATED WORKS
Most of existing approaches [3-7] to verify business process are
based on model checking techniques.

Nakajima [3] describes how to use the SPIN model checker to
verify web service orchestration. In order to do the verification
using SPIN, business processes are first translated into Promela,
the specification language provided by SPIN. The language used
to compose Web Services is the Web Services Flow Language
(WSFL)[16] which is one of BPEL’s predecessors.

51

Table 1. The comparison between some existing approaches to business process verification

Researchers Specification Formal Model Tools Transformation
verification?

Koshkina BPEL Labelled
Transition System CWB No

Foster BPEL FSP-processes LTSA
toolkit No

Karamanolis Abstract business
process FSP-processes LTSA

toolkit No

Nakajima WSFL Promela SPIN No

Koehler Abstract business
process

Nondeterministic
Automata NuSMV No

Stahl BPEL Petri net LoLA No
Martens BPEL Petri net Wombat4ws No
Narayanan DAML-S Petri net KarmaSIM No
Our work BPEL, WSCI CP-nets CPN tools yes

In [4], Karamanolis and his group translate business processes
into FSP processes and use the LTSA toolkit 3 for model
checking. The LTSA toolkit allows the user to specify properties
in terms of deterministic FSP-processes. Similarly, Foster and his
group [5] describe a BPEL plug-in for the LTSA toolkit. They
translate BPEL program into FSP-processes and subsequently use
the LTSA toolkit to verify the FSP-processes.

In [6], Koehler, Kumaran and Tirenni model business processes
as nondeterministic automata with state variables and transition
guards. These automata are subsequently translated into the input
language of the model checker NuSMV4. Koehler et al show how
NuSMV can be exploited to detect termination of business
processes.

In [7], Koshkina shows how to exploit an existing verification
tool CWB5 supporting techniques like model checking, preorder
checking and equivalence checking to model and verify Web
Services composition. Similarly, in [8], Schroeder presents a
translation of business processes into CCS. Subsequently, the
existing verification tool CWB can be used for verification.

Using Petri nets to model and verify business processes is another
choice. For the works of modeling business processes by means of
Petri nets, we refer the reader to Van der Aalst [9], Martens [10],
Narayanan [11] and Stahl [12].

In [9], workflow nets, a class of Petri nets, have been introduced
for the representation and verification of workflow processes.

In [10], Axel Martens translate BPEL to a Petri Net semantic. Due
to the mapping into Petri nets, several analysis methods are
applicable to BPEL processes models: the verification of usability
of one Web service, the verification of compatibility of two Web
services], the automatic generation of an abstract process model
for a given Web service], and the verification of simulation and

3 http://www.doc.ic.ac.uk/jnm/book/ltsa/LTSA.html
4 http://nusmv.irst.itc.it/
5 http://homepages.inf.ed.ac.uk/perdita/cwb

consistency. All presented algorithms are implemented within the
prototype Wombat4ws6.

In [11], Narayanan and his group take the DAML-S ontology for
describing the capabilities of Web services and define the
semantics for a relevant subset of DAML-S in terms of a first-
order logical language. With the semantics in hand, they encode
service descriptions in Petri Net formalism and provide decision
procedures for Web service simulation, verification and
composition.

In [12], Christian Stahl and his group translate BPEL business
process into a pattern-based Petri net semantic. Then they used the
tool LoLA [21] for validating the semantic as well as for proving
relevant properties of the particular process.

In [13], Adam and his group develop a Petri net-based approach
that uses several structural properties for identifying inconsistent
dependency specification in a workflow, testing for its safe
termination, and checking for the feasibility of its execution for a
given starting time when temporal constraints are present.
However, the approach is restricted to acyclic workflows.

As we say above, because CP-nets combine the strengths of Petri
nets with the expressive power of high-level programming
languages, we claim that using the colored token of CP-nets to
model different message and event of business process are more
natural. Nevertheless, these previous approaches all does not refer
to the verification of transformation. Table 1 shows the
comparison between some existing approaches to business
process verification.

6. CONCLUSIONS
In this paper, we introduce an approach to verify and analyze Web
Services composition based on transformation composition
specification to CP-nets. These generated CP-net models can be
analyzed, verified and simulated as prototypes of the former by
many existing and specialized analysis and verification tools. As a
correct transformation, we regard the semantic correctness and
effectiveness as the fundamental requirement for transformation

6 http://www.informatik.hu-berlin.de/top/wombat/

52

for verification, besides the completeness, uniqueness, termination
and syntactic correctness.

We have analyze and verify the description written in BPEL and
WSCI [14,15] using the approach reported in this paper. As future
work, the back-annotation techniques from CP-nets are being
considered.As future work, the back-annotation techniques from
CP-nets are being considered.

7. ACKNOWLEDGEMENTS
The work reported in this paper is partly funded by National
Natural Science Foundation of China under Grant No.90104007,
60233020; the National High-Tech Research and Development
Plan of China (863) under Grant No.2001AA113202,
2001AA113190, 2003AA001023.

8. REFERENCES
[1] K. Jensen, “Colored Petri Nets Basic Concepts, Analysis

Methods and Practical Use”, Volume 1, 2 and 3, second
edition, 1996.

[2] D. Varró, A. Pataricza, “Automated Formal Verification of
Model Transformations”, Proceeding of CSDUML 2003:
Workshop on Critical Systems Development with UML,
October 2003, Technische Universitat Munchen, pp. 63-78.

[3] S. Nakajima, "Verification of Web service flows with model-
checking techniques," presented at First International
Symposium on Cyber Worlds, 2002.

[4] C. Karamanolis, D. Giannakopoulou, J. Magee, and S.M.
Wheater. “Model checking of workflow schemas”. In
Proceedings of the 4th International Enterprise Distributed
Object Computing Conference, pages 170–179, Makuhari,
Japan, September 2000. IEEE.

[5] H. Foster, S. Uchitel, J. Magee, and J. Kramer, "Model-based
verification of web service composition," presented at
Automated Software Engineering, 2003. Proceedings. 18th
IEEE International Conference on, 2003.

[6] J. Koehler, G. Tirenni, and S. Kumaran. “From business
process model to consistent implementation: a case study for
formal verification methods”, the 6th International Enterprise
Distributed Object Computing Conference (EDOC02),
Lausanne, September 2002. IEEE CS, pages 96–106.

[7] M. Koshkina. “Verification of business processes for web
services”. Master's thesis, York University, 2003.

[8] M. Schroeder. Verification of business processes for a
correspondence handling center using CCS. In A.I.
Vermesan and F. Coenen, editors, Proceedings of European
Symposium on Validation and Verification of Knowledge
Based Systems and Components, pages 1–15, Oslo, June
1999. Kluwer.

[9] W.M.P. van der Aalst. “Verification of workflow nets”. In P.
Azema and G. Balbo, editors, Proceedings of the 18th
International Conference on Applications and Theory in Petri
Nets, volume 1248 of Lecture Notes in Computer Science,
pages 407{426, Toulouse, June 1997. Springer-Verlag.

[10] A. Martens. “Distributed Business Processes -- Modeling
and Verification by help of Web Services”. PhD thesis,
Humboldt-Universit¨at zu Berlin, July 2003. Available at
www.informatik.hu-berlin.de/top/download/documents/
pdf/Mar03.pdf.

[11] S. Narayanan and S. McIlraith, "Analysis and simulation of
Web services," Computer Networks, vol. 42, pp. 675-693,
2003.

[12] Christian Stahl. “Transformation von BPEL4WS in
Petrinetze”. Diplomarbeit, Humboldt-UniversitÄat zu Berlin,
April 2004.

[13] Adam, N., Alturi, V. & Huang, W.-K. (1998), "Modeling and
Analysing of Workflows Using Petri Nets", Journal of
Intelligent Information Systems 10(2), 131-158.

[14] Y. Yang, Q. Tan, J. Yu, F. Liu, “ Transformation BPEL to
CP-Nets for Verifying Web services Composition”, the
International Conference on Next generation Web services
Practices (NWeSP'05), IEEE Computer Society, Seoul,
Korea, August 2005.

[15] Y. Yang, Q. Tan,, Y. Xiao, Verifying Web Services
Composition, eCOMO workshop of the 24th International
Conference on Conceptual Modeling (ER2005), Klagenfurt,
Austria, October 2005, LNCS , Springer-Verlag. Page 358

[16] F. Leymann etc. Web Services Flow language. Available at
http://www.ibm.com/software/solutions/webservices/pdf/WS
FL.pdf, May 2001.

[17] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.
Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I.
Trickovic, and S.Weerawarana. Business Process Execution
Language for Web Services (BPEL4WS) version 1.1, May
2003.

[18] Web Services Composition Interface 1.0, Available at
http://ifr.sap.com/wsci/specification/wsci-spec-10.htm

[19] R. J. Miller, Y. E. Ioannidis, and R.Ramakrishnan, "The Use
of Information Capacity in Schema Integration and
Translation," Proceedings of the 19th VLDB Conference,
1993.

[20] M. Mecella, B. Pernici, and P. Craca, “Compatibility of Web
services in a Cooperative Multi-Platform Environment”, in
Proceedings of VLDB-TES 2001, Rome, Italy, 2001.

[21] Karsten Schmidt. Lola --- a low level analyser. In Nielsen,
M. and Simpson, D., editors, International Conference on
Application and Theory of Petri Nets, LNCS 1825, page 465.
Springer-Verlag, 2000.

53

