
 A Framework for Web Service Discovery: service’s reuse,
quality, evolution and user’s data handling

Uddam CHUKMOL
LIRIS Laboratory, CNRS – INSA de

Lyon
Blaise Pascal Building, 7 Jean Capelle

Avenue, 69621 Villeurbanne Cedex
France

uddam.chukmol@liris.cnrs.fr

ABSTRACT
With proliferation of published Web services, the task of finding
relevant ones for the developers of service oriented application
becomes more and more difficult. Several existing tools or
mechanisms allow this discovery; however, those approaches
often skip different elements such as service’s quality, reuse,
evolution and users’ comment making the discovery result feebly
relevant to requesters’ need and prevent the requesters from using
up-to-date and available web services efficiently. In this research
work, we present a framework for web service discovery taking
into account the reuse of web service search result through
caching technique, the quality of service through qualitative test
result, the web service’s evolution through version track
technique and we provide a novel scheme of discovery using
user’s annotating information.

Keywords
Web service discovery, web service version evolution tracking,
user’s annotation, quality of web service, web service caching

1. INTRODUCTION
Web services are autonomous software components widely

used in various service oriented applications according to their
platform-independent nature. Web services are described before
being published and they can be discovered and finally invoked
via Web infrastructure by using the stack of known standards such
as SOAP, WSDL and UDDI [1]. Despite their visible advantage
and accessibility, the rapid growing number of published Web
services prevents users or requesters (ordinary users or software
developers) from finding easily and efficiently the services
relevant to their specific needs. Discovery process can be realized
either manually or automatically in the application design phase
by software designers or in the execution phase by different
software agents [2]. Nonetheless, this discovery can be done
semi-automatically by combining the automatically found
services and the choices provided by human users to refine final

result. Thus, Web service discovery is undeniably considered as a
vital phase in the process of service oriented application
development.

Several algorithms seek to deal with Web service discovery in
different ways: from computing textual description similarity
based on Information Retrieval techniques up to using complex
logical formalism, particularly description logics, to rewrite
queries and develop inference engines accordingly without setting
aside the structural matching, ontology mapping and semantic
processing (description logics, RDF, OWL, etc.) in their
proposals. Except from focusing on the discovery of Web services
itself, many other important features such as service reuse, service
quality, and service evolution are often ignored. Users’ comments
or opinions on a found service are not completely or even poorly
considered by the discovery system either, though they are a very
interesting source of information capable of enriching the proved-
to-be insufficient Web services’ textual description [24]. Some
other drawbacks found in most of the actual existing approaches
represent the motivation and challenges (mostly seen from the
users’ perspective) of our study. They can be highlighted as
following:

Challenge 1:
Web services found after a discovery process are poorly

considered as a pertinent source of information or result to be
reused in a future similar search (similar query).

Scenario 1:
Bob would like to include in his application a Web Service

realizing a weather forecast given the name of a city. He uses a
query with “weather forecast” as key word to search for the set of
web services that would be relevant to his request. The Web
service discovery system provides him a set of found services as
result. Next time, Alice uses the same discovery system and the
same keyword in her query to request for the same service.
Assuming that there is no change in the source of the discovery
tool (set of Web services available for search), the query of Alice
is unavoidably computed once again by the system before
providing the exact result comparing to what the system proposed
to Bob.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Proceedings of the Second SIGMOD PhD Workshop on Innovative
Database Research (IDAR 2008), June 13, 2008, Vancouver, Canada.
Copyright 2008 ACM 978-1-60558-211-5/08/06 ...$5.00.

Challenge 2:
Even when a Web service is found at the end of the discovery

process, none can assure that the service is operational or
obsolete.

13

Scenario 2:
The discovery system proposes to Alice a number of Web

services relevant to her request. Alice would like to check if a
chosen service is really usable in her application. She would
prefer that the system propose a testing interface allowing her to
make sure that the service she decides to utilize will operate
correctly after being integrated into her application.

Challenge 3:
A Web service evolves just like other software components do

in terms of version. Web service’s users need particularly to be
informed of any change made by the service provider in order to
maintain their application up to date and operational.

Scenario 3:
The “weather forecast” Web service is provided by Jane. Bob

uses this service inside his application. Jane is working on another
better release of “weather forecast” and finally releases the actual
version of “weather forecast” and still keeps the old version in her
repository during a limited period of time. By searching in the
discovery system using the same keyword again, Bob may realize
that there are two versions of “weather forecast” made publicly
accessible by Jane and that the latest version will be more
appropriate to his application.

Challenge 4:
A new requester may learn more about a service if it is

enriched by various comments from past users.

Scenario 4:
Bob describes his personal views on the “weather forecast”

Web service provided by Jane and makes his comment publicly
accessible after using successfully the mentioned service in his
application. Ted is a new user of the Web service discovery
system that Bob has used ever since. Ted searches in the system
for a Web service related to “weather”. The Web service provided
by Jane is present in the result set output by the system. The
comment of Bob on “weather forecast” Web service will support
Ted’s decision to choose it.

Challenge 5:
An only entry point to use the discovery system is not good

enough to make it provide interesting and highly relevant result.

Scenario 5:
Ted would like to express his query other ways than using key

word to discover a set of pertinent services. He may combine his
key word based and his input-output based queries given to the
system and get a better relevant set of Web services than the one
output by the system when Ted provides uniquely a key word
based query.

Aware of the exclusions mentioned above and perceived in the
existing tools and mechanisms for Web service discovery, we will
try to propose a all-in-one framework for Web service discovery
handling the reuse of discovery result via the following skills:
caching mechanism, the quality of service through qualitative
systematic test, test by users, and the web service’s evolution
through version track technique. We provide as well, a novel
scheme of discovery using user’s annotating information.

This paper is organized as follows. Section 2 discusses related
works and the current existing algorithms proposed in the field of
Web service discovery. Section 3 presents and describes our
proposal and finally Section 4 concludes and offers the future
work perspectives.

2. RELATED WORK
As Web Services discovery is an important and difficult task in

the development cycle of service oriented application, many
algorithms, tools and mechanisms are proposed to solve for the
best this problem. Woogle [3] makes use of a clustering technique
by grouping the parameter’s name of service operations into
semantically significant concepts. These concepts are then used to
compare the similarity between Web services’ operations. Using
this mechanism makes Woogle hard to deal with complex data
types presented structurally as either a tree or a graph. [4]
synthesizes the issues of UDDI related to the discovery based on
catalog browsing and tries to solve the Web service searching by
combining the textual description similarity of Web services with
their semantic structural similarity. The textual description
similarity is computed based on Information Retrieval technique
through the usage of WordNet1 thesaurus and the semantic
structural similarity is finally dependent on the similarity of data
types used in WSDL files. This approach may lead to erroneous
semantic structural similarity when the structures of the data types
in comparison have numerous identical sub-structures. [6] and [7]
define the pair-wise similarity of Web services as the WordNet
metrics distance between their textual descriptions. By simply
neglecting the structural aspect of WSDL files, this idea may not
provide exact final similarity of Web Services. WSXplorer [5],
inspired by [4], proposes a Web Service discovery tool taking a
textual description as input. This approach processes not only the
textual similarity based on Vector Space Model technique of
Information Retrieval domain but also the structural similarity by
introducing a modified tree edit distance method in their
comparison module. However, Web services’ textual descriptions
are not enriched by WordNet before and even during their
similarity computing; and this approach does not after all handle
the graph structure of WSDL files.

In the same attempt to make Web services discovery more
efficient, in semantic Web community, certain approaches turn to
the usage of Description Logics. [12], [13], [14], [15] and [23] use
basically Description Logics to express their queries and develop
inferring mechanisms accordingly to compute the similarity
between Web services and a given query. Despite the interesting
advantages of Description Logics, expressing a query in this
formalism is still not an intuitive and easy task for an ordinary
user or even for a software developer. Moreover, we do not see
many of Description Logics based Web Service discovery tools
made available to large public.

Instead of providing only one type of input query, [8] is an
inspiring approach that offers two kinds of query: key word based
and WSDL file based (i.e. requesters can look up for Web
services by inputting key word or a WSDL file). Even though,
this tool can provide interesting ranked result after the look up
process, requesters can not go any further to make sure that a
chosen service is not obsolete (i.e. there is no possibility for users

1 http://wordnet.princeton.edu/

14

to test online the functionality of a Web service in the discovery
result set). WSCE [9] provides a Web service discovery tool that,
given an input keyword, proposes a set of similar Web services.
This tool, by crawling different Universal Business Registries and
Web service portals, collects the Web service’s instances and
stores them in a centralized registry. However, requesters desiring
to test a discovered Web service or track its evolution (e.g.
version) have no possibility to do so. [19] keeps the users’ habit
of information search by using conventional Web search engines
(e.g. Google, Yahoo, etc) to discover published Web services.
Due to the natural characteristic of WSDL files which is
particularly partially text based, unlike HTML documents, a great
effort will have to be done in incorporating WSDL files’ content
into HTML documents. Different types of meta-data will have to
be added into HTML documents as well in order to facilitate
indexing process done by Web search engines. Through this
analytical study on the existing proposals related to Web service
discovery, we can determine some conclusive remarks: a)
Information Retrieval techniques are commonly used, b) Slight
number of tools proposes multiple entry points to discover Web
services (several kind of queries can be employed on single
system), c) Testing a Web service online is rarely possible, d)
Users’ information or comments are frequently ignored, e) Users
are not informed about the versioning or evolution of found Web
services.

Thus, we come up with a schematic proposal, thoroughly
described in section 3, of a novel platform for Web Service
discovery including: a) The usage of multiple types of queries and
strategies of result combination helping to leverage the quality of
discovery output, b) The processing of users’ participative
annotation or tagging on Web services, c) The interface for online
“aliveness” test on a found Web service and d) The detection and
processing of changes undergone by Web services.

3. OUR PROPOSAL
In this section we present in detail our proposed framework

(see Figure 1, 2, 3 and 4) that contributes in solving different
issues discussed in the Section 1. This framework is composed of
different modules and their roles are described in depth within
this section.

Figure 1: Overall view of our platform

We attempt also to provide a system allowing semi-automatic
Web service discovery through a simple Web interface. A user or
requester does not need to install anything, except a Web browser
at their side allowing them to query and test online a Web service
resulting from their request.

3.1 Collection, Internal storage and
systematic test of Web services

This important part of our tool is done regularly in background
and consists of collecting different Web services from various
providers and storing them in a single and accessible source. [10]
and [11] have proven that most of the existing Web discovery
mechanisms do not utilize UDDI as the only source for the
process but also and more frequently different registries or
customized portals containing WSDL files. Inspired equally by
[9], [17] and [22], the “Collection Engine” (see Figure 1) crawls
the Web and identifies WSDL or WSDL-like files (there can be
possibilities to find WSDL contents inside non-WSDL files e.g.
XML or HTML files), validates them before inputting them into
the central repository. If a WSDL file is valid, its copy and its
location (URL) will be saved into the central repository.
Additionally, our platform offers a possibility to the set of stored
WSDL files to be enriched with the working status of a Web
service (binary information indicating that the service is
operational or not) and several other information related to the
quality of Web service such as response time, availability,
documentation, etc. The working status and the mentioned
qualitative information are injected automatically into the central
repository by the “Testing Module” (see Figure 1). This module is
in charge of analyzing the content of each stored WSDL file and
prepares automatically the test scenarios and data accordingly.

The systematic test’s output will be used to update the
correspondent WSDL instances in the central repository. By
doing so, we can assure that the source employed in our discovery
system is populated by several external sources making the
information’s richness in our tool better than using a single source
of Web service provision. The output of “Testing Module”
associated with each entry of our central repository offers
valuable information supporting requesters’ decision in choosing
a discovered Web service.

3.2 Indexing Module
The content in central repository is indexed by different

indexers (see Figure 1). Each indexer provides an index
representing the entire entries in the central repository. Each
index is used by a matcher in the “Matching Module” (see Figure
1). Every entry of each individual index has a reference
corresponding to a Web service stored in the central repository.
This indexing module is designed to be extensible because several
indexers implementing various indexing techniques can be
incorporated and used within this “Indexing Module”. Proceeding
this way, we believe that even though there is a common source
used by the discovery process, it will be better optimized by the
indexers to be employed more efficiently by a specific matcher
according to a query expressed by the users.

3.3 Matching Module
This module hosts several matchers (see Figure 1). Each

matcher implements a matching algorithm treating a kind of query

15

and using an index (defined in the previous section). These
matchers are core components of our system because they
compute the similarity between the query expressed by a user and
the set of Web services in the corresponding index. The output of
each matcher is an ordered set of Web services in descending
order of similarity value with the input query (the higher the value
is, the more exact the similarity becomes). Thus, a result of each
matching process is a discovery’s one.

3.4 Query customization and Combination
module

We offer many entry points to use our discovery system via
different types of query. Each query conforms to a query model
(e.g. keyword based, input – output based, WSDL instance based,
etc). Users can express different queries through the guided model
proposed by our system. They can then customize the way their
queries will be processed by the system. Parameters provided by
users are used by the “Combination Module” (see Figure 1) to
compute the final result of the discovery process. In this context
of combination strategy, [16] proposes 3 kinds of combination
techniques that can be done to the matching result sets: a) mixed:
the result of query qi is fused with the one of query qj by weighted
sum, b) cascade: the result of query qi provided by the matching
mi is filtered by a query qj using the matching mj and c) switching:
user decides to use the same query qi but different matching
techniques mi and mj to assess the result. In addition to these
presented combination techniques, we also offer and include in
our platform other Boolean-like combination operators such as: a)
AND (intersection between the result provided by using a query qi
and the one provided by using query qj), b) OR (union between
the result of a query qi and the one of a query qj), c) MINUS
(difference between the result of a query qi and the one of a query
qj), etc.

We believe that such customization mechanism will allow
users to have an enriched and more relevant result set of Web
services proposed by our system rather than using a unique way to
look up for Web services.

3.5 Annotation based discovery and Caching
This part is the cornerstone of our work and it defines our

system as a participation platform giving consideration to users’
comment on what they have discovered using our system. In
effect, in this era of Web 2.0 [28], users do not only retrieve
information but also share and participate in the content
publication on the Web. We can see this kind of model in [25],
[26] or [27] and users form a certain kind of community to share
and participate in their published content therein. We therefore
take into account the user’s dimension in our platform as well.
We, however, analyzed [18], [20] and [21] before proposing this
search by annotation mechanism. In [18], each user has to install a
component at his/her side in order to use the system. Every user’s
action is communicated to and logged in the remote client
component. This approach uses Implicit Culture framework and
helps a new user to discover Web services through a
recommendation system based on past users’ experiences. Despite
this interesting technique, the transaction between client site and
remote site may cause system overload if the number of sessions
increases. [20] and [21] use machine learning techniques to
leverage the discovery result given users’ preference. We can

remark some handicap in these approaches related to the number
of users’ examples to feed the systems before they return
interesting results.

Figure 2: Search by annotation and result caching

Moreover, if users are not guided to express their preferences
and the learning rules are not correctly defined, we are not able to
assure that the output of such systems is sufficiently relevant.

Therefore, in our system, after a discovery process mentioned
in the previous sections, users are provided possibility to simply
tag with a cloud of words or structurally annotate a number of
Web services in the whole result set (see Figure 2). The initial
textual description of the found services will not be modified by
this tagging or annotation. Before doing so, users are
recommended to test (see section 3.6 and Figure 3) the services
plausibly relevant to their initial need to better understand the
services’ effective functionalities. We opt for the collaborative
tagging and the tagged information or annotation will be enclosed
to the correspondent Web service and made publicly available in
association with that Web service.

We consider in this case a Web service as a resource (e.g.
similarly to photo on Flickr [26] or URL on del.icio.us [25]) on
which we can add tags and annotations (a Web service can be
tagged by many users). Considering various tagging styles
perceived in Web 2.0 environment [28], we propose three types of
tagging / annotation to users. They can use: a) keyword tags (a set
of simple or composed words separated by a delimiter), b) free
text tags allowing users to comment freely on a Web service by a
free text in the form of sentence or paragraph and c) structural
guided tags allowing users to tag a service using free text to fill in
different information fields (organized according to a predefined
structure) proposed by the discovery system. Users will be guided
by the system to complete the tagging information inside a form.

In order to deal with these three forms of tags efficiently, we
propose a matching module (see Figure 2) which embeds
relatively information retrieval techniques (for the fact that we
work with natural language tags) capable of providing interesting
result via textual search. We currently conduct a study to solve
this issue.

Through usage of this mechanism, the tagged or annotated set
of Web services will be enlarged and other users will be able to
search among the mentioned set for relevant Web services using
simple keyword, free text or structured query (the construction of
this kind of query will be guided by our system) and they will be

16

more and more supported in terms of Web service selection by
consulting others’ past discovery experiences.

Additionally, in order to reuse the past discoveries’ result, the
system saves regularly, after each search, the query and the output
result in the cache. Further, other users’ queries will then be
passed through the cache first before going to the “Matching
Module”. If there’s a result related to the same query, the result
will be displayed directly without any cost of matching
computing done by the system. A Web service will be eliminated
from the cache if it is undergone any change.

3.6 User test
After every discovery process, either through ordinary query or

annotation, the system will provide an online test interface (after
analyzing the output WSDL file), allowing users (guided by the
system) to test the “aliveness” of every service appeared in the
result set. Users will have to enter necessary input data and
submit the test. A test report will be displayed back to users at the
end of the testing (see Figure 3).

The concepts and techniques used in the testing process within
software engineering domain will be studied in detail and adapted
to the Web service testing context.

Figure 3: Web service’s “aliveness” test by users

3.7 Evolution tracking
This module aims at providing users the working and up-to-

date Web services only. Nevertheless, users can still be informed
about the change made by the service providers to correspondent
services.

Figure 4: Evolution tracking

“Evolution tracker” (see Figure 4) is a background running
process comparing regularly the centrally stored Web services
with their original instances in different registries or portals. Any

physical (lexical, syntactical, or structural but same functionality)
or behavioural (functional modification) change detected by this
module is transferred to the “Dispatcher” (see Figure 4) to trigger
the necessary change in different storage entities such as cache,
matching result, result of search by annotation, etc. The change
action to execute immediately on storage entities is replacing the
old version of identified Web services with the new ones and
informing the users the detected evolution information.

4. CONCLUSION AND FUTURE WORK
We presented in this paper a novel platform aiming at making

Web service discovery process more efficient in terms of
relevancy and providing sufficient means to identify the quality of
a service before being chosen to integrate in any service oriented
application. We incorporate the participative characteristic of
Web 2.0 in our system considering users’ data in terms of tagging
or annotation and propose a new scheme in our discovery system
by using this information. However, we do not set aside different
proposals in the Semantic Web Service community such as
SAWSDL2 or OWL-S3 and consider them as another alternative
mechanism for annotating Web services. We take into account the
detection of evolution undergone by stored services and inform
requesters of any change perceived.

In order to have a qualitative evaluation of our approach, we
are currently working on our first prototype, in which the
following elements will be studied, defined and implemented: a)
Query models for ordinary discovery and search by annotation, b)
Indexing technique, c) Matching algorithm and matching
algorithm for search by annotation, d) Evolution tracker and
dispatcher, e) Automatic qualitative test, f) User test report model,
g) Collection engine, h) Various strategies tackling the
combination of discovery result – query combination
customization – customization parameters automatic tuning
mechanism, and i) Central repository and cache’s internal storage
structure.

The study and implementation of the annotation or tag based
discovery component is in progress. We expect 6 month effort for
this key idea realization.

5. ACKNOWLEDGMENTS
Special thanks to my advisors: Dr. Nabila BENHARKAT

(nabila.benharkat@liris.cnrs.fr) and Pr. Youssef AMGHAR
(youssef.amghar@liris.cnrs.fr) for their patience, constructive
advices, attention and efficient supervision.

6. REFERENCES
[1] M. P. Papazoglou and D. Georgakopoulos. Service Oriented

Computing. Communication of ACM, Volume 46, Number
10, October 2003. pp. 25 – 28.

[2] J. D. Garofalakis, Y. Panagis, E. Sakkopoulos and A. K.
Tsakalidis. Contemporary Web Service Discovery
Mechanisms. Journal of Web Engineering, Volume 5,
Number 3, September 2006. pp. 265 – 290.

2 http://www.w3.org/TR/sawsdl/
3 http://www.w3.org/Submission/OWL-S/

17

mailto:nabila.benharkat@liris.cnrs.fr
mailto:youssef.amghar@liris.cnrs.fr

[3] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes and J.
Zhang. Similarity Search for Web Services. In the
proceeding of International Conference on Very Large Data
Bases (VLDB), 2004, August 31st – September 3rd, Toronto,
Canada. pp. 372 – 383.

[4] Y. Wang and E. Stroulia. Semantic Structure Matching for
Assessing Web Service Similarity. In the proceeding of 2nd
International Conference on Service Oriented Computing,
ICSOC 2003, December 15th – 18th, Trento, Italy. pp. 194 –
207.

[5] Y. Hao, Y. Zhang and J. Cao. WSXplorer: Searching for
desired Web services. In the proceeding of 19th International
Conference on Advanced Information System Engineering,
CaiSE 2007, June 2007, Trondheim, Norway. pp. 173 – 187.

[6] J. Wu and Z. Wu. Similarity based Web service
Matchmaking. In the proceeding of 2005 IEEE International
Conference on Service Computing 2005, SCC 2005, July
11th – 15th, Florida, USA. pp. 287 – 294.

[7] Z. Zhuang, P. J. Mitra, A. Jaiswal. Corpus based Web
service Matchmaking. In the proceeding of the 20th National
Conference on Artificial Intelligence 2005, AAAI 2005, July
9th – 13th, Pennsylvania, USA. 6 pages.

[8] K. H. Lee, M. Y. Lee, Y. Y. Hwang and K. C. Lee. A
Framework for XML based Web services retrieval with
Ranking. In the proceeding of IEEE International
Conference on Multimedia and Ubiquitous Engineering
2007, MUE 2007, April 26th – 28th, Seoul, South Korea. pp.
773 – 778.

[9] E. Al-Masri and Q. H. Mahmoud. WSCE: A Crawler Engine
for large-scale Discovery of Web Services. In the proceeding
of IEEE International Conference on Web Services 2007,
ICWS 2007, July 9th – 13th, Utah, USA. pp. 1104 – 1111.

[10] D. Bachlechner, K. Siorpaes, D. Fensel et I. Toma. Web
Service Discovery – A reality check. Technical Report,
January 17, 2006. DERI – Digital Entreprise Research
Institute.

[11] J. Becker, K. Bachhaus, H. L. Grob, T. Hoeren, S. Klein, H.
Kuchen, U. Müller-Funk, U. W. Thonemann et G. Vossen.
Web service discovery – Reality Check 2.0. Working papers
No. 5, ERCIS – European Research Center for Information
Systems. ISSN 1614-7448.

[12] B. Benatallah, M. S. Hacid, A. Leger, C. Rey and F.
Toumani. On Automating Web Services Discovery. In
VLDB Journal 14(1). pp: 84 - 96, 2005.

[13] M. Stollberg, U. Keller, H. Lausen, S. Heymans. Two-phase
Web Service Discovery based on Rich Functional
Description. In the proceedings of 4th European Semantic
Web Conference (ESWC'07), June 3rd - 7th 2007, Innsbruck,
Austria. pp: 99 – 113.

[14] M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H.
Lausen, D. Fensel. A Logical Framework for Web Service
Discovery. In the proceeding of 3rd International Semantic
Web Conference (ISWC'04). 16 pages. November 8th 2004.
Hiroshima, Japan.

[15] R. Lara, M. Angel Corella et P. Castells. A flexible model
for web service discovery. In the proceeding of 1st
International Workshop on Semantic Matching and Resource
Retrieval – Issues and perspectives. September 11th 2006,
Seoul, South Korea.

[16] N. Kokash, W. J. Van den Heuvel and V. D'Andrea.
Leveraging Web Services Discovery with Customizable
Hybrid Matching. In the proceeding of ICSOC 2006. LNCS
4294, 2006. pp. 522 – 528.

[17] C. Platzer and S. Dustdar. A Vector Space Search Engine for
Web Services. In the proceeding of the 3rd European
Conference on Web Services, ECOWS 2005. November 14th
– 16th, Vräxj, Sweden. 9 pages.

[18] N. Kokash, A. Birukou and V. D’Andrea. Web Service
Discovery Based on Past User Experience. In the proceeding
of 10th International Conference on Business Information
Systems, BIS 2007, April 25th – 27th, Poznan, Poland. pp. 95
– 107.

[19] H. Song, D. Cheng, A. Messer and S. Kalasapur. Web
Service Discovery Using General-Purpose Search Engines.
In the proceeding of 2007 IEEE International Conference of
Web Services, ICWS 2007, July 9th – 13th, Utah, USA. pp.
265 – 271.

[20] L. Kovacs, A. Micsik and P. Pallinger. Handling User
Preference and Added Value in Discovery of Semantic Web
Services. In the proceeding of 2007 IEEE International
Conference of Web Services, ICWS 2007, July 9th – 13th,
Utah, USA. pp. 225 – 232.

[21] Y. Zhou, L. Zhang, L. Zhang, B. Xie and H. Mei. User
Feedback-Based Refinement for Web Services Retrieval
using Multiple Instance Learning. In the proceeding of 2006
IEEE International Conference of Web Services, ICWS
2006, September 18th – 22nd, Chicago, USA. pp. 471 – 478.

[22] C. Atkinson, P. Bostan, O. Hummel and Dietmar Stoll. A
Practical Approach to Web Service Discovery and Retrieval.
In the proceeding of 2007 IEEE International Conference of
Web Services, ICWS 2007, July 9th – 13th, Utah, USA. pp.
241 – 248.

[23] S. Agarwal and R. Studer. Automatic Matchmaking of Web
Services. In the proceeding of 2006 IEEE International
Conference of Web Services, ICWS 2006, September 18th –
22nd, Chicago, USA. pp. 45 – 54.

[24] J. Fan and S. Kambhampati.: A Snapshot of Public Web
Services. ACM SIGMOD Record, Volume 34, Number 1,
March 2005. pp. 24 – 32.

[25] Delicious Web Site: http://del.icio.us (accessed on 18th
March 2008)

[26] Flickr Web Site: http://www.flickr.com (accessed on 18th
March 2008)

[27] Facebook Web Site: http://www.facebook.com (accessed on
18th March 2008)

[28] What is Web 2.0?: http://
www.oreilly.com/pub/a/oreilly/tim/news/2005/09/30/what-
is-web-20.html (accessed on 18th March 2008)

18

