
Tuplespace-based computing for the Semantic
Web: a survey of the state-of-the-art

LYNDON J . B . N I XON 1, E L ENA S IMP ERL 2,
R E TO KRUMMENACHER 2 and FRANC I S CO
MART IN - R ECUERDA 3

1Freie Universität Berlin, Berlin, Germany;

e-mail: nixon@inf.fu-berlin.de;
2Digital Enterprise Research Institute (DERI), Universität Innsbruck, Innsbruck, Austria;

e-mail: elena.simperl,reto.krummenacher@deri.at;
3Information Management Group (IMG), University of Manchester, Kilburn Building, Manchester, UK;

e-mail: fmartin-recuerda@cs.man.ac.uk

Abstract

Semantic technologies promise to solve many challenging problems of the present Web applications.

As they achieve a feasible level of maturity, they become increasingly accepted in various business

settings at enterprise level. By contrast, their usability in open environments such as the Web—

with respect to issues such as scalability, dynamism and openness—still requires additional

investigation. In particular, Semantic Web services have inherited the Web service communication

model, which is primarily based on synchronous message exchange technology such as remote

procedure call (RPC), thus being incompatible with the REST (REpresentational State Transfer)

architectural model of the Web. Recent advances in the field of middleware propose ‘semantic

tuplespace computing’ as an instrument for coping with this situation. Arguing that truly Web-

compliant Web service communication should be based, analogously to the conventional Web, on

shared access to persistently published data instead of message passing, space-based middleware

introduces a coordination infrastructure by means of which services can exchange information in a

time- and reference-decoupled manner. In this article, we introduce the most important

approaches in this newly emerging field. Our objective is to analyze and compare the solutions

proposed so far, thus giving an account of the current state-of-the-art, and identifying new

directions of research and development.

1 Introduction

The World Wide Web has caused a fundamental shift in the way we access information and ser-

vices. However, the current Web is aimed mostly at people—information can be found in pages

written in natural language and the functionality of many existing Web services is described in

human-readable form. The drawbacks of this situation become evident for instance when search-

ing for precise information in a Website. In this case, the most sophisticated information extrac-

tion and page-indexing techniques provided by current search engines still require exhaustive

manual post-processing. Furthermore, current Web service implementations, including recent

approaches in the areas of Web service discovery and composition, quickly reach their boundaries

when complementary Web services have to be combined for joint usage, even in a semi-automatic

manner.

The Web of the next generation, introduced by Tim Berners-Lee under the name ‘Semantic

Web’ (Berners-Lee et al., 2001), aims at dealing with such situations by augmenting the current

The Knowledge Engineering Review, Vol. 23:2, 181–212. � 2007, Cambridge University Press
doi:10.1017/S0269888907001221 Printed in the United Kingdom



Web information space with formalized knowledge and structured data, which can be processed

by semantics-aware Web services (Lara et al., 2003). The Semantic Web promises to solve many

challenging and cost-intensive problems of the current generation of Web applications. Ontolo-

gies, formalized by the use of Web-suitable representation languages, are shared and reused across

platforms in order to allow these to handle the large amounts of heterogeneous data on the Web.

Semantic Web services use ontologies and reasoning so as to enable a more flexible or even fully

automated cooperation between disparate Web applications.

Current research achievements towards the realization of these revolutionary ideas provide the

core building blocks for developing semantic applications in closed environments such as compa-

nies’ Intranets. This applies for both the knowledge representation and the Web services field, as

stated in a study of the Gartner Group on emerging technologies published in July 20061. Accord-

ing to their analysis, the corporate Semantic Web is estimated to be a technology trigger, while

Web services for organization-internal usage have already reached a feasible level of maturity.

In contrast, Web-related aspects—including major concerns such as scalability, dynamism and

openness—need further investigation before these technologies can be successfully used on the

Web. Recent advances in the area of middleware propose ‘semantic tuplespace computing’ as an

instrument for coping with this situation.

Arguing that truly Web-compliant Web service communication should be based, analogously

to the conventional Web, on shared access to persistently published data instead of message pas-

sing, approaches in the aforementioned field introduce a communication/coordination infrastruc-

ture by means of which services can exchange information in a time- and reference-decoupled

manner through a shared virtual data space. This space will be ‘semantics-aware’, that is, it will

also provide functionality for the coordination of and interaction with semantic data such as an

appropriate coordination model and implicit reasoning and semantic querying support. Spaces

have application to the Web in that they realize global places where information can be published

and persistently stored. They have advantages over the standard client-server model in cases of

concurrent processing of published information from heterogeneous sources. This has been suc-

cessfully demonstrated by a wide range of space-based systems applied to solve communication

and coordination issues in areas such as open distributed systems, workflow execution, XML mid-

dleware and self-organization (Ciancarini et al., 1996; Cabri et al., 2000; Ciancarini et al., 2003).

All of these areas are relevant to Web-based, and implicitly to Semantic Web–based, systems.

In this article, we provide an overview of this newly emerging research field. Our objective is to

compare and classify the solutions proposed so far, thus giving an account of the current state-of-

the-art, and identifying new directions of research and development. Section 2 introduces the

notion of tuplespace computing and presents several extensions to classical Linda-based systems

that motivate the use of semantically enriched tuplespaces in the context of the Semantic Web

and Semantic Web services. Sections 3–6 elaborate on the most representative approaches apply-

ing tuplespaces as a middleware for application integration and inter-process communication on

the Semantic Web. Building upon the results of this analysis, we introduce a framework for struc-

turing and classifying this field, which we term semantic tuplespace computing, and align the enum-

erated systems to the associated criteria. In doing so, we are able to determine the commonalities

and differences among the studied approaches, thus identifying the core concepts of this young

research field and directions for further research and development (Section 7). Section 8 concludes

the article with a discussion of the results of our comparative study and its implications.

2 Background knowledge

Coordination in computer systems refers to models, formalisms and mechanisms for describing con-

current and distributed computation (Papadopoulos & Arbab, 1998). Although parallel computing

1
http://www.gartner.com/.

l . j . b . n i x o n E T A L182

http://www.gartner.com/


can make much more computation power available and produce significant performance improve-

ments, it raises the problem of coordinating the activities of a large number of concurrently active

processes. This has led to the design and implementation of coordination models that seek to for-

mally define how dependencies between parallel activities shall be handled.

In Gelernter & Carriero (1992), coordination is defined as ‘the process of building programs by

gluing together active pieces’. Here, the focus is given to the integration of heterogeneous com-

ponents communicating through different concurrent processes as to produce a virtually unified

application, which operates like a single system, abstracted from its distribution, parallelism

and internal heterogeneities.

The first coordination language was Linda. Linda has its origins in parallel computing, and was

developed as a means to inject the capability of concurrent programming into sequential program-

ming languages (Gelernter, 1985). It consists of coordination operations (the coordination primi-

tives) and a shared data space (the tuplespace), which contains data (the tuples).

The tuplespace is a shared data space that acts as an associative memory for a group of agents

or clients. The coordination primitives are a small, yet elegant, set of operations that permit agents

to emit a tuple into the tuplespace (operation out) or associatively retrieve tuples from the tuple-

space, either removing those tuples from the space (operation in) or preserving the retrieved tuples

in the space (operation rd). A tuple is an ordered list of typed fields. Retrieval is governed by an

associative matching technique: tuples are matched against a tuple template specifying the values

or the types of a subset of the tuple fields. A match occurs when the template and the tuple are of

the same length, the field types are the same, and the values of constant fields are identical. Both

retrieval operations are blocking, that is, they return a result only when a matching tuple is found.

In this way, Linda combines synchronization and communication in an extremely simple model

with a high level of abstraction.

The following features of Linda have been mentioned as attractive for programming open dis-

tributed applications (Rossi et al., 2001):

* It decouples the interacting processes both in reference and in time. In other words, the produ-

cer of a tuple and the consumer of that tuple do not need to know one another’s address or

exist concurrently.
* Linda permits associative addressing. This means that data are accessed in terms of what kind

of data are requested, rather than which specific data are referenced.
* Linda supports asynchrony and concurrency as an intrinsic part of the tuplespace abstraction.
* It separates the coordination implementation from characteristics of the host platform or pro-

gramming language.

Linda-based tuplespace systems have been realized in a number of platform implementations. We

mention here only some of the principal platforms that have found usage in various coordination

projects.

Sun’s JavaSpaces is a precursor to the Jini technology, providing a communication middleware

for Java (Freeman et al., 1999). It realizes an object-oriented version of the Linda model in which

tuples encapsulate Java objects, and matching takes into account Java typing, code mobility,

reflection and embedded security. It supports distributed caching, publish-subscribe, transactions

and load balancing.

IBM’s TSpaces is a small footprint Java implementation of a tuplespace server (Wyckoff et al.,

1998). While comparable to JavaSpaces, TSpaces adds more advanced operator and database

functionality so that it can support more complex applications. Besides the extended set of coor-

dination primitives, new operators can be added dynamically. A data management layer provides

features similar to relational database systems; it uses indexes for efficient data retrieval and sup-

ports queries richer than Linda template matching.

More recently, GigaSpaces, an extension of JavaSpaces, was established to support a

tuplespace-based architecture where clients communicate over a Grid network [GigaSpaces(TM)

Tuplespace-based computing for the Semantic Web 183



Technologies Ltd., 2002]. It aims at combining and integrating distributed caching (Data Grid),

content-based distributed messaging (Message Grid) and parallel processing (Processing Grid).

These platforms have tended to extend the simple core Linda model in order to increase the

expressiveness of the coordination language. For the fulfilment of the tasks for which these plat-

forms are intended, Linda has proven—in its original form—to be insufficient. The aforemen-

tioned platforms have, however, also demonstrated that Linda can be extended in particular

ways to support new functionalities beyond those it was originally conceived for. We focus on

the requirements raised by coordination over open distributed systems, particularly the Web as

the most significant representative of such systems at present.

2.1 Coordination in open distributed systems and the Web

Linda was originally conceived for enabling parallel processing in centralized and closed computer

network environments. However, the growing importance of open networks combined with the

need for concurrency that tuplespaces provide requires the coordination model of Linda to be

rethought.

For a Linda implementation, the key difference between open and closed systems is the dyna-

mism that is implied by the former. In an open system clients can join and leave at will, while in a

closed system the participating clients are fixed at start-up and do not change. Hence, it is more

complex to optimize the coordination between clients as the system cannot know in advance

which clients will use the space or which characteristics the active clients have. For example, cli-

ents may not necessarily agree in advance on shared models and types for the data placed in

tuples. It may become the task of the middleware to (partially) resolve such heterogeneities. For

open distributed Linda systems, these twin issues of dynamism and heterogeneity need to be taken

into account and are furthermore tightly related to the problem of scalability.

Perhaps, the ultimate open distributed system at present is the World Wide Web. The increased

usage of the Web as communication channel for computer systems has led to a growth in the

research of Web-style middleware, culminating in the present efforts in the field of Web services.

The Web builds on the principle that data are stored on Web servers that are connected to the

global network and accessible by a unique address, known as URL. The principles of interaction

have been formalized in the REST model (REpresentational State Transfer) (Fielding, 2000). The

standard Web interaction model runs over HTTP, with the commands GET, POST, PUT and

DELETE. The parameters for the interaction are passed in the URL or as part of the HTTP mes-

sage body. Generally, the interaction involves the publication of some data at some URL and

then the reading of that data by other clients who know the URL of the published data.

Web services provide standardized descriptions and interfaces as the bases for the execution of

programmatic components across the Web. They communicate as a general rule by message

exchange, for example, using Simple Object Access Protocol (SOAP) over HTTP. A client wishing

to interact with a service forms a message conforming to the description and interface supported

by that service and sends it by an appropriate protocol to the service endpoint (e.g. to an URL

over HTTP).

However, this message-based interaction pattern requires point-to-point communication and

hence breaks if one of the parties becomes unavailable. Furthermore, once a message is delivered,

there is not necessarily any retrievable representation of that message available to the communi-

cating partners. Thus, if a set of messages fails, it is not guaranteed that the related messages

can be traced back and interpreted.

For any situation that is more complex than a single client executing a single operation on a sin-

gle Web service, coordination becomes necessary. Typically, a sequence of operations (potentially

belonging to different Web services) must be executed in a particular order for a certain goal to

be resolvable. The required sequence is usually referred to as conversation. The problem is how

Web services can make the clients aware of which conversations they support to achieve a par-

ticular goal. This is further complicated when interactions involve several services, each of which

l . j . b . n i x o n E T A L184



supporting a differently specified conversation. Hence, coordination is typically implemented in a

middleware stack, which takes over the responsibility for mediating between the interacting services.

In the Web services standard stack, a number of initiatives look at languages and models to

express the coordination between services. WS-coordination, for example, is a meta-framework

for implementing specific coordination protocols (Cabrera et al., 2002). It supports the following

features:

* Passing of unique identifiers between interacting parties to ensure message routing between

conversations.
* Registering Web services that participate in a given conversation.
* Informing a protocol handler which role it plays in a conversation (such as master and slave).

The developed coordination protocols define a set of rules for the conversation between the coor-

dinator and the conversation’s participants. For WS-coordination to operate, all potential parti-

cipants must agree on who will be the coordinator. Distributed coordination is also supported,

that is, rather than having a single coordinator, each service can interact with its own coordinator,

and the individual coordinators must coordinate among themselves. However, WS-coordination

does not define how the coordination protocol itself is described. Furthermore, the Web services

architecture does not include a dedicated component for carrying out the interactions between ser-

vices using the coordination protocol. These components must exist somewhere outside of the

Web services and be somehow discovered by all services that wish to participate in a conversation.

Web services could better communicate using the traditional publication-based communication

paradigm of the Web, which allows the interactions between services to be decoupled in time and

reference (Krummenacher et al., 2005). Given that classical Web services fail to support the per-

sistent availability of messages, as mentioned before, it seems in fact that Web services made a

step back compared to the traditional Web. In the World Wide Web, humans publish information

persistently for an undefined number of consumers without being occupied by consecutive user

requests. Many Web services are implemented by the use of Web Services Description Language

(WSDL) (Chinnici et al., 2007) and SOAP (Gudgin et al., 2007), while there is no clear technical

motivation for this message-based approach from an information management perspective. In

particular, services that provide (semi-)static knowledge could be better implemented using a pub-

lication-based approach such as tuplespaces. Some adequate examples are thesauri like the

wortschatz-services depicted in Table 1, weather services with static information—in the sense

that the weather forecast changes only once to a few times a day—and currency rate or other

financial information services as for instance that provided by www.xignite.com
2.

Table 1 Example Web services for a publication-based approach

BaseformService: Returns the lemmatized (base) form of the input word
http://wortschatz.uni-leipzig.de:8100/axis/services/Baseform?wsdl
SentencesService: Returns sample sentences containing the input word

http://wortschatz.uni-leipzig.de:8100/axis/services/Sentences?wsdl
SynonymsService: Thesaurus which returns synonyms of the input word
http://wortschatz.uni-leipzig.de:8100/axis/services/Synonyms?wsdl

RightCollocationFinderService: Returns linguistic collocations that occur to the right of the given input
word
http://wortschatz.uni-leipzig.de:8100/axis/services/RightCollocationFinder?wsdl

LeftCollocationFinderService: Returns linguistic collocations that occur to the left of the given input word
http://wortschatz.uni-leipzig.de:8100/axis/services/LeftCollocationFinder?wsdl
toi-wetter: The weather service of T-Online

http://wetter.t-online.de/soap.php?wsdl

2 The services were discovered with seekda, the Web service Search Engine of aleph-webservices.com.

Tuplespace-based computing for the Semantic Web 185

http://wortschatz.uni-leipzig.de:8100/axis/services/Baseform?wsdl
http://wortschatz.uni-leipzig.de:8100/axis/services/Sentences?wsdl
http://wortschatz.uni-leipzig.de:8100/axis/services/Synonyms?wsdl
http://wortschatz.uni-leipzig.de:8100/axis/services/RightCollocationFinder?wsdl
http://wortschatz.uni-leipzig.de:8100/axis/services/LeftCollocationFinder?wsdl
http://wetter.t-online.de/soap.php?wsdl


An additional advantage of the publication-based approach is the fact that the provided

information can be further processed and integrated, when stored in the same space, and the

implicit knowledge inferred—knowledge that otherwise might not be available from one single

Web service. The same positive mashup effect is at the basis of the European Patient Summary

proposal presented in Krummenacher et al. (2007). The health records of various general practi-

tioners, specialists and hospitals are published to a shared space with the benefit that caregivers

can provide faster and more adequate treatment.

In this way the achievement of a common goal depends less on the right service being available,

or on knowing the actual endpoint of the service. As the number of Web services available

increases, machines will need to coordinate their message exchanges in similar ways as humans

attempt to: for example, which message has priority, which data are available now, what can I

already act on, which responses still are to be delivered.

The persistent publication model behind tuplespaces seems well suited for coordination on the

Web, particularly between Web services. Yet, applying tuplespaces to the open global environ-

ment of the Web raises new requirements, some of which have already been mentioned in previous

works (Fensel, 2004; Johanson & Fox, 2004):

* A reference mechanism. The Web uses URLs as a global mechanism to uniquely address

resources. This offers means to address particular spaces or tuples independently of their tuple

fields and field data, that is, directly by use of their name.
* A separation mechanism. Distributed applications that have independent naming schemes may

use the same names for their tuplespaces, semantics or structure. On the Web, vocabularies can

be kept separate—even when using the same terms—using the namespaces mechanism.
* The nesting of tuples. Web data models such as XML permit the nesting of elements within a

single document. Likewise, Web-based information should be able to explicitly show how units

are interlinked.
* Richer typing. Tuple values are typed according to the core data types. However, this is not pre-

cise enough in a large-scale environment with dynamically changing information. Richer typing

can support validation and correct interaction with tuplespaces.

2.2 Coordination on the Semantic Web

Semantic Web services (Fensel & Bussler 2002; Lara et al. 2003; Sivashanmugam et al., 2003;

Cabral et al., 2006) foresee the use of Semantic Web technologies in the description of services

to enable a more flexible or even fully automated cooperation between disparate service-enabled

applications. This means that negotiation between different coordination protocols could be

handled automatically by the coordination component through its interpretation of the semantic

descriptions of the conversations supported by each participating service. There are two major

initiatives in the field of Semantic Web services, which each choose a different model for coordi-

nation. The OWL-S effort (Martin et al., 2004) defines an ontology for describing Web services,

but leaves the distinction between conversational behaviour and internal composition of the ser-

vice unclear. To address this lack of expressiveness for the description of complex real-world ser-

vices, the OWL-S initiative has founded a Semantic Web Services Language committee whose

latest specification for FLOWS, a First Order Logic Ontology for Web services, includes the con-

ceptual notion of ‘Channel’ as a repository and conduit for messages3. Using the operators of the

logical language, it is possible to model conversational behaviour. The other main Semantic Web

services effort, Web Service Modeling Framework [WSMF (Fensel & Bussler, 2002)], defines an

ontology (WSMO) and a language (WSML) to express that ontology. Not only services them-

selves but also goals, mediators for handling data and process heterogeneity and ontologies

used in the service descriptions are also part of the WSMO model, and can all be described seman-

tically in WSML so that, for example, the ability of a service, or combination of services, to

3
http://www.daml.org/services/swsf/1.0/swsl.

l . j . b . n i x o n E T A L186

http://www.daml.org/services/swsf/1.0/swsl


achieve a stated goal can be reasoned over, and communication heterogeneity solved by describ-

ing the ontologies being used and making the mediators available that can mediate between two

ontologies. The definition of models for the conversational behaviour of a WSMO service is still

an ongoing work, with the latest specification using Abstract State Machines4. The WSMF initia-

tive has also identified the potential use of tuplespace technology in Semantic Web service com-

munication, in order to bring interactions closer to the ‘persistently publish and read’ paradigm

of the Web. Triple Space Computing (TSC) [as the tuplespace would coordinate the exchange

of Resource Description Framework (RDF) triples (Klyne & Carroll, 2004)] has been integrated

with the WSMF components into a proposal for a Semantically Empowered Service-oriented

Architectures (SESAs) (Werthner et al., 2006).

The Semantic Web envisions greater autonomy for the services that exist on the Web, including

discovery of and interaction with other services in order to achieve specific goals. Resolving goals

requires sophisticated coordination. The Semantic Web brings to this scenario both increased

automation of the communication—the human being taken out of the loop—and use of semantics

rather than pure syntactic data in the data exchange. This is also reflected in the adopted match-

ing algorithms. Traditional Linda-like associative addressing, in which tuples with the same num-

ber of fields and field types are matched, is no longer applicable. RDF data, the basic type of

semantic data, are constructed by three resources [unique identifier (URI), literal or anonymous

resource] of the form <subject, predicate, object> which in turn are composed to graphs with sub-

jects and objects as nodes, and predicates as edges (cf. Figure 1). Tuplespaces for the Semantic

Web must therefore integrate semantic matching by taking into account the meaning of resources

(given by ontologies) and the relationship between the resources. The matching algorithms will

thus have to make use of semantic query language-like constructs. In this respect we mention

SPARQL [W3C Candidate Recommendation and currently the only language to be standardized

in the near future (Prud’hommeaux & Seaborne, 2006)], OWL-QL for OWL (Fikes et al., 2005),

or rule-based queries (e.g. datalog queries). In other words, the new matching algorithms are able

to combine type and value matching, semantic querying rewriting and inference—all of these of

course depending on the expressivity of the language formalism applied and on the computational

costs involved by an increasing expressivity.

Figure 1 Triple, Quad and Named Graph in RDF

4
http://www.wsmo.org/TR/d14/v0.3/.

Tuplespace-based computing for the Semantic Web 187

http://www.wsmo.org/TR/d14/v0.3/


In summary, a coordination model for the Semantic Web must be able to support autonomous

activity of participants as well as semantic information as the data being coordinated.

A number of projects have arisen that apply space-based computing to respond to the need for

coordination on the Semantic Web and Semantic Web services. We now turn to descriptions of

these projects.

3 Triple Space Computing

TSC (Fensel, 2004) extends tuplespace computing with Web and Semantic Web technology. The

work was elaborated in the scope of the TSC project5. In addition to the simple flat data model in

which tuples with the same number of fields and field order but different semantics cannot be dis-

tinguished, Fensel (2004) proposes the use of RDF (Klyne & Carroll, 2004) to enhance the tuple

model and to create a natural link from the space-based computing paradigm into the (Semantic)

Web.

3.1 Conceptual model

Tuples (now triples with the dimensions and semantics of RDF: <subject predicate object>) are

assigned a URI and can be interlinked (just like any resource on the Web) to form graphs.

Furthermore, the established namespace definition method known from XML (Bray et al.,

2006) and RDF can directly be used as a separation mechanism for distributed vocabularies.

Moreover, the application of Semantic Web technology allows the space to install more sophisti-

cated semantic matching algorithms than pure Linda template matching: not only the structure

but also the meaning of data is taken into account.

Krummenacher et al. (2005) extends the work of Fensel (2004) with a concrete proposal of how

to represent semantic tuples (triples) using quads (MacGregor & Ko, 2003)6. As mentioned above,

all triples are uniquely identified by a URI and hence every triple can be distinguished from all

other triples independent of its content. Retrieval of information is hence no longer done solely

by templates, but also by use of the identifier.

Within the TSC project, Krummenacher et al. (2006) eventually suggest to only use an identi-

fier per set of triples, that is, per RDF graph. This seems to contradict the idea of ‘one resource

one identifier’ implied by the World Wide Web. The authors, however, argue that the use of hav-

ing an identifier per triple does not justify the added complexity on storage and processing level

and that the resources (knowledge) in the space are generally more complex than simple triples,

that is, that graphs are required to model information. First of all, the graph URI can be used

to directly address a given set of triples, which is of benefit when exchanging complex objects

such as Web service descriptions or business orders (one call to the space instead of a possibly

very large number of calls when addressing single triples).

Furthermore, the identifier is used as a pointer to add context information to semantic data

that will not defer from one triple to another within a set that is written at the same time (e.g.

the time of publication, the type of modification)7. The reduced granularity has a direct impact

on the amount of meta-information triples, and the URI per RDF graph approach is clearly suf-

ficiently fine-grained. Moreover, this approach has proven to be effective in Carroll et al. (2005a,

b), where a graph is associated with a name (URI) in order to provide trust and security measures.

Based on this, the data granularity adopted in TSC are chosen to reflect named graphs (RDF

graph þ URI) and not individual RDF triples (Figure 1).

5
http://tsc.deri.at, funded by the Austrian Federal Ministry of Transport, Innovation and Tech-

nology under the FIT-IT Semantic Systems action line.
6 quad = RDF triple + context.
7 The annotation with meta-information of spaces and graphs is done by the use of a small triple space
ontology that defines the properties to express vicinity of information, the publishing agent or the time of

publication (Krummenacher et al., 2006).

l . j . b . n i x o n E T A L188

http://tsc.deri.at


Although TSC inherits the space model from Linda, several adaptations were required to cope

with the requirements of an open distributed system like the Web. In particular, the heterogeneity

of data and the obvious scalability issues result in increased complexity of the tuple management

mechanisms. To handle this problem, TSC defines a simple space structure: the overall informa-

tion space consist of a disjoint set of (sub-)spaces, each identified by an own URI. Every space

is seen to provide a particular communication medium, that is, TSC proposes the installation of

new virtual spaces whenever there are new interaction contexts, new groups of agents or new

security aspects in consideration. According to the authors, this approach is likely to improve

at least local scalability by naturally restricting the amount of participants and hence the amount

of data in a given space. More sophisticated tuplespace models such as space hierarchies or over-

lapping spaces are not considered in the current implementation.

3.2 Operations

The interaction primitives defined for TSC were motivated by Linda, and subsequent implementa-

tions like TSpaces (Lehman et al., 1999) or JavaSpaces (Freeman et al., 1999). In short, the Appli-

cation Programming Interface (API) provides operations for writing, reading and removing triples

as RDF graphs, or named graphs (Carroll et al., 2005a), in either a blocking or a non-blocking

manner. Note that, in order to allow Web-like communication, the traditional template-based

read and remove operations were enhanced with URI-based primitives that allow the extraction

of information by identifier. In other words, the graph names, which are URIs, can be used to

directly retrieve all the information attached to the given graph:

read (URI space, Transaction tx, URI name):NamedGraph

take (URI space, Transaction tx, URI name):NamedGraph

These TSC primitives emphasize again the sought convergence of space and Web technology:

the data (triples) are shared in a space, but retrieved as resources by their unique name and not

only by Linda-like associative matching. The transaction parameter ‘tx’ in the signatures allows

the operation to be included in a transactional group of interaction calls, as further explained

at the end of this section.

In addition to the publishing and retrieval operations, TSC adopted a simple form of a publish/

subscribe mechanism. Users can subscribe to a template, which are graph pattern based expres-

sions, as also used in SPARQL (Prud’hommeaux & Seaborne, 2006). In that way, the process

flow of a user is decoupled from the information publication by other nodes and the space takes

care of informing about the reception of relevant data. Semantic templates, as shown in Table 2,

are of course also applied for all other retrieval operations mentioned above.

The graph patterns—acting as tuple templates—are expressed in N3 syntax (Berners-Lee,

2005). In the examples above, a ‘.’ terminates a triple, a ‘;’ introduces another property of the

same subject, the ‘,’ symbol introduces another object with the same predicate and subject, and

the letter ‘a’ stands for rdf:type.

Table 2 Examples of Semantic templates in TSC

Template Description

?s a doap:Project; foaf:member ?o Matches all triples where the subject is of type

doap:Project and where the same subject has triples
indicating the members

?s ?p ?o. ?o a foaf:Person Matches all triples where the object is of type
foaf:Person

?s foaf:name ?a; foaf:mbox ?b Matches the triples that contain subjects for which
the name and a mailbox (foaf:mbox) are indicated

Tuplespace-based computing for the Semantic Web 189



Any interaction with the triple space (TS) is at all times executed against a particular space.

A concept such as the ‘global space’ or ‘root space’ is not defined in the TSC framework.

Lastly, it should be noted that all primitives in TSC provide transaction support in order to sur-

vey the execution of a group of tasks, that is, a set of operations of a process are only executed if

all operations succeed or cancelled if one or more operations cannot be executed.

Transactions allow participants to concurrently access a TS without agreeing on explicit rules.

A typical sequence of operations of a user in TSC could be:

(1) tx ¼ createTransaction();

(2) namedGraph1 ¼ read(space, tx, graphName);

(3) namedGraph2 ¼ take(space, tx, template);

(4) graph3 ¼ process(namedGraph1, namedGraph2);

(5) nameURI ¼ write(space, tx, graph3);

(6) commitTransaction(tx).

This sequence of operations creates a transaction (1), reads a Named Graph identified by graph-

Name from the TS (2), consumes another named graph retrieved by template (3), processes the

received graphs and derives a new graph graph3 (4) and writes the graph back to the TS (5).

Finally the transaction is committed (6). By enclosing the read, take and write operations with

a transaction, it is guaranteed that either all the operations are applied to space, or the operations

do not have an effect at all. Further, it is guaranteed that the graph observed in (2) still exists and

has not been modified by a concurrent operation of another participant.

The coordination layer (cf. next section) implements the transaction management, that is, the

creation, committal and abortion of transactions and guarantees that concurrent operations are

processed consistently.

3.3 Prototype

The TS implementation is based on the CORSO (Coordinated Shared Objects) middleware

(Kühn, 2001). CORSO provides a virtual shared memory space of Java objects, extending

the traditional Linda model with transaction management and data replication mechanisms.

TSs, as well as the named graphs, are mapped onto CORSO objects with a distinct OID

(Object Identifier) in order to share them amongst the participating nodes that run a so-called

TS ‘kernel’ implementation. A kernel provides native or remote access to the shared objects

and locally the manipulation functionality mentioned above. An outline of the proposed

architecture is given in Figure 2. This architecture is a realization of a three-layer approach:

(1) access, the implementation of the interaction primitives; (2) semantic tuplespace, the coor-

dination and communication infrastructure that enables the sharing and exchange of semantic

data and (3) persistency, the semantic data storage attached to the kernel in order to guarantee

persistency. These three parts comprehend the minimal functionality that a TS kernel has to

provide.

The operations layer implements the primitives defined by the TSC API and thus provides the

access point for space users. The mediation support, used as a means to overcome data heteroge-

neity at runtime, is attached to the operation layer; the same applies to the security framework.

Simple security measures are provided by the use of roles, users and permissions that can be

defined with the help of the security management API. The security information and the media-

tion rules are stored in triple form and handled by the space infrastructure itself. A TS kernel

implementation hosts not only user or application data but also the administrative or manage-

ment data in an all-in-one solution. The operation layer provides, in other words, the necessary

extensions to CORSO at the front end of the kernel implementation.

On one hand, the semantic data are stored in the shared object space while, on the other hand,

it is written to a persistent data framework (most likely tailored to the needs of RDF data) bound

to the kernel through the data access layer. The data access layer provides means to resolve

l . j . b . n i x o n E T A L190



semantic templates and, most importantly, abstracts from the actual storage framework; this is

the reason why the data access API was defined.

The prototype implementation of TSC makes use of the YARS (Yet Another RDF Store) sto-

rage framework (Harth & Decker, 2005) in order to ensure persistency and RDF querying. YARS

is a highly scalable RDF store that allows the use of quads by help of its support for contextua-

lized storage. A context in YARS is a particular area in the local or remote storage that is asso-

ciated with a URI, relative for local access, absolute for remote access. Every space and graph

is mapped to a particular context and hence also distinguishable at storage level. As the queries

to YARS are expressed in N3QL (Berners-Lee, 2004), an N3-based (Berners-Lee, 2005) query lan-

guage, the prototype data access layer is suitable to manage the semantic templates of TSC.

YARS maps the requests to tree-shaped datalog queries with one shared variable. A graph pat-

tern is tree-shaped if its reference graph is acyclic; otherwise, the expressivity of the query engine

would fall into full datalog, which could result in complex join implementations over multiple

variables. Therefore, the current, and used, release of YARS does not support graph-shaped data-

log queries.

In summary, spaces and graphs are, on one hand, mapped to CORSO objects for direct access

of whole data objects and, on the other hand, stored in an RDF store for template (query) resolu-

tion over arbitrary graphs.

As part of the TSC project, the technologies introduced above are used as the storage and com-

munication component within the Web Service Modelling Execution Environment [WSMX,

(Mocan et al., 2006)], a reference implementation of a Semantic Execution Environment (SEE)8

along the ideas of the WSMF (Fensel & Bussler, 2002). The project outcome is thus tailored to

the needs of (Semantic) Web services.

4 Conceptual Spaces

Conceptual Spaces/CSpaces was born as an independent initiative to extend TSC (Fensel, 2004)

with more sophisticated features and to study their applicability in different scenarios apart

Figure 2 TS kernel architecture outline

8 cf. OASIS Semantic Execution Environment (SEE) TC, http://www.oasis-open.org/

committees/semantic-ex/.

Tuplespace-based computing for the Semantic Web 191

http://www.oasis-open.org/


from Web services: Personal and Distributed Knowledge Management, Enterprise Application

Integration (EAI), Distributed Software Components and Ubiquitous Computing (Mart´ın-

Recuerda, 2005, 2006).

Just as theWeb has been characterized by an abstract model called REST, which is defined as a set

of constraints (client-server architecture, stateless, cache, uniform interface, layered system and code-

on demand), CSpaces is characterized around seven building blocks: semantic data and schema model

(knowledge container), organizational model, coordination model, semantic interoperability and con-

sensus-making model, security and trust model, knowledge visualization model and architecture model.

Those building blocks are characterized as follows (see also Figure 3):

Semantic data and schema model. Defines a knowledge container, called a CSpace, in which

data elements and their relations are described using a formal representation language that

includes a set of modelling primitives enriched with rules in order to build a logical theory. These

knowledge containers also store relations, called annotations, between data objects and related

external objects like documents and Web pages. Also the relations with other knowledge contain-

ers are also included in order to facilitate interoperation among them. CSpaces can have asso-

ciated access rights and maintain meta-data information about themselves that include unique

identifier, creator, list of members, etc.

Organizational model. Promotes networks of knowledge containers (CSpace) connected by

mappings and transformations rules that follow DAG (Directed Acyclic Graph) configuration.

The leaves, called Individual CSpace, represent the knowledge containers created and maintained

by a software agent or individual. The rest of knowledge containers defined on the upper levels of

the hierarchy of each DAG are called Shared CSpaces and represent the consensual knowledge

among their sons. Shared CSpaces act as semantic bridges between other Shared and Individual

CSpaces facilitating knowledge access and sharing. Depending of the concrete application, Shared

CSpaces can appear in three different flavours: materialized view, virtual view (Ullman, 1997) and

hybrid materialized-virtual view (Hull & Zhou, 1996).

Coordination model. The coordination model is defined on top of mediated, semantic and per-

sistent communication channels (Shared CSpaces) that represent at the same time consensual

implementation of knowledge containers. Thus the concepts of knowledge repository and commu-

nication channel become one, and messages can be described in a more compact manner, because

message content can refer to the ontological terms stored in the CSpace used for communication.

The coordination model combines two metaphors: ‘persistent publish and read’ (space-based com-

puting) and ‘publish and subscribe’.

Table 3 Details about the structure of subspaces in CSpaces

Subspace Details

Domain theory Stores a set of consistent logical theories that gives an

explicit, partial account of a conceptualization
Meta-data Provides an ontological description of the CSpace itself
Instance Used to represent individuals and the values of their

attributes in a domain theory

Trust and security Described in terms of policy rules and reputation
information (Suryanarayana & Taylor, 2004)

Mapping and transformation rules Defines correspondences between common terms,

relations and instances of two domain theories
Annotations Defines links between concepts and instances (topics)

specified in each domain theory with information

resources (occurrences)
Subscriptions/advertisements Stores queries that identify the information that is

requested by information consumers and will be

published by information producers

l . j . b . n i x o n E T A L192



Consensus-making model. Encourages the use of collaborative approaches for creating Shared

CSpaces by a group of individuals. One of the main problems of collaborative methods for build-

ing KBs is the need for the mechanism for solving disagreements between contributors. Following

ideas of Kotis & Vouros (2003), a consensus-making model encourages contributors to participate

in structured conversations where they can incorporate suggestions/positions that enable con-

structive criticism and avoid potential deadlocks.

Security and trust model. Relies on three relevant works in the area of distributed trust: PACE9,

PROTUNE10 and POBLANO11. Similar to PACES’s architecture style, four core services have

been identified: Key manager, Trust manager, Execution manager and Storage manager. Unlike

PACE, the security and trust model is a vertical layer that provides support to the rest of CSpaces

models. Like PROTUNE, CSpaces security and trust model promotes the combination of policy-

based and reputation-based trust management approaches. The reputation-based trust manage-

ment has been enhanced with features proposed by POBLANO.

Knowledge access model. CSpaces promotes an infrastructure that facilitates users to deal with

machine-processable semantics. An intensive use of knowledge access solutions, based on the gra-

phical representation of knowledge bases and mapping rules, controlled natural language and nat-

ural language generation techniques, are the mechanisms proposed.

Architecture model (blue-storm). CSpaces proposes a distributed and decentralized hybrid

architecture based on peer-to-peer (P2P) and client-server infrastructure for storing, reading and

sharing information. A client-server P2P configuration drives a two-tiered system. The upper-

tier is composed by well-connected and powerful servers, and the lower-tier, in contrast, consists

of clients with limited computational resources, which are temporarily available.

Given space limitations and the need to be aligned with the other three system overviews, only

the first three models are described in more detail in the following subsections.

4.1 Conceptual model

This section partially covers relevant aspects of the semantic data model and the organizational

model. A CSpace is a knowledge container defined as a set of tuples, where each tuple has a

well-defined structure of seven fields

<guid, fm, type, subspace, sguid, vguid, mguid>

Ideally, fm is a first-order logic formula. However, limitations imposed by applications and/or

members of the CSpace can restrict fm to less expressive formalisms like Description Logics, or

even RDF triples. The field type identifies in which formal language fm has been defined [e.g.

fol (Fitting, 1996), shiq-dl (Baader et al., 2003), dlp (Grosof et al., 2003)].

Unlike the Semantic Web, the current proposal of the CSpaces’ data model does not commit to

a specific formalism until an evaluation of use cases determines which languages are most appro-

priate. The field subspace defines a subset of the CSpace to which a tuple belongs. Currently, there

are seven different types of subspaces defined for each CSpace: domain theory, meta-data, instance,

trust and security, mapping and transformation rules, annotations and subscriptions/advertisements.

The field guid is a global unique identifier for the logical formula12, which can simplify reification

and make the code more compact. The sguid field is the global unique identifier of the CSpace

in which the tuple was created, which attaches provenance to a logical formula. The field vguid

is a version global unique identifier for the logical formula, while the mguid field is the identifier

of the member of the CSpace that stored the tuple. Given that each member of a CSpace has a

9
http://www.isr.uci.edu/projects/pace/.

10
http://rewerse.net/.

11
http://www.jxta.org/.

12 In accordance with W3C recommendations, the unique identifiers used in CSpaces follow the URI/IRI

specification (Duerst & Suignard, 2005).

Tuplespace-based computing for the Semantic Web 193

http://www.isr.uci.edu/projects/pace/
http://rewerse.net/
http://www.jxta.org/


reputation score, this last identifier is expected for instance to be used to measure the degree of

trustworthiness of each of the logical statements.

Each of the seven subspaces (cf. Table 3) can have a ‘mirror’ that stores an efficient represent-

ation (in terms of reasoning performance) of the data. Thus, each subspace has a raw and a rea-

soning side. All editing operations are done in the raw side that stores the imported and local

data, schemas and mapping and transformation rules. The reasoning side provides an efficient

representation optimized in order to maximize the reasoning performance. Periodically, the mod-

ifications on the raw side are transferred to the reasoning side. The strict separation between raw

and reasoning side allows the implementation of additional features, such as approximate reason-

ing techniques (Groot et al., 2005) like language weakening and knowledge compilation to speed

up reasoning performances and to debug methods for eliminating inconsistencies (Schlobach &

Cornet, 2003).

Previous experiences of merging and mapping ontologies (Jos de Bruijn & Ehrig, 2004;

Craig Schlenoff, 1999) and bottom-up generation of distributed KBs (Matteo Bonifacio,

2002) have influenced the organization model suggested by CSpaces. Jos de Bruijn & Ehrig

(2004) and Craig Schlenoff (1999) promote the use of shared domain theories as shared con-

ceptualizations and interlingua for data and application integration. In bottom-up approaches

for knowledge management (Matteo Bonifacio, 2002), individuals independently build their

own KBs. CO4 (Euzenat, 1995) suggests to build hierarchical structures of individual and

shared KBs. Individual KBs are visualized on the bottom of the hierarchy and shared KBs

on upper levels of the hierarchy. Martı́n-Recuerda (2006) envisions DAGs networks of

Cspaces, connected by mapping and transformation rules. Two types of CSpaces have been

defined: Individual and Shared CSpaces. The former is a knowledge container defined by an

individual that reflects his/her own perception of a concrete domain. Shared CSpaces are

CSpaces shared by several users that have reached an agreement on how to specify common

domain theories, instances, annotations, etc. Shared CSpaces act as semantic bridges between

several Shared and Individual CSpaces. A Shared CSpace can appear in three different fla-

vours: materialized view, virtual view (Ullman, 1997) and hybrid materialized-virtual view

(Hull & Zhou, 1996).

4.2 Operations

This section partially covers relevant aspects of the coordinationmodel ofCSpaces. A detailed descrip-

tion can be founded in (Stijn Heymans & Scicluna, 2007). CSpaces also adopt and extend the coordi-

nation model from Linda. On one hand, Linda brings a simple and elegant metaphor for process

coordination and introduces a clear distinction between process design/implementation and process

coordination. On the other hand, Linda lacks in the following aspects:

* data representation capabilities;
* data retrieval capabilities;
* built-in transaction support;
* flow-decoupling from the client side.

The CSpaces semantic data and schema (introduced at the beginning of this section) provided a

fixed tuple configuration that eliminates the difficulty of finding and retrieving tuples with unrest-

ricted and unknown configurations. The use of rich and formal representation languages and the

use of ontologies for describing the data are our main proposals for coping with the first problem.

CSpaces aims to improve data retrieval capabilities by using a formal query language instead of

template matching. This provides a more expressive means for data retrieval, allowing for more

fine-grained means to look for information. Given that complex formulae can be inserted in

the fm field of each tuple, template matching would not be very handy (citation) for retrieval

purposes. The query language is however dependent largely on the representation formulism cho-

sen to describe information in the space.

l . j . b . n i x o n E T A L194



Built-in transaction support simplifies the implementation of complex interactions between

processes, because process designers do not have to implement lock mechanisms for the shared

virtual semantic data space. CSpaces supports multiple retrieval and writing operations using a

single primitive, and introduces new primitives for specifying the scope of a transaction.

Finally, flow-decoupling from the client side is overcome by support for the publish-subscribe

model (Martı́n-Recuerda, 2006). Notifications contribute to the design of more flexible processes

that can continue with other activities until the data requested are available in the CSpace. The

interaction primitives of CSpaces were influenced by the TSpace API (Lehman et al., 1999) and

publish-subscribe extensions based on SIENA API13.

4.3 Prototype

The prototype described in Martı́n-Recuerda (2006) (see also Figure 4) has been adapted from a use

case designed by members of the Engineering Informatics Group (EIG)14 of Stanford University,

and published in Jinxing Cheng & Law (2003). The aim of the use case is to integrate heterogeneous

applications for project management, which teams of the construction industry use for dealing with

large construction projects. The members of those teams can belong to different organizations and

use diverse tools for the same purposes or for managing separate aspects of the project. Thus, large

volumes of project information will be created from different geographically dispersed sources. In

particular, Cheng et al. aimed to integrate the following tools: Primavera Project PlannerTM

(P3)15 and Microsoft ProjectTM16 for scheduling and weather information from YAHOO17 (substi-

tuted by National Weather service18 in the CSpaces prototype).

The current intention for the prototyping of CSpaces is that Individual CSpaces will be stored

in desktop computers (heavy-clients) and the shared CSpaces will be hosted by a server. Each

computer will run Otter 3.3 (provides the reasoning space), Oracle 10g (providing persistent

storage services for CSpaces) and an extended version of ActiveSpace (providing coordination

Figure 3 CSpaces building blocks

13
http://www-serl.cs.colorado.edu/serl/siena/.

14
http://eil.stanford.edu/.

15
http://www.primavera.com/.

16
http://office.microsoft.com/project/.

17
http://weather.yahoo.com/.

18
http://www.nws.noaa.gov/xml.

Tuplespace-based computing for the Semantic Web 195

http://www-serl.cs.colorado.edu/serl/siena/
http://eil.stanford.edu/
http://www.primavera.com/
http://office.microsoft.com/project/
http://weather.yahoo.com/
http://www.nws.noaa.gov/xml


services). ActiveSpace follows a JavaSpace-like abstraction for building SEDA (Staged Event Dri-

ven Architecture) style applications. SEDA is an architectural pattern for building massively scal-

able, distributed and concurrent systems.

Several aspects of CSpaces have been simplified or not considered in order to facilitate a pro-

totypical implementation:

* The domain theories stored on the server and the heavy-clients are essentially the same. Only

some information related with internal activities are hidden and are not shared in the Shared

CSpace. Thus, mapping and transformation rules are not supported in the initial prototype.
* Current Semantic Web standards like OWL (McGuinness & van Harmelen, 2004) and RDF

will not be considered in this example. Data will be represented using FOL.
* Only a materialized view approach for Shared CSpaces is considered.

5 Semantic Web Spaces

Semantic Web Spaces (Tolksdorf et al., 2005a,b) has been proposed by the Freie Universität

Berlin. It is envisaged as a middleware for the Semantic Web, enabling clients using Semantic

Web data to access and process knowledge to coordinate their interdependent activities. As a

result, one client is enabled to react to knowledge inserted into the space by inferring new facts

and another client is freed to draw some conclusion that was waiting on the availability of these

facts. The space as shared medium for knowledge enables the clear separation of the sequential

knowledge processing of an individual client and the parallel coordination of knowledge between

concurrently active clients.

It was originally envisaged as an extension of their XMLSpaces work, which is a tuplespace

platform that extends the Linda coordination models to support the exchange of XML docu-

ments. In XMLSpaces, the tuple fields may contain XML documents and matching templates

are based on XPath or XMLQuery expressions.

Semantic Web Spaces extends the Linda coordination model in a similar manner to support the

exchange of RDF triples as tuples, with matching based on RDFS reasoning capabilities. Just as

the Semantic Web is conceived as a set of layers in which RDF is built upon by the subsequent

layers of ontologies, logic, proof and trust [cf. Figure 5 according to Berners-Lee et al. (2001)],

Figure 4 CSpace prototype

l . j . b . n i x o n E T A L196



this platform is seen as the first step towards further spaces for the Semantic Web. Extensions for

OWL and rules, for instance, would permit the use of more expressive languages in the tuples as

an extension of the RDF(S) concepts already used in the approach described in this article, while

trust-enabled Semantic Web Spaces would include agent policies as tuples and execute matchmak-

ing agents to determine if two agents (source and target) can trust one another before permitting

an operation.

5.1 Conceptual model

A conceptual model has been drawn up (Tolksdorf et al., 2006) in which the extensions to the tra-

ditional Linda coordination model necessary to support a tuplespace that manages Semantic Web

information were considered.

The tuple model is based on the concept of RDFTuple. This is a tuple that contains four fields

which take URIs as values. The first three fields reference Web resources corresponding to the

subject, predicate and object of an RDF statement. The fourth field is an identifier for the tuple,

generated with the help of a tuplespace ontology (see below). Each field is typed by an URI, while

the ID field is defined as an RDF ID (Hayes & McBride, 2004). Special consideration is taken for

representing blank nodes, containers/collections and reification.

Semantic Web–specific matchings using RDF-specific reasoners are added. In combination

with available ontologies, RDFTuples introduced to the space can be checked for ontological con-

formance. Template matches can be made not only against the actual RDFTuples in the space but

also against those which can be inferred. For instance, subClassOf and subPropertyOf statements

allow matches to take place on the basis of subsumptive reasoning. This means that any variable

typed with Class A in a template can be matched to a constant typed in Class B in the respective

field of a tuple if A subsumes B.

While the original Linda considered a single tuplespace, extensions have introduced multiple,

nested and hierarchical spaces. The distributed and replicated Semantic Web Spaces are virtually

partitioned using contexts, drawing on the concept of scopes (Merrick & Wood, 2000). Clients

may be allocated certain contexts, controlling their view upon the space to those tuples existing

within their context. Contexts provide a simple form of access control, allowing clients to have

private spaces as well as shared spaces with specific other clients. From the system perspective,

they can be used to perform clustering (of RDFTuples which are related in some way) and hence

to improve matching efficiency.

In addition, Semantic Web Spaces define an ontology for describing the space itself. Thus it

creates a meta-space of RDFTuples, which explicitly represents the actual structure of the active

Semantic Web Spaces. An instance of the Semantic Web Spaces ontology forms a queryable (and

possibly editable) description of the space, including its permitted structure, supported tuple types

and matching templates, and effective access and trust policies. The meta-model of the Semantic

Trust

Proof

Digital
Signature

rules

data

data
selfdescriptive

document

Logic

Ontology vocabulary

RDF + rdfschema

XML + NS + xmischema

Unicode URI

Figure 5 The Semantic Web stack

Tuplespace-based computing for the Semantic Web 197



Web Spaces contains all instances of tuples currently stored in the space (and hence provides for

each the unique URI by which they can be referenced) and can store meta-information relating to

each tuple such as its author, insertion time, number of reads or current context.

A part of the tuplespace ontology is shown in Figure 6.

5.2 Operations

Previous works on defining the formal semantics of Linda operations (Busi et al., 2000a,b; Busi &

Zavattaro, 2000) did not take into consideration the consequences on those semantics when the

data being coordinated can be seen as carrying meaning, as Semantic Web data would be interpre-

table as being collections of statements of knowledge. Hence Semantic Web Spaces defines new

operations, which redefine the classical Linda operations for the coordination of RDF data,

both syntactically and semantically.

Two views on the coordination of Semantic Web data are defined: the data view, where tuples

contain syntactically valid RDF data without any formal meaning, and the information view,

where RDFTuples are recognized as being special data structures that express formally defined

knowledge about concepts. This imposes consistency and satisfiability constraints with respect

to the RDF semantics (Hayes & McBride, 2004) and to the associated ontologies defined in

RDFS (Brickley & Guha, 2004).

In the data view, a Linda-compliant variation of the traditional out in and read operations is

defined (Table 4). They preserve the original Linda operation semantics while operating on the

structure of RDF triples. In addition, as interactions with RDF often make use of graphs of

RDF triples rather than individual triples, multiple tuple operations that output or read a set of

RDF triples as a single request–response are also specified (outgr, rdgr and ingr).

Handling SemanticWeb knowledge in the information view requires, however, coordination

primitives which take into account the truth value of the underlying tuples and the ontologies

the tuples might refer to. For this purpose, the operations claim, endorse and retract are

introduced.

The claim operation is similar to a Linda out, but permits the claim to be made only if the state-

ment is consistent with a RDF schema that constrains the meaning of RDF classes and properties.

The endorse and retract operations block and use triple pattern matching, with support for the

Figure 6 Semantic Web Spaces ontology

l . j . b . n i x o n E T A L198



RDF semantics (e.g. subsumption-based on RDF schema information), to match and return an

RDF statement in the space, which may also be an inferred statement (i.e. not explicitly claimed

in the space). A ‘subspace’ is returned, that is, a set of triples, as matches may not be expressable

in a single statement, as is the case when matching on an RDF collection or container. Addition-

ally, Semantic Web Spaces does not return any statements with blank nodes without providing the

statements also that share this blank node. Additionally, retract will remove the matched state-

ments from the space, ignoring inferred statements. While a statement may occur multiple times

in the data view, it can only exist (in its own space) once (as a statement is valid regardless of

how many times it is stated). However, removal of a statement from the information view does

not change the data view, as retraction is interpreted as a falsification of the statement rather

than its deletion.

The excerpt operation in particular uses a ‘context’ in the information view to contain a set of

copies of the matched tuples in a private partition of the space (the reference is only passed to the

agent excerpting the triples). As a result, contexts explicitly contain inferred tuples, which are only

implicit in the information view of the space. This allows agents to construct RDF models and con-

tinue interacting with those models without affecting the rest of the space (e.g. destructive reads).

5.3 Prototype

Figure 7 shows the full architecture model for Semantic Web Spaces. From left to right, it can be

divided into three major components:

* The publication component deals with I/O mechanisms of the space and the way it organizes the

data.
* The retrieval component implements various tuple matching heuristics that are applied to return

the results of the agent’s queries.
* The security component guarantees the secure execution of the aforementioned activities.

From top to bottom, the architecture contains three layers: the first two layers correspond to the

information and data view that was mentioned in the previous section, while the third layer

Table 4 Coordination model in Semantic Web Spaces

Data view

outr: (Statement)!boolean Insert a new RDF statement to the data view

outgr: (Model)! boolean Insert a set of RDF statements extracted from a Jena
model to the data view

rdr: (Triple or Node)! Statement Read an RDF statement from the data view of the space
using a three-fielded template of the form

(s,p,o) or a Node containing a tuple identifier
rdgr: (Triple)!Model As rdr but returns all matches as a Jena model
inr: (Triple or Node)!Statement Destructively read an RDF statement from the data view

of the space likewise with a template or tuple identifier
ingr: (Triple)!Model As inr but destructively reads all matched RDF statements

from the data view

Information view
claim: (Statement)! boolean Assert a RDF statement in the information view of the

space if consistent with the RDF Schema

endorse: (Triple)!Subspace Read a RDF statement from the information view of the
space

excerpt: (Triple)!URI Read all matching RDF statements by copying them into a
context and returning an URI identifying it

retract: (Triple)! Subspace Deny the truth value of an RDF statement in the
information view of the space (retained in the data view)

Tuplespace-based computing for the Semantic Web 199



handles the persistent storage of the tuplespace information. Accordingly, from bottom to top, the

tuplespace system is concerned with raw data, syntactic virtual data (Linda tuples) and semantic

virtual data (RDF tuples).

The publication component describes how the platform communicates with other systems,

whether they are Semantic Web clients or storage managers (interfaces to the back-end storage).

For each of the three architectural layers the component implements an API, which defines the

format of the messages that can be sent to it, the semantics (meaning) of those messages by which

the developer can know which response to expect from a certain message and the format of that

response. Further on, the component includes methods that seek to optimize the operations on the

space through the management of tuples being added, searched for or removed from the space.

Subspaces and contexts are forms of partitioning the tuplespace into defined sections, based on

data or knowledge content of tuples. The RDMS (Relational Database Management System)

mapping is not just a syntactic mapping to the API of the back-end storage; it also optimizes these

operations. The meta-model, that is, the tuplespace ontology, organizes the meta-data for the

tuplespace so that one can express the structure of the tuplespace and the tuples it contains.

The system can access this model to query where certain tuples may be found or allow agents

to optimize their messages to the system.

The retrieval component implements the way external templates are matched against the tuple-

space data. It is related to query processing (e.g. query resolution and query rewriting) on the

tuplespace or on the physical data stores, and can imply the usage of reasoning services in order

to enhance the results of pure syntactic data retrieval.

The third component of Semantic Web Spaces is concerned with security and trust. It is acces-

sible to the publication and the retrieval operations. Any operation by an agent on the space may

be proofed by security and trust components, whether it is a retrieval operation (which requires

matching, e.g. at storage level) or just a tuple addition (which only requires access to the tuple-

space through the tuplespace API).

Semantic Web Spaces takes a lightweight approach to implementation to allow for more flex-

ibility in the selection of solutions for different aspects of the implementation and to aim at a

minimal system footprint and simplicity/flexibility of code in order to try to maximize efficiency

Figure 7 Architecture of a Semantic Web Space

l . j . b . n i x o n E T A L200



and the possibility of later code optimization. It uses the LighTS tuplespace framework (Picco et

al., 2005) and extends it for handling the tuples that contain semantic information.

The prototype implements the front- and back-end of the architecture above, but does not yet

include support for security and trust. The data view is a Jena RDF model in which all triples are

reified (and hence referenceable and duplicable) and there is no inference19. The information view

is a Jena RDF model with inference, so that it reflects the data view extended by the triples infer-

rable from its content according to the available RDF schema(s). The TS ontology is a Jena RDF

model with the meta-model of the space. To save on accesses, the ontology is not updated after

every operation on the space, but temporary models log changes and updates are made after a cer-

tain amount of operations. Retrieval is by SPARQL (Prud’hommeaux & Seaborne, 2006) queries

generated from the triple patterns of the retrieval operations, which are applied to the appropriate

Jena model. Persistent storage is implemented by using the Jena2 support for RDBMS.

The prototypical implementation has demonstrated that an approach based on Linda and

tuplespaces can be realized to coordinate between agents communicating on the Semantic Web

(i.e. sharing semantic data). A first evaluation (Nixon et al., 2007) has shown that challenges

remain in implementing the system in a highly scalable manner. A further open issue is related

to the appropriateness of Semantic Web frameworks such as Jena in the context of coordination

systems, since such components introduce an overhead in the processing of Semantic Web infor-

mation that is not required, for example, at the data level of Semantic Web Spaces.

6 sTuples

sTuples (Khushraj et al., 2004) has been developed as part of the pervasive computing work at the

Nokia Research Center. Given the particular characteristics of pervasive environments, that is,

the heterogeneity and dynamics of multiple clients in the environment, the Semantic Web was

seen as a solution to semantic interoperability issues, while tuplespaces were seen as a satisfactory

middleware able to provide data persistence, as well as temporal and spatial decoupling and

synchronization.

6.1 Conceptual model

sTuples consists of three key extensions to the Linda model:

* Semantic tuples extend the data tuple.
* Tuple template matching is enhanced by using a semantic match on top of object-based matching.
* Specialized agents reside on the space and perform user-centric services such as tuple recom-

mendation, task execution and notification.

A semantic tuple is a JavaSpace object tuple that contains a field of type DAML þ OIL

Individual (McGuinness et al., 2002). This field contains either a set of statements about an

instance of a service, or some data or an URL from which such a set of statements can be

retrieved. Semantic tuples can be either data tuples or service tuples, depending on whether they

contain the semantic information provided by a service/agent or are advertising an available ser-

vice (such as controlling a light or the volume of a television set). Both categories can be further

refined in an ontology of semantic tuple types.

A semantic tuple manager is in charge of managing all interactions in the space concerning

semantic tuples (i.e. insertion, reading and removal). When a semantic tuple is added to the space,

the DAML þ OIL statements it contains are extracted and asserted in the space’s own knowledge

base. The system checks that the statements are valid, and that the knowledge base remains con-

sistent. Likewise, when a semantic tuple is removed from the space, the statements that it contains

are retracted from the knowledge base.

19
http://jena.sourceforge.net.

Tuplespace-based computing for the Semantic Web 201

http://jena.sourceforge.net


A semantic tuple matcher carries out the matching of templates to semantic tuples. Reasoning

capabilities are provided by RACER, a Description Logics reasoner (Haarslev & M¨oller, 2001). A

semantic tuple template, unlike the usual Linda approach of actual and wildcard values, is a

semantic tuple whose DAML þ OIL individual-typed field draws upon a dedicated ‘TupleTem-

plate’ ontology. A set of statements using this ontology can be interpreted by the matcher as a

semantic query upon the statements in the space’s local knowledge base. However, due to the

increased complexity of different DL-based queries, the matcher performs its matching through

a series of steps of increasing complexity.

(1) The statements are validated against the TupleTemplate ontology so that invalid queries are

immediately rejected.

(2) The candidate semantic tuples are selected by matching their tuple type (e.g. Light-Service

as a subclass of ServiceTuple) against the value of the hasTupleCategory property in the

query.

(3) RACER reasons over the set of candidate tuples so that inferable facts can be available (e.g.

all classes that an individual belongs to through subsumption).

(4) The tuple template contains different TupleFields, which express desired or undesired field

types and values. An exact match occurs when a semantic tuple is found, which contains all

desired tuple fields (in terms of the expressed type and possibly value) and does not contain

any undesired tuple fields.

(5) If there were no matches and subsumption matching was requested in the tuple template, then

the subsumption of field types is also taken into consideration in searching for a match.

(6) If there were no matches and plugged-in matching was requested in the tuple template, then

plugged-in tuples will be matched too.

(7) Otherwise, there are no matches and no tuple is returned.

Matching tuples will be weighted based on the degree to which they match the template. The

matched tuple with the highest weight is selected to be returned to the client.

6.2 Agents

Specialized agents reside in the space and offer added functionality to the user by abstracting typi-

cal user functionality needs and hence simplifying client interactions. In general, clients continue

to interact with the Service Managers, which mediates between the clients and the available ser-

vices in the network. New services register themselves in the system by passing a Service Tuple

instance to the manager containing a service identifier, the DAML þ OIL instance describing

the service, a free text description, a service icon, a limit of the number of threads the service

can support, a lease (specifying the duration the service remains active) and a location dependency

indicator. Likewise, data from clients or services are passed as Data Tuple instances to the man-

ager and contain a unique identifier for the tuple producer, a DAML þ OIL instance containing

the data to be shared and a list of subscribers to that object. The Service Managers are arranged in

a tree-like hierarchy, and each has its own space and specialized agents.

The Tuple Recommender Agent allows a client to register its interests with a Service Manager

using a pre-defined preferences ontology. The agent can monitor the space for any services or data

that match the interests of the client. If no matches are found at the time of the request, a notifi-

cation request is registered with the space for a specified time period for any matching tuples that

may be added to the space.

The task execution agent acts as a proxy for the user. The client registers tasks with the man-

ager, using a dedicated task ontology. Matching service tuples are retrieved and subscribed to, and

commands are sent to the service as specified in the task ontology instance (e.g. switching a light

on or off). The service response can also be captured (if specified in the task ontology instance) to

be returned to the client or passed to another service (in the case of composite tasks).

l . j . b . n i x o n E T A L202



A publish-subscribe agent dynamically delivers data to users that have subscribed to it. A data

tuple is written to the space that is meant to be shared by multiple clients. A client requests data

tuples of a particular type by using the tuple template ontology. The agent will find a matching

data tuple and add the requester to the tuple field containing the list of subscribed users.

6.3 Prototype

sTuples was built as an extension of Sun’s JavaSpaces, which provides a centralized server and

already extends the classical tuplespace model with field and tuple typing (based on Java’s

object-oriented model), Java objects as tuple contents, object-based polymorphic matching, trans-

actional security and a publish-subscribe mechanism. A generic SemanticTuple interface extends

the JavaSpaces Entry interface. RACER is used as a reasoner, which also supports the publish-

subscribe mechanism.

It is also integrated with the Vigil framework for realizing ‘Smart Home’ scenarios in which

mobile clients access home devices such as lights and consumer electronics over low-bandwidth

wireless networks. Vigil provides distributed trust, access control and authentication services in

the pervasive computing environment.

7 Comparative study

In this section we perform a comparative study of the semantic tuplespace proposals presented in

the previous sections on the basis of a pre-defined classification framework. The framework has

been compiled by the authors of the article according to their expertise in the two fields of

research, which are relevant for the state-of-the-art survey—Linda-based coordination systems

and the Semantic Web—complemented by a comprehensive literature survey (Omicini et al.,

2001; Johanson & Fox, 2004; Wells et al., 2004). The classification dimensions can be divided

into two categories. The first dimension aims at situating the analyzed approach within the gen-

eral field of coordination middleware. The second dimension is concerned with aspects that are

typical for the Web, the Semantic Web and semantics-aware information systems. In the follow-

ing, we elaborate on each classification dimension.

7.1 Part I—Linda-based coordination systems

Type of the approach: Whether the proposal is an extension of the original tuplespace technology

or if it rather applies this technology in a particular application setting, thus being a tuplespace-

based technology.

Scope of the approach: A list of possibly overlapping application areas the proposal is targeted

at. Examples in this category include the Web, distributed systems, mobile systems, knowledge

management.

Communication/coordination model: Information about the way agents interact with the tuple-

space. Examples of possible communication models are Linda, publish-subscribe, message queues.

Extensions of the communication/coordination model: The types of extensions from the original

communication model, which are available in the surveyed system. Examples for the Linda

communication model include copy-collect, tuple expiration, notification, ordering, clustering or

various heuristics to perform template matching.

Tuplespace model: An account of the way tuples are organized in tuplespaces. We encounter

several types of tuplespaces in the Linda literature, for example, plain tuplespaces, nested

tuplespaces, tuplespaces organized hierarchically, scopes.

Tuple model: A description of the way data are organized as tuples. This includes the number of

allowed fields and the data types that are permitted as tuple field values: primitive data types such

as integer, strings or floats, arbitrary Java objects, URIs, DOM objects, XML documents.

Tuplespace-based computing for the Semantic Web 203



Further on, tuples may contain further tuples, a model that is referred to as nested tuples.

Distribution: Whether the tuplespace data are distributed over multiple Linda kernels or imple-

mented on a single server.

Replication: Whether the data can be replicated over multiple distributed spaces or it is stored in

one space at a point in time.

Implementation: Information about the implementation platform(s), the development architec-

ture, the implementation language(s), etc.

7.2 Part II—Semantic Web:

Resource identification: Whether and to which extent the semantic tuplespace system provides

support for the identification of resources. From a Web point of view, the use of URIs would

be the most obvious approach.

Addressability of spaces: The means applied to address multiple spaces if available. On the Web,

domains are addressed by unique identifiers; a particular space can hence be seen as a particular

domain. Note that in this context Internet domains, and hence spaces, are treated just like any

other Web resource.

SemanticWeb languages: The languages that are supported by the semantic tuplespace system at

tuple model level. Examples include typical Semantic Web knowledge representation languages

such as RDF(S), OWL, SWRL.

Reasoning: To which extent and in which form the system provides support or makes use of

reasoning services.

Validity and consistency: Support for validity and consistency checking of the semantic data

stored and managed by the system at global and local scale.

Semantic matching: Support for reasoning-enabled matching on asserted or inferred tuple data.

The most obvious example in this category includes the usage of subsumption reasoning on

application-specific type systems.

Semantic clustering: Support for distribution strategies on a semantic basis. In this case the

meaning of the data, which are structured using formal ontologies, can be used to derive new

rules for clustering and distributing the tuplespace among multiple kernels.

Table 5 summarizes the results of the comparison according to the classification framework

above.

In the remainder of this section, we discuss the most important aspects of this comparative

study.

With respect to the underlying tuple and tuplespace models, the lowest common denominator

of the analyzed semantic tuplespace platforms is the support of new tuple types encapsulating the

data formalized using Semantic Web languages. Except for the sTuples proposal, which focuses

on DAML þ OIL, the remaining three tuplespace approaches foresee a certain level of support

for RDF data. Semantic Web Spaces and CSpaces provide first ideas with respect to RDFS,

OWL and SWRL support. Usually, tuples are extended with an identification mechanism.

CSpaces, TSC and Semantic Web Spaces also suggest a means to attach provenance information

to individual (or sets of) tuples; however, they resort to slightly different interpretations of the

provenance concept. In CSpaces, the meta-data are an integral part of the tuple model, while

the other approaches extend this concept by proposing a meta-model for capturing various types

of information about a space, its contents and the agents interacting with it. CSpaces and TSC

introduce versioning information to the classical tuple notion, and the unique identifier of the

creator of the tuple for trust purposes. Versioning is out of the central focus of Semantic Web

Spaces and sTuples. As a conclusion, CSpaces relies on a more complex data model that addresses

many of the requirements specified by sTuples, TSC and Semantic Web Spaces. The other

approaches take into account these requirements; however, they do not embed all the correspond-

ing information at the data model level. Semantic Web Spaces, for instance, rely on a very simple

l . j . b . n i x o n E T A L204



T
a
b
le

5
C
o
m
p
a
ri
so
n
o
f
th
e
a
p
p
ro
a
ch
es

T
S
C

C
S
p
a
ce
s

S
W
S

sT
u
p
le
s

L
in
d
a
-b
a
se
d
co
o
rd
in
a
ti
o
n

sy
st
em

s

T
y
p
e
o
f
a
p
p
ro
a
ch

T
u
p
le
sp
a
ce

te
ch
n
o
lo
g
y

T
u
p
le
sp
a
ce
-b
a
se
d
te
ch
n
o
lo
g
y

T
u
p
le
sp
a
ce

te
ch
n
o
lo
g
y

T
u
p
le
sp
a
ce
-b
a
se
d
te
ch
n
o
lo
g
y

S
co
p
e
o
f
a
p
p
ro
a
ch

S
em

a
n
ti
c
W
eb

se
rv
ic
e

D
is
tr
ib
u
te
d
k
n
o
w
le
d
g
e

m
a
n
a
g
em

en
t

S
em

a
n
ti
c
W
eb

M
o
b
il
e
sy
st
em

s

C
o
m
m
u
n
ic
a
ti
o
n
/

co
o
rd
in
a
ti
o
n
m
o
d
el

L
in
d
a
,
p
u
b
li
sh

su
b
sc
ri
b
e

P
u
b
li
sh

su
b
sc
ri
b
e

L
in
d
a

P
u
b
li
sh

su
b
sc
ri
b
e

E
x
te
n
si
o
n
s
o
f
th
e

co
m
m
u
n
ic
a
ti
o
n
/

co
o
rd
in
a
ti
o
n
m
o
d
el

N
o
ti
fi
ca
ti
o
n
s,
tr
a
n
sa
ct
io
n
s

M
u
lt
ip
le

re
a
d
a
n
d
w
ri
te

tr
a
n
sa
ct
io
n
s

D
a
ta

v
s.
se
m
a
n
ti
c
le
v
el

–

T
u
p
le
sp
a
ce

m
o
d
el

M
u
lt
ip
le

in
d
ep
en
d
en
t
sp
a
ce
s

D
A
G

co
n
fi
g
u
ra
ti
o
n
o
f

in
te
rc
o
n
n
ec
te
d
sp
a
ce
s

D
is
jo
in
t,
n
es
te
d
sp
a
ce
s
a
n
d

te
m
p
o
ra
ry

co
n
te
x
ts

C
en
tr
a
li
ze
d
sp
a
ce

T
u
p
le

m
o
d
el

N
a
m
ed

g
ra
p
h
s

F
ix
ed

tu
p
le
fo
rm

a
t
o
f
a
rb
it
ra
ry

d
a
ta

u
n
it
s
a
ss
o
ci
a
te
d
w
it
h
ID

s,
v
er
si
o
n
in
g
a
n
d
m
et
a
-d
a
ta

in
fo
rm

a
ti
o
n
a
n
d
co
n
ta
in
in
g

re
fe
re
n
ce
s
to

sp
a
ce
s
a
n
d

in
te
rp
re
ti
n
g
se
m
a
n
ti
cs

N
es
te
d
tu
p
le
s,
tr
ip
le
s

S
er
v
ic
eT

u
p
le
s
a
n
d
D
a
ta
T
u
p
le
s

co
n
ta
in
in
g
D
A
M
L
+

O
IL

in
st
a
n
ce
s

D
is
tr
ib
u
ti
o
n

S
u
p
er

p
ee
r
a
rc
h
it
ec
tu
re

o
n
to
p

o
f
C
O
R
S
O

a
n
d
Ja
v
a
S
p
a
ce
s

S
u
p
er

p
ee
r
a
rc
h
it
ec
tu
re

S
el
f-
o
rg
a
n
iz
ed
,
d
is
tr
ib
u
te
d

a
rc
h
it
ec
tu
re
,
o
n
to
lo
g
ic
a
l

d
es
cr
ip
ti
o
n
o
f
th
e
sp
a
ce

C
en
tr
a
li
ze
d
a
rc
h
it
ec
tu
re

b
a
se
d

o
n
Ja
v
a
S
p
a
ce
s

Tuplespace-based computing for the Semantic Web 205



T
a
b
le

5
C
o
n
ti
n
u
ed

T
S
C

C
S
p
a
ce
s

S
W
S

sT
u
p
le
s

R
ep
li
ca
ti
o
n

E
a
g
er

re
p
li
ca
ti
o
n
p
ro
v
id
ed

th
ro
u
g
h
C
O
R
S
O

–
–

–

Im
p
le
m
en
ta
ti
o
n

Ja
v
a

Ja
v
a

Ja
v
a

Ja
v
a

S
em

a
n
ti
c
W
eb

R
es
o
u
rc
e
id
en
ti
fi
ca
ti
o
n

U
R
I
o
f
n
a
m
ed

g
ra
p
h
s

D
a
ta

u
n
it
s
id
en
ti
fi
ed

b
y
g
lo
b
a
l

sy
st
em

ID
s

U
R
Is

d
ef
in
ed

in
th
e
tu
p
le
sp
a
ce

o
n
to
lo
g
y

O
b
je
ct

ID
s
p
ro
v
id
ed

th
ro
u
g
h

Ja
v
a
S
p
a
ce
s

A
d
d
re
ss
a
b
il
it
y
o
f
sp
a
ce
s

U
R
Is

G
lo
b
a
l
sy
st
em

ID
s

U
R
Is

d
ef
in
ed

th
ro
u
g
h
th
e

tu
p
le
sp
a
ce

o
n
to
lo
g
y

N
o
t
a
p
p
li
ca
b
le

S
em

a
n
ti
c
W
eb

la
n
g
u
a
g
es

R
D
F

L
a
n
g
u
a
g
e-
in
d
ep
en
d
en
t,
u
p
to

F
O
L

R
D
F
(S
),
ex
te
n
d
a
b
le

to
O
W
L
,

S
W
R
L

D
A
M
L
+

O
IL

R
ea
so
n
in
g

–
U
se
d
fo
r
q
u
er
y
a
n
sw

er
in
g
,

q
u
er
y
re
w
ri
ti
n
g
a
n
d

co
n
si
st
en
cy

ch
ec
k
in
g

U
se
d
to

d
ef
in
e
se
m
a
n
ti
c

m
a
tc
h
in
g
m
et
h
o
d
s
a
n
d
to

v
a
li
d
a
te

th
e
co
n
te
n
ts

o
f
sp
a
ce
s

U
se
d
to

d
ef
in
e
se
m
a
n
ti
c

m
a
tc
h
in
g
m
et
h
o
d
s

V
a
li
d
it
y
a
n
d
co
n
si
st
en
cy

–
C
o
n
si
st
en
cy

ch
ec
k
in
g
a
n
d

sy
n
ta
ct
ic

v
a
li
d
a
ti
o
n
se
rv
ic
es

A
g
a
in
st

o
n
to
lo
g
ie
s
a
n
d
u
si
n
g

co
n
v
en
ti
o
n
a
l
v
a
li
d
a
to
rs

fo
r

R
D
F

–

S
em

a
n
ti
c
m
a
tc
h
in
g

G
ra
p
h
p
a
tt
er
n
te
m
p
la
te
s
a
n
d

N
3
Q
L
re
so
lu
ti
o
n

M
a
tc
h
in
g
b
a
se
d
o
n
q
u
er
y

en
g
in
es

S
u
b
su
m
p
ti
o
n
-b
a
se
d
m
a
tc
h
in
g

S
u
b
su
m
p
ti
o
n
-b
a
se
d
m
a
tc
h
in
g

S
em

a
n
ti
c
cl
u
st
er
in
g

–
–

E
x
te
n
d
a
b
le

to
se
lf
-

o
rg
a
n
iz
a
ti
o
n
su
p
p
o
rt
ed

b
y

tu
p
le
sp
a
ce

o
n
to
lo
g
y

–

l . j . b . n i x o n E T A L206



data model and handle provenance and identification issues with the help of a tuplespace ontology,

while sTuples uses the object identification mechanism delivered with JavaSpaces. TSC uses quads

as primary data unit, hence encapsulating data and identification information in one object.

Further on, Semantic Web Spaces, CSpaces and TSC define an additional layer on top of the

data model. In the case of Semantic Web Spaces, this is called information view and visualizes

tuples as RDF graphs. For CSpaces, tuples are logically grouped in knowledge containers that

store a logical theory, the relations (mappings) with other logical theories (other CSpaces), rela-

tions with real-world objects (annotations), security and trust information, and a meta-data char-

acterization of the CSpace itself. Such meta-data are considered with minor variations in each of

the aforementioned approaches, which recommend the usage of ontologies as a basis for its

modelling and formalization. However, only Semantic Web Spaces and TSC currently provide

specifications of such a tuplespace ontology.

The tuplespace model is explicitly taken into consideration in three of the presented approaches

(TSC, Semantic Web Spaces and CSpaces). TSC and CSpaces explicitly include the notion of sev-

eral independent tuplespaces, although in the case of CSpaces, the spaces that have domain depen-

dencies are interconnected by mapping rules. Semantic Web Spaces, on the other hand, mention

one global space that can be partitioned using the notion of contexts.

The communication/coordination model underlying the four approaches is based on Linda or

the publish-subscribe paradigm. In addition, all proposals take into account the advantage of

Semantic Web technologies to improve the matching abilities of retrieval operations. However,

only Semantic Web Spaces distinguish between operations at data syntax level and semantic level.

The former group of operations guarantees backward compatibility with classical Linda applica-

tions. sTuples and CSpaces use publish-subscribe as the underlying communication paradigm.

This model has been already considered in commercial implementations of tuplespace computing

like TSpaces and JavaSpaces to one of the major limitations of Linda-based computing: the flow-

coupling of consumer applications. In addition, the combination of tuplespace computing and

publish-subscribe improves the latter, avoiding the event-storm problem. CSpaces introduces

atomic multiple read and write operations to deal with the particularities of information retrieval

on the Semantic Web, as information items published and consumed by semantic applications

tend to contain multiple RDF triples, which hence need to be written or read from the space

within one operation. Atomicity of operations is also the main motivation for extending the Linda

communication model into transactions, as it is the case in TSC. Further on, similar to CSpaces,

which are based on publish-subscribe, TSC uses notifications as a means to decouple the flow of

semantic applications accessing the space.

From an architectural point of view, the envisioned systems are designed to rely on decentralized

models. While sTuples resorts to the centralized architecture underlying JavaSpaces, the remaining

approaches foresee an architectural model supporting decentralization while converging in terms of

requirements like scalability. TSC follows REST principles, and CSpaces induce decentralization and

self-organization by means of P2P ideas, while Semantic Web Spaces aim at tackling these issues using

intelligent distribution strategies [e.g. self-organization on swarm intelligence principles (Tolksdorf &

Menezes, 2003)]. The four surveyed systems have been prototypically implemented in Java.

Aspects such as distribution and replication remain to be further investigated in the field of

semantic tuplespace computing. Though the need for adequate strategies is acknowledged in the

context of the TSC, CSpaces and SemanticWeb Spaces, all of them being targeted at open,

dynamic environments such as the Web, the proposals consider them only marginally. Further

research is also needed with respect to the question of how semantic technologies can enrich the

traditional techniques employed to solve these issues.

8 Conclusions and outlook

The survey that has been conducted indicates the increased interest in taking Linda-like

approaches to communication and coordination as a means to propel the simplification of

Tuplespace-based computing for the Semantic Web 207



large-scale, open and distributed systems. All four approaches intend to demonstrate the benefits

of using a shared information space as an alternative to traditional coordination middleware,

often based on the message-based paradigm. The application areas of the surveyed systems

are diverse; the reasons for deploying tuplespace technology remain, however, the same, the

simplification of interaction patterns and implementation of large-scale heterogeneous complex

systems.

Existing Linda tuplespace implementations have already provided evidence that the original

Linda concept does not fully comply with the increased complexity of current large-scale

application environments. This can be already observed, for example, in the scope of systems

such as JavaSpaces or TSpaces. Some important technological updates introduced by these

implementations include notifications through publish-subscribe support, support for transac-

tions, layered or nested spaces instead of single servers, and more expressive tuple fields and

matching algorithms. The semantic tuplespace implementations surveyed here include addition-

ally the application of Semantic Web languages like RDF, RDFS or OWL, as well as the

enhancement of the available template matching algorithms with Semantic Web–specific query

languages and reasoning.

Some initial specifications and prototypes of these implementations have been evaluated and

compared in the previous chapter, and we now highlight several open issues in systems and

research challenges for the future. We conclude with a brief summary of the potential for this

emerging research area and of the findings of this first analysis of the start-of-the-art.

8.1 Open issues and research challenges

The analysis makes clear that aspects like data distribution and replication still require further

investigation, and that semantics-aware tuples and template matching are not enough to realize a

feasible Web-scale semantic middleware. The four approaches acknowledge the need for enhanced

replication and caching algorithms for a successful application of semantic tuplespaces in open, dis-

tributed systems; however, they do not yet consider these issues to a satisfactory extent.

We therefore expect future research to concentrate on such mechanisms in order to address the

significant challenges of distribution and scalability, which are the key problems in dynamic large-

scale systems like the World Wide Web or pervasive computing environments. Semantic clustering

of data, organization of spaces according to the internal structures of data and the joint usage of

local and global spaces are possible starting points for the future extensions to existing semantic

tuplespaces. Some of these ideas were already materialized in the presented projects or at least

marginally considered, but not yet implemented. We thus expect that upcoming work will take

up these ideas, and that solutions for the mentioned distribution and scalability issues will be

developed around them.

The strength of semantic tuplespaces is the natural and integrated link to the languages and

tools of the Semantic Web. The presented approaches make first steps into this direction; how-

ever, it is also obvious that further work is required to fully enable the Semantic Web within tuple-

space environments. Moreover, the future of the Semantic Web is seen in the integration of rule

languages with the currently available W3C recommendations RDF(S) and OWL. Such complex

knowledge representation formalisms and the associated sophisticated reasoning services they

enable are still missing from the surveyed approaches.

Support for more expressive knowledge representation languages would form the basis for

more powerful means to formally define meta-information about spaces for the usage of such

meta-models to configure and optimize the management of the middleware. TSC and Semantic

Web Spaces already propose tuplespace ontologies to capture and manage the available applica-

tion data and the space hierarchies. Semantic middleware management is seen to be one of

the major advantages of semantic tuplespaces compared to traditional space frameworks, as it

provides advanced means for data and infrastructure handling, which directly influence and likely

improve the necessary distribution and scalability measures.

l . j . b . n i x o n E T A L208



8.2 Research area potential

The application fields and use cases of the presented semantic tuplespaces already reveal some

of the many expected areas of interest for this novel technology. In particular, the sTuples pro-

ject shows that semantic tuplespaces are not only to be applied to the Semantic Web or Seman-

tic Web services but also to many other areas—if not all—where distributed, heterogeneous and

autonomous agents interact in open large-scale systems. In the particular case of sTuples, the

space was installed to improve a smart home installation, that is, a pervasive computing

application, where many collaborative agents share information in order to improve the user

experience.

Besides pervasive computing, and consequently mobile and ubiquitous computing for the same

reasons, it also makes sense to look at the enhancement of Grid architectures. In particular in the

course of the Semantic Grid, the convergence of the Grid and Semantic Web services, it will be

interesting to apply semantic tuplespaces in order to ease the interaction of computation and

information services (Shafiq et al., 2006).

In summary, the presented application fields are very diverse, ranging from sharing informa-

tion on the Semantic Web, or collaboration in knowledge management and pervasive computing

to a full-fledged communication and coordination paradigm for Semantic Web services or the

Semantic Grid. There, the potential application areas are just as diverse: EAI, eHealth, digital

multimedia systems and recommender systems, to only mention a few.

8.3 Summary of findings

This article introduced the novel field of research that is interested in the combination of seman-

tics and tuplespace computing. The emergence of Semantic Web technology in the area of distrib-

uted computing—which consequently allows heterogeneous and autonomous agents to interact

and collaborate without direct human intervention—reactivated the ideas of tuplespaces in the

large. The Linda language introduces the decoupling of processes in various dimensions and hence

obvious advantages for large and complex open systems, in particular, as shown in this work, in

combination with the Semantic Web:

* Decoupling of agents in time and reference inherited from Linda.
* Simplified interaction patterns for complex, distributed systems.
* Ease of implementation through unified and simple interaction primitives.
* Enhanced search algorithms by means of Semantic Web technology.
* Data and process mediation to counteract the increasing heterogeneity problems.
* Possibility for integrated knowledge management through reasoning support.

We have investigated and analyzed four current semantic tuplespace projects, and identified some

open issues and future research challenges on the way to making the vision of the semantic tuple-

space paradigm a reality.

First specifications and prototypes of the considered systems indicate a core agreement on

some principles to follow for developing semantic tuplespaces, while differences in approach

will provide a basis for scientific evaluation and comparison as prototypes are completed and

become stable. Already, it has been identified that in particular more work needs to be done to

ensure Web scalability and data accessibility (distribution algorithms) in the large, suggesting

further research in innovative areas like distributed semantic querying, semantic clustering and

self-organizing systems.

We expect that with further development and publication in this area of semantic tuplespace

computing, which has already started (Mart´ın-Recuerda, 2006; Fensel et al., 2007; Nixon et al.,

2007), we can count on ongoing integration of this research into the Semantic Web architecture

as a coordination middleware, particularly for machine-to-machine communication.

Tuplespace-based computing for the Semantic Web 209



References

Baader, F., Calvanese, D., McGuinness, D., Nardi, D. & Patel-Schneider, P. 2003 The Description Logic
Handbook: Theory, Implementation and Applications. Cambridge, UK: Cambridge University Press.

Berners-Lee, T. 2004 N3QL -RDF Data Query Language, W3C Design Issues. http://www.w3.org/

DesignIssues/N3QL.html.
Berners-Lee, T. 2005 Primer: Getting into RDF & Semantic Web using N3, Website v1.61. http://www.w3.

org/2000/10/swap/Primer.html.

Berners-Lee, T., Hendler, J. & Lassila, O. 2001 The semantic web. Scientific American 284(5), 34–43.
Bray, T., Hollander, D., Layman, A. & Tobin, R. 2006 Namespaces in XML 1.0, 2nd edn., W3C

Recommendation.

Brickley, D. & Guha, R. 2004 RDF Vocabulary Description Language 1.0: RDF Schema, W3C
Recommendation.

Busi, N., Gorrieri, R. & Zavattaro, G. 2000a Comparing three semantics for Linda-like languages. Theoreti-
cal Computer Science 240(1), 49–90.

Busi, N., Gorrieri, R. & Zavattaro, G. 2000b On the expressiveness of Linda coordination primitives. Infor-
mation and Computation 156(1–2), 90–121.

Busi, N. & Zavattaro, G. 2000 On the expressiveness of event notification in data-driven coordination lan-

guages. Lecture Notes in Computer Science 1782, 41–55.
Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B., Tanasescu, V. & Pedrinaci, C. 2006 IRS-III:

A broker for semantic web services based applications. In Proceedings of the 5th International Semantic

Web Conference. Athens, GA, USA: Springer Verlag, pp. 201–214.
Cabrera, F., Copeland, G., Freund, T., Klein, J., Langworthy, D., Orchard, D., Shewchuk, J. & Storey, T.

2002 Web Services Coordination (WS-Coordination), http://msdn.microsoft.com/ws/2002/

08/WSCoor.
Cabri, G., Leonardi, L. & Zambonelli, F. 2000 MARS: a programmable coordination architecture for mobile

agents. IEEE Internet Computing 4(4), 26–35.
Carroll, J., Bizer, C., Hayes, P. & Stickler, P. 2005a Named graphs. Journal of Web Semantics 3(4), 247–267.

Carroll, J., Bizer, C., Hayes, P. & Stickler, P. 2005b Named graphs, provenance and trust. In Proceedings of
the 14th International World Wide Web Conference. Chiba, Japan: ACM Press, pp. 613–622.

Chinnici, R., Moreau, J.-J., Ryman, A. & Weerawarana, S. 2007 Web Services Description Language

(WSDL) Version 2.0 Part 1: Core Language, W3C Recommendation.
Ciancarini, P., Knoche, A., Tolksdorf, R. & Vitali, F. 1996 PageSpace: an architecture to coordinate distrib-

uted applications on the web. Computer Networks and ISDN Systems 28(7–11), 941–952.

Ciancarini, P., Tolksdorf, R. & Zambonelli, F. 2003 Coordination middleware for XML-centric applications.
Knowledge Engineering Review 17(4), 389–405.

de Bruijn, J., Martin-Recuerda, F., Manov, D. & Ehrig, M. 2004 State-of-the-art survey on Ontology Merging
and Aligning V1, Project Deliverable d4.2.1, 2004. SEKT project IST-2003-506826. http://sekt.

semanticweb.org/.
Euzenat, J. 1995 Building consensual knowledge bases: context and architecture. In Mars, N. (ed.), Building

and Sharing Large Knowledge Bases. Amsterdam: IOS Press, pp. 143–155.

Fensel, D. 2004 Triple-space computing: semantic web services based on persistent publication of informa-
tion. In Proceedings of the IFIP International Conference on Intelligence in Communication Systems
INTELLCOMM 2004. Bangkok, Thailand: Springer-Verlag, pp. 43–53.

Fensel, D. & Bussler, C. 2002 The web service modeling framework WSMF. Electronic Commerce Research
and Applications 1(2), 113–137.

Fensel, D., Krummenacher, R., Shafiq, O., Kuehn, E., Riemer, J., Ding, Y. & Draxler, B. 2007 TSC—Triple

Space Computing. e&i Elektrotechnik und Informationstechnik 124(1/2), 31–38.
Fielding, R. 2000 Architectural Styles and the Design of Network-based Software Architectures, PhD thesis,

University of California, Irvine, California.
Fikes, R., Hayes, P. & Horrocks, I. 2005 OWL-QL A Language for deductive query answering on the seman-

tic web. Journal of Web Semantics 2(1), 19–29.
Fitting,M. 1996 First-Order Logic and Automated Theorem Proving, NewYork: Springer-Verlag NewYork, Inc.
Freeman, E., Arnold, K. & Hupfer, S. 1999 JavaSpaces Principles, Patterns, and Practice. The Jini Technol-

ogy Series. Essex, UK: Addison-Wesley Longman Ltd.
Gelernter, D. 1985 Generative communication in Linda. ACM Transactions on Programming Languages and

Systems 7(1), 80–112.

Gelernter, D. & Carriero, N. 1992 Coordination languages and their significance. Communications of the
ACM 35(2), 97–107.

GigaSpaces(TM) Technologies Ltd. 2002 GigaSpaces Platform—White Paper. http://www.

gigaspaces.com/.

l . j . b . n i x o n E T A L210

http://www.w3.org/
http://www.w3
http://msdn.microsoft.com/ws/2002/
http://sekt
http://www


Groot, P., Hitzler, P., Horrocks, I., Motik, B., Stuckenschmidt, J. P. H., Turi, D. & Wache, H. 2005 D2.1.2
Methods for Approximate Reasoning. Knowledge Web Project Deliverable. http://knowledgeweb.
semanticweb.org/semanticportal/deliverables/D2.1.2.pdf

Grosof, B., Horrocks, I., Volz, R. & Decker, S. 2003 Description logic programs: combining logic programs
with description logic. In Proceedings of the 12th International World Wide Web Conference. Budapest,
Hungary: ACM Press, pp. 48–57.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J-J., Nielsen, H., Karmarkar, A. & Lafon, Y. 2007
SOAP Version 1.2 Part 1: Messaging Framework (2nd ed.), W3C Recommendation.

Haarslev, V. & Möller, R. 2001 Description of the RACER system and its applications. In McGuinness,
D. L., Goble, C., Möller, R. and Patel-Schneider, P.F (eds), Proceedings of the International Workshop

on Description Logics, Aachen, Germany: CEUR Workshop Proceedings, pp. 131–141.
Harth, A. & Decker, S. 2005 Optimized index structures for querying RDF from the web. In Proceedings of

the 3rd Latin American Web Congress. Buenos Aires, Argentina: IEEE Computer Society, pp. 71–80.

Hayes, P. & McBride, B. 2004 RDF Semantics, W3C Recommendation.
Hull, R. & Zhou, G. 1996 A framework for supporting data integration using the materialized and virtual

approaches. In Proceedings of the ACM SIGMOD ’96, Montreal, Canada, pp. 481–492.

Cheng, J., Gruninger, M., Sriram, R. D. & Law, K. H. 2003 Process specification language for project infor-
mation exchange. International Journal of Information Technology in Architecture, Engineering and Con-
struction, 1(4), 307–328.

Johanson, B. & Fox, A. 2004 Extending tuplespaces for coordination in interactive workspaces. Journal of
Systems and Software 69(3), 243–266.

Khushraj, D., Lassila, O. & Finin, T. W. 2004 sTuples: semantic tuple spaces. In Proceedings of the 1st
Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, Boston,

MA, USA: IEEE Press, pp. 268–277.
Klyne, G. & Carroll, J. J. 2004 Resource Description Framework (RDF): Concepts and Abstract Syntax, W3C

Recommendation.

Kotis, K. & Vouros, G. A. 2003 Human centered ontology management with HCONE. In Proceedings of the
IJCAI’03, Ontologies and Distributed Systems Workshop, Acapulco, Mexico. CEUR-WS.org/Vol. 71,
ISSN 1613-0073. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/

Vol-71/

Krummenacher, R., Ding, Y., Kilgarriff, E., Sapkota, B. & Shafiq, O. 2006 D1.3 Specification of Mediation,
Discovery and Data Models for Triple Space Computing, TSC Project Deliverable. http://tsc.

deri.at/deliverables/D13.html.

Krummenacher, R., Hepp, M., Polleres, A., Bussler, C. & Fensel, D. 2005 WWW or What is Wrong is with
Web Services. In Proceedings of the 3rd European Conference on Web Services. Växjö, Sweden: IEEE
Press, pp. 235–243.

Krummenacher, R., Simperl, E., Nixon, L., Cerizza, D. & Valle, E. D. 2007 Enabling the European Patient
Summary Through Triplespaces. In 20th IEEE International Symposium on Computer-basedMedical Systems.

Kühn, E. 2001 Virtual Shared Memory for Distributed Architectures. Commack, NY, USA: Nova Science

Publisher.
Lara, R., Lausen, H., Arroyo, S., de Bruijn, J. & Fensel, D. 2003 Semantic web services: description require-

ments and current technologies. In Proceedings of the International Workshop on Electronic Commerce,

Agents, and Semantic Web Services at ICEC 2003. Pittsburgh, PA, USA.
Lehman, T., McLaughry, S. & Wyckoff, P. 1999 T spaces: the next wave. In Proceedings of the Hawaii Inter-

national Conference on System Sciences (HICSS-32). Maui, Hawaii: IEEE Press, p. 8037.
MacGregor, R. & Ko, I-Y. 2003 Representing contextualized data using semantic web tools. In Proceed-

ings of the 1st International Workshop on Practical and Scalable Semantic Systems, Sanibel Island, FL,
USA: CEUR Workshop Proceedings.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan, S., Paolucci, M.,

Parsia, B., Payne, T. et al. 2004 OWL-S: Semantic Markup for Web Services, W3C Member Submission.
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.

Martı́n-Recuerda, F. 2005 Towards CSpaces: A new perspective for the Semantic Web. In Proceedings of the

1st International IFIP/WG12.5 Working Conference on Industrial Applications of Semantic Web. Univer-
sity of Jyväskylä Finland. Berlin Heidelberg, Germany: Springer Verlag.

Martı́n-Recuerda, F. 2006 Application Integration Using Conceptual Spaces (CSpaces). In Proceedings 1st
Asian Semantic Web Conference. Beijing, China. Berlin Heidelberg, Germany: Springer-Verlag,

pp. 300–306.
Bonifacio, M., Bouquet, P., & Cuel, R. 2002 Knowledge nodes: the building blocks of a distributed approach

to knowledge management. Journal of Universal Computer Science 8(6), 652–661.

McGuinness, D. L., Fikes, R., Hendler, J. & Stein, L. A. 2002 DAMLþOIL: An Ontology Language for the
Semantic Web, IEEE Intelligent Systems 17(5), 72–80.

Tuplespace-based computing for the Semantic Web 211

http://knowledgeweb
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/
http://tsc
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/


McGuinness, D. & van Harmelen, F. 2004 OWL Web Ontology Language Overview, W3C Recommendation.
Merrick, I. & Wood, A. 2000 Coordination with scopes. In Proceedings of the ACM Symposium on Applied

Computing, ACM Press, pp. 210–217.

Mocan, A., Zaremba, M., Moran, M. & Cimpian, E. 2006 Filling the Gap Extending Service Oriented Archi-
tectures with Semantics. In Proceedings of the 2nd IEEE International Symposium on Service-Oriented
Applications, Integration and Collaboration. Shanghai, China: IEEE Press.

Nixon, L. J. B., Simperl, E. P. B., Antonenko, O. & Tolksdorf, R. 2007 Towards Semantic Tuplespace
Computing: The SemanticWeb Spaces System. In Proceedings of the 22nd ACM Symposium on Applied
Computing, Track ‘Coordination Models, Languages and Applications’. Seoul, Korea: ACM Press.

Omicini, A., Zambonelli, F., Klusch, M. & Tolksdorf, R. (eds.) 2001 Coordination of Internet Agents:

Models, Technologies, and Applications. Berlin, Germany: Springer Verlag.
Papadopoulos, G. & Arbab, F. 1998 Coordination models and languages. In Advances in Computers, Vol. 46:

The Engineering of Large Systems. New York, USA: Academic Press.

Picco, G. P., Balzarotti, D. & Costa, P. 2005 LIGHTS: a lightweight, customizable tuple space supporting
context-aware applications. In Proceedings of the 20th ACM Symposium on Applied Computing. Sante
Fe, NM, USA: ACM Press, pp. 1134–1140.

Prud’hommeaux, E. & Seaborne, A. 2006 SPARQL Query Language for RDF. W3C Working Draft.
Rossi, D., Cabri, G. & Denti, E. 2001 Tuple-based technologies for coordination. In Coordination of Internet

Agents: Models, Technologies, and Applications. Berlin, Germany: Springer-Verlag, pp. 83–109.

Schlenoff, C., Gruninger, M., Tissot, F., Valois, J., Lubell, J. & Lee, J. 1999 The Process Specification Lan-
guage (PSL): Overview and Version 1.0 Specification. NIST Internal Report (NISTIR) 6459, National
Institute of Standards and Technology, Gaithersburg, MD, USA.

Schlobach, S. & Cornet, R. 2003 Non-Standard Reasoning Services for the Debugging of Description Logic

Terminologies. In Proceedings of the 18th International Joint Conference on Artificial Intelligence, Aca-
pulco, Mexico. San Francisco, CA, USA: Morgan Kaufmann, pp. 355–362.

Shafiq, O., Toma, I., Krummenacher, R., Strang, T. & Fensel, D. 2006 Using triple space computing for

communication and coordination in semantic grid. In Proceedings of the 3rd Semantic Grid Workshop
in conjunction with the 16th Global Grid Forum. http://www.semanticgrid.org/GGF/ggf16/

papers/TSC-semgrid_20060129.pdf

Sivashanmugam, K., Verma, K., Sheth, A. & Miller, J. 2003 Adding semantics to web services standards. In
Proceedings of the 1st International Conference on Web Services. Las Vegas, NV, USA: CSREA Press,
pp. 395–401.

Heymans, S., Krummenacher, R., Martin-Recuerda, F., Nixon, L. J. B., Paslara Bontas Simperl, E. & Sci-

cluna, J. 2007 D2.4.8 v2: Semantic TupleSpace Computing. Knowledge Web Project Deliverable.
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D2.4.8.

pdf.

Suryanarayana, G. & Taylor, R. 2004 A Survey of Trust Management and Resource Discovery Technologies in
Peer-to-Peer Applications, Technical Report UCI-ISR-04-6, Institute for Software Research, University of
California, Irvine.

Tolksdorf, R. & Menezes, R. 2003 Using swarm intelligence in Linda systems. In Proceedings of the 4th Inter-
national Workshop Engineering Societies in the Agents World ESAW’03. London, UK. Berlin Heidelberg,
Germany: Springer Verlag, pp. 49–65.

Tolksdorf, R., Nixon, L., Paslaru Bontas, E., Nguyen, D. M. & Liebsch, F. 2005a Enabling real world
SemanticWeb applications through a coordination middleware. In Proceedings of the 2nd European
Conf. on the Semantic Web. Heraklion, Crete, Greece, pp. 679–693.

Tolksdorf, R., Paslaru Bontas, E. & Nixon, L. 2005b Towards a tuplespace-based middleware for the Seman-

ticWeb. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence WI2005.
IEEE Computer Society, pp. 338–344.

Tolksdorf, R., Paslaru-Bontas, E. & Nixon, L. 2006 A co-ordination model for the Semantic Web. In Pro-

ceedings of the 21st ACM Symposium on Applied Computing, Track ‘Coordination Models, Languages
and Applications’. ACM Press, pp. 419–423.

Ullman, J. D. 1997 Information integration using logical views. Theoretical Computer Science 239(2),

189–210.
Wells, G., Chalmers, A. & Clayton, P. 2004 Linda implementations in Java for concurrent systems.

Concurrency and Computation: Practice and Experience 16(10), 1005–1022.
Werthner, H., Hepp, M., Fensel, D. & Dorn, J. 2006 Semantically-enabled Service-oriented Architectures: a

catalyst for smart business networks. In Proceedings of the Smart Business Networks Initiative Discovery
Session. Rotterdam, The Netherlands.

Wyckoff, P., McLaughry, S., Lehman, T. & Ford, D. 1998 Tspaces. IBM Systems Journal 37(3), 454–474.

l . j . b . n i x o n E T A L212

http://www.semanticgrid.org/GGF/ggf16/
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D2.4.8

