in Proc. of 9th IEEE Intl. Conference on Tools with Al, page 94-101, Newport Beach, CA, Nov. 3-8, 1997

Formalizing and Automating Component Reusé

Yonghao Chen and Betty H. C. Chéng
Department of Computer Science
Michigan State University
East Lansing, M| 48824
email: {chenyong, chengdl@cps.msu.edu

Abstract plementing connections.

Using existing components to construct software systems A key step in the assembly process is the component se-
has significant potential to improving software productivity lection. Given an interface specification, the objective of
and quality. A key problem in software component reuse component selection is to locate the most appropriate com-
is the selection of appropriate components for satisfying a ponents that satisfy the interface. The criteria necessary for
given requirement. In this paper, we define a componenta component to satisfy an interface is usually implicit and
interface generality relation that provides a foundation for not precisely captured. For example, a simple, but widely
component selection. This generality relation, representedused, criterion is name (keyword) matching. However, key-
in terms of formal specifications, precisely captures the se-words cannot convey significantly useful information, un-
mantic obligations for an existing component to satisfy the less they are widely accepted terminology, such as mathe-
requirements of a target system. The formal specificationsmatical functions, for examplesin, cos etc.. A more in-
facilitate the (semi-) automatic determination of the gen- formative criterion may be based on signatures (syntax and
erality relation. We show how this generality relation has type information). Although signatures encapsulate type in-
been used to determine the reusability of software compo-formation, they still fail to capture the behavior of a com-
nents in a software architecture-based reuse and integrationponent precisely. Natural language descriptions may doc-
environment. ument semantic information of components. However, the
inherent ambiguity of natural languages (together with pos-
sible inconsistencies in the documentation) may make it dif-
ficult to locate the “right” component.

The use of existing software components to construct Recent work in formal methods has produced rich for-
new systems is recognized as having significant potential tomalisms for use in software development. Among others
improving software development productivity and software s the Larch family of specification languages [7] used to
quality [2, 6, 11]. Recently, a great deal of effort has been specify programs written in C, C++, Modula-3, Smalltalk,
directed towards an architecture-driven, component-basedada, and CLU. This paper describes an approach to soft-
software development paradigm. A software architecture is ware reuse that takes advantage of the logical reasoning and
a collection of components, connectors, and a configurationaytomated processing enabled by formal specifications of
of how the components should be connected via connectorssgftware components to determine which existing compo-
By specifying the interfaces of constituent components andnents can be used to satisfy the requirements of a new (tar-
connectors of a target system, software architectures servgyet) system.
as frameworks for assembling existing components. Given Tnhe remainder of this paper is organized as follows. The
an architecture specification, the assembly process of softyeyt section discusses the specification of software com-
ware components consists of two phases: First, the eXiStir_‘gponents. A Larch-styled formalism is presented to specify
components are retrieved, evaluated, and matched to the ingomponent interfaces. Based on the formal specifications,
terfaces in the architecture specification. Then a packagingye define a component interface generality relation in Sec-
process is invoked to integrate these components, generatjon 3. In Section 4, we describe the application of the in-
ing code as necessary for adapting components and/or iMierface generality relation in a software architecture-based

“This work is supported in part by National Science Foundiagmnts reuse and integration environment. We dlscqss the use of
CCR-9633391, CCR-9407318 and CCR-9209873. the Larch theorem prover LP to determine the interface gen-

tPlease contact this author for all correspondences. erality relation. Related work is described in Section 5. We

1. Introduction

conclude this paper with a summary and a brief description functionsread andwrite are used by the top layer compo-
of future investigations. nent, and the data objecbf typedtModelis defined by the
bottom layer component.

This example will be referenced and refined in the fol-

2. Component Specification 2 :
lowing discussions.

In simplistic terms, a component is a computational unit.
As a part of a system, each component provides certain ser-

vices to its environment, as well as requires some services Compagg‘ban’j&?;f: is
from its environment. The services provided by a compo- dtModel x;
nent represent theapabilitiesof the component, and the Capabil')iggf ead(.. .);
services required by a component constitute assump- bool write(.. ...);
tions that the component requires of its environment. A end dataAccess

service may be in a variety of forms, for example, an event
in event-based systems, or a data stream in a pipeline sys-
tem. In this paper, we consider components that have either
data or functions (procedures) as their services. These com-
ponents are also termed modules, since they have the same
properties as those described in a conventional module in-
terconnection language (MIL) [12].

The specification of the capabilities and assumptions of 2 1 Refining Interface Specifications
a module is encapsulated in the interface of the module. A
module may or may not have an implementation. A compo-
nent without an implementation is also termed an abstract
component or simply an interface. Each existing compo-
nent must have an implementation. The implementation of
a module should conform to its interface.

Figure 1. An example component interface
specification

In this section, we refine the definition of interfaces. In
addition to the capabilities and assumptions of a component,
we also include dependence information among capabili-
ties and assumptions in an interface specification. We use
Larch-styled formal specifications [7] to specify interfaces.
Formal specifications of interfaces precisely capture the
functionalities and provide a rigorous foundation to reason
about the relations between interfaces. We choose Larch as
the target specification language for several reasons. Larch
has a simple syntax and provides support for commonly
used programming languages, including C, C++, Smalltalk,
Modula-3, and ML [7]. Second, Larch has support for li-
braries of specifications, thus promoting the reuse of speci-
fications. Finally, there is good tool support for developing
and analyzing Larch specifications, including a graphically-
based browser and editor [9], syntax checker [7], and theo-
rem prover [7].

Definition 1 (Conformance of modules to interfages
moduleM conforms to an interfacé (denoted as// = I)
iff (1) M implements all of the capabilities éf and (2) in
order to implement the capabilities &f M must use and
only use all of the assumptions stated/in M is called a
conforming module of, andI is a conformed interface of
M2

The conformance definition makes it possible to system-
atically check the reusability of a component solely based
on its conformed interface. It should be noted that an ex-
isting module may conform to multiple interfaces, each of o . .
which describes a collection of possible behaviors (provid- 2.1.1. Specifying Domain Theories

ing services and/or requiring services) that the module may Larch specifications consist of two tiers: one tier spec-
exhibit in constructing a system. ifies domain theories, and the other tier specifies module

interfaces in terms of the problem domain. A domain the-

Example 1 Consider a simple data access system. The sys_ory is an algebraic model of a problem domain. It defines a
set of abstract types (sorts) and operations over those sorts.

tem has three components that are organized into Iayersal_h h Shared i q . d
where a given layer uses services provided by the layer be- € Larch Shared Language (LSL) is used to specify a do-

low it. At the top is the user interface that accepts user dataMain theqry tgrmed fait. An LSL specification for a table
access requests, and handles them by calling data acceds shown in F,'Q““? 2.) . .

functions provided in the middle layer. The middle layer _The specification starts W'th the inclusion of af“"her
component, in tumn, uses an abstract data type (ADT) ob_tralt,_lnteg_er. The Integer trait defines the theory of inte-
ject defined in the bottom layer of the system. Figure 1 de- ger, |nclud|r_19_ consta_n_ﬁs 1_’ and operato#-, and so on. The
scribes the interface of the middle layer component, where ! f¢ger trait is specified in the LSL. handbook [7], which

is a collection (library) of many useful LSL specifications.
1n this context, module refers to the implementation of thalmie. Theintroducesclause declares a set of operators, each with

interface i nterfaceNane is
uses LSL traits

/I LSL specification for Table assumptions
Table: trait {dataSpec; | functionSpec; I
includes Integer capabilities
Entry tuple of index: Ind, value: Val {dataSpec; | functionSpec; I
introduces end interfaceNane
¢: — Tab
add: Tab, Entry — Tab) . g .
lookup: Tab, Ind — Val Figure 3. Template for interface specification
€ _: Ind, Tab — bool

size: Tab — Int
asserts
Tab generated by ¢, add
Tab partitioned by €, lookup
Vi, il: Ind, v, v1: Val, t: Tab, e: Entry

W € ¢ module. A service can be prefixed with the keywoid
| € add(t, e) == i = e.index voiet tual, indicating that the service is not an actual capability
lookup(add(t, e), i1) == if e.index = il . . .
then e.value else lookup(t, iL); or assumption, but it is needed for the purposes of specify-
size(@) =0 ing other services. A service is either a piece of data or a
size(add(t, e)) == if e.index et .
then size(t) else size(t)+1; function.
A function is formally specified by giving its precondi-
Figure 2. LSL specification for a table tion and postcondition, as depicted in Figure 4. A precon-
functionSpec = function typeName functi onNane (argList)

[dependson dependencylList] {

. requires | ogi cal Formul a
its own signature. The body of a trait contains, following { modifiesdat aNames. |]

the keywordasserts equations between terms containing ensures | ogi cal For mul a
operators and variables. The theory of a trait is the set of
all logical consequences of its assertions. Teaerated

by clause asserts that each value of the %t is gener-
ated by applying) andadd a finite number of times. And
the partitioned by clause asserts that all distinct values of

Figure 4. Function specification

T'ab can be distinguished by using only thekup and € dition (specified in theequires clause) specifies when the

operators. function is applicable, whereas a postcondition (specified in
o theensuresclause) states what should be established by the

2.1.2. Interface Specifications execution of the function. In addition, tmeodifies clause

In Larch, an interface specification defines an interface specifies what data will be modified by the function. The
between program components. Interface specifications arelependencyListin thdepends orsection is used to list the
written in Larch Interface Languages (LILs), which are pro- specific assumptions for a given capability. An assumption
gramming language dependent. For instance, LCL [7] is de-specific for a capability is either an assumption of the inter-
signed to specify C programs, whereas LM3 [7] is a Larch face or another capability that is required by the interface
interface language for Modula-3. The components specifiedin order to provide the capability. By default (if not ex-
by these LILs are usually programming units, such as pro- plicitly specified), the assumptions specific for a capability
cedures, classes, and packages. In the following discussiorare those assumptions specified in #ssumptionsclause
we present a Larch style interface specification for architec- of the interface. By introducing the dependency list of a
tural components that not only provides services, but alsocapability, we have a finer-grained description of the rela-
requires services. The interface specification includes twotions between capabilities and assumptions, rather than just
sections, one for specifying the capabilities, the other for a description of the assumptions of an interface as a single
specifying the assumptions. In addition, we also specify the entity.
dependencies among capabilities and assumptions. Data is specified by simply declaring it as shown in Fig-

A template for an interface specification is given in Fig- ure 5. The behavioral specification for a complex data type
ure 3. Theusesclause integrates the domain theory speci- (such as an ADT) is attached using thigh behavior key-
fications and the interface specifications. Interface specifi-words. A behavioral specification consists of a set of func-
cations are written using sorts and values defined in LSL tion (method) specifications that each specify externally ob-
traits. Theassumptionsclause declares the services re- servable behavior of an object of the type.
quired by the conforming module, whereas tagabilities Figure 6 is the refined interface specification for the com-
clause specifies the services provided by the conformingponentdataAcces$rom the previously presented example,

dataSpec = data typeName dat aNane
[depends on dependencyLikt

with behavior behavioralSpec

Figure 5. Data specification

where within a function specificationgsult represents the
return value of the functiony”™ and «’ represent the val-
ues of data (variable) before and after the function is ex-

reusability of an existing component for satisfying a given
requirement.

3.1. Generality Relation of Function Specifications

Since the provided and required services of an interface
are a set of functions or data items, we first define the gen-
erality relation of two function specifications.

Definition 2 (Generality relation of function specifica-
tions) Given two function specificationg,andh, g is more
general tharh, denoted a& =y g, if the following rules

ecuted, respectively. The specification states that the com+,g|g-

ponentdataAcceshas two capabilitieseadandwrite, that
depend on a data assumption,z is a table with behavior
specified for checking the existence of a record in the table,
inserting a record into the table, querying and updating the
table.

comp dataAccess is
uses Table(dtModel for Tab, int for Ind, int for Val)
assumptions
data dtModel x with behavior {
bool exists(int recNo) {

ensures result = recNo € X

void insert(int recNo, int val) {

requires “(recNo € X');

modifies x;

ensures recNo € x' A lookup(x’, recNo) = val;
}

int query(int recNo) {
requires recNo € X;
ensures result = lookup(x, recNo);

void update(int recNo, int newVal)
requires recNo € X;
modifies x;
ensures lookup(x’, recNo) = newVal;

}

capabilities

function bool read(int recNo, int recVal)
modifies recVal;

ensures result = recNo €

A (if result then recval’

{

dependsonx {

X
= lookup(x,recNo));
function void write(int recNo,int recVal)

modifies X;
ensures recNo € X

dependsonx {
A recVal = lookup(x’, recNo)

end dataAccess

Figure 6. dataAccess interface specification

3. Interface Generality Relation

In this section, based on the formal specifications of
componentinterfaces, we define a logic-based generality re
lation between interfaces. This generality relation provides

e Signature matching

— Arguments rule.g andh have the same number
of arguments. Let the list of argument typesgof
be (7,, T, ..., T;"), and that ofh be (T};, T},
..., Ty, then there exists a permutation of the
list (T}, T2, ..., T}"), denoted asq!', T, ...,
T}"), such that for al, 1 < i < n, T} is the
same ag’;.

— Result rule.Either bothg andh have a result or
neither has one. If there is a result, tHeésresult
type is the same ags result type.

e Specification rule?
Let pre(f) andpost(f) be the precondition and post-
condition of function specificatioffi, respectively.

— Precondition rule. pre(g) — pre(h), the pre-
condition ofg implies the precondition af.

— Postcondition rulepost(h) — post(g), the post-
condition ofh implies the postcondition of.

The signature matching requires that the two functions’
range types match and their domain types match after per-
mutation. The specification rule requires that a more gen-
eral function have a stronger precondition and a weaker
postcondition.

Intuitively, the generality relation between function
specifications captures the following implementation prop-
erty: let H be a function implementing function specifica-
tion h, then H also implements the function specification
g that is more general thah. In other words, whenever a
function implementing; is needed, the functioi imple-
mentingh can be used.

3.2. Generality Relation of Data Specifications
The generality relation of data items is determined based

on their behavioral specifications.

2parameter renaming has been conducted based on signataténga

a rigorous basis, amenable to automation, to determine theso that the specifications of functigrandh are consistent.

Definition 3 (Generality relation of data specifications Definition 4 (Dependence DAG of interfaggSiven an in-
Given two data specifications andd,, let SPEC; be the terface I, the dependence DAG df, denoted as7; =

set of function specifications af;’s behavioral specifica- (V, E), is derived from the interface specification for

tion (wherei is 1 or 2), d, is more general thad,, de- Specifically, each service dfdefined both in terms of the
noted asil; <y ds, if there exists a map from SPEC, to capabilities and the assumptions corresponds to a node in
SPEC,, such that for any function (method) specification V' (we name the node using its service name). If a service
m € SPEC,, there exists a function specificatiaitm) in u depends on another serviegthen directed edgez:;)

SPEC:, andm is more general than(m), i.e.,7(m) <y cE

m.3

In the following discussion;’; and A; represent the set

The above d_e.finit.ion captures the behavioral pr.operty of capabilities and the set of assumptions specified in inter-
that a data specification should provide all the behavior pro- facel, respectively

vided by a more general data specification. In terms of im-
plementation, the generality relation between data specifi-_ . . . _
cations implies thaa data object that implements a data Definition 5 (Assumptions specific to a single capab)lity

specification also implements any more general data speci- @0 interface, letA; denote the set of assumptions upon
fications which a capability: depends, then

i . A5 ={t |t € A; andt is reachable from in G}.
3.3. Generality Relation of Interfaces p={t] !)

An interface specification contains a set of provided ser- WhereG1 is the dependence DAG of interfade A node

vices (capabilities) and a set of required services (assump IS réachable from a node in a directed acyclic graph
tions) that are needed for providing all of the capabilities. (DAG), if there exists a directed path fromto v.
The assumptions for a specific capability are specified in
the dependency list of the capability specification. An as-
sumption for a specific capability is either an assumption of
the interface or another capability of the interface. There-) N .
lations among the services (both provided and required) of Definition 6 (Assumptions specific to a set of capabillfies
an interface can be depicted usindieected acyclic graph ~ For a set of capabilitiedy’, of interfacer, let A7 be the set
(DAG), called a dependence DAG. For instance, Figure 7 of assumptions upon which capabilitiesigfdepend, then
contains the dependence DAG of the interfde¢gaAccess
depicted in Figure 6. Al = 45

ceK

For example, in thelataAccesiterface,A7°*¢ = {z} and
A1[urite — {’I‘}

According to the above definition, it is true thaf” C
Aj for any interface . However, a correctly specified inter-
face should not have the case Whelﬁ’ C Ay, because
@ @ this would mean that stronger assumptions than needed
have been imposed over the interface.

Figure 7. Dependence DAG of dataAccess in- Definition 7 (Interface generality relationGiven two in-
terface terfacesl; and[, I, is more general thafy , i.e.,I; < I»,

if there exists a map. : Cr, — C/,, such that the follow-
ing rules hold:

e Capabilities rule.
Vsq € C,, there exists a;, s; € Cr,, such thak; =
me(s2), ands; ands. are both data specifications or
function specifications, ang is more general thas,

pability. The directed edgé:, v) means that depends on that is,

v (v is an assumption needed for providiay

In Figure 7, there are three nodes, each of which corre-
sponds to a service. The dashed circle (node) represents an
assumption, whereas the solid circle (node) represents a ca-

—

— 81 =4 s9, if s1 ands, are both data specifications

3There should be an abstraction function that maps the vataugeqde- . . -
scribed in terms of the Larch Shared Language)pto that ofds. We — 81 3y s2, if s1 ands, are both function specifi-
omit it here for simplicity. For details please see [1, 10]. cations

e Assumptions rule. visualization, multilevel abstractions, and automation. In
There exists an onto map, : A;c(ofz) — Ay, such addition to the textual form, visual representation and ma-
7e(Cry) ' nipulation of components, connections, and architectures
that,Vs; € A, 2", lets, = ma(s1), s1 ands, are C
1] . e are supported. ABRIE uses three levels of abstraction in
both data specifications or function specifications, and L o o .

is more aeneral th that is determining the reusability of existing components: types,

51 9 af, ' signatures, and formal (logic-based) specifications. Au-
— s5 =4 1, if 51 ands, are both data specifications tomation is one main potential benefit of architecture-based
reuse. In ABRIE, the component integration (packaging)
process is fully automated. Based on the formal (logic-
based) specifications, (semi-)automatic support in compo-
nent evaluation is provided by integrating the Larch Theo-

The capabilities rule states that a more specific interface gy prover (LP) to assist in the determination of the inter-
I, should provide a corresponding capability for each ca- ¢, generality relation between components.

pability specified in a more general interfaég and the In ABRIE, a component has a set of ports, each of which

corrgspondlng Capab"”Y ify should be more specific than yescripes a service that the component provides or requires.
that in /. The assumptions rule states that every assump-connectors are encapsulations for interactions among com-
tion required by the more specific interfaée needed 10 ,hents A connector consists of a collection of roles for
provide the specified capabilities should have a correspond-the participants of the interaction specified by the connec-

ing assumption i/, that is more specific. Moreover, the . components and connectors are put together to describe
corresponding relation between the assumptions should be,, o chitecture by configuring the ports of components to
onto. .)) i i roles of connectors. Components, connectors, and ports are
_ We_c!glm that the mterfac_e generality relatlo_n defined typed. The type of a component is intended to capture the
in Definition 7 has the following property: (An informal 5 chitectural properties, that s, the way the component may
justification for this claim is given in [4].) be used. Connector types capture recurring component in-
teraction styles. Finally, port types encapsulate information
about services provided or required by a component.

In the following discussion, we focus on the integration
and use of LP in ABRIE. We illustrate how LP can facilitate

Based on the generality relation, we can define the the determination of interface generality relation, and thus
reusability of an existing module for fulfilling a given re- automate the component evaluation process. More detailed
quirement, either for the construction of new systems or in discussions on ABRIE regarding its features and develop-
the maintenance of existing systems. ment can be found in [3].

The main working area of ABRIE is a canvas that

Definition 8 (Reusability Given a requirement, repre- provides a graphical representation and manipulation for
sented as an abstract component (interfdgeyn existing architectural elements. Figure 8 shows a main pro-
component)M (with conformed interfacd,,) is reusable ~ gram/subroutine style architecture for an example system
for fulfilling 1if 1,, < 1. pwr for recognizing palindrome words.

— s2 =y s1, If 51 ands, are both function specifi-
cations

Property 1 Given two interfaces; andl,, if I; < I, i.e.,
I, is more general thah , then any modulé/ conforming
to I; also conforms tds.

According to Property 1, it is easy to séé = I, that is, e — s et - —
M conforms tol. Therefore, we can us& to implement
1. More specifically, we can map every capabilitin 7 to
me(c) of I,,,, and every assumptianin A}r;(o’) toma(a) of , R =5

I. = 4 | Remove

4. ABRIE: A Software Architecture-Based
Reuse and Integration Environment

Fait Reuse | View

Mot implemented

ABRIE is an experimental system designed to explore . =1
the use of software architectures as a framework for as-
sembling software components. The design objective is to Figure 8. ABRIE Architecture Design

provide an integrated environment to address various reuse

issues: composition specification, component management In pwr, Coordinatoris the main control component that
and evaluation, and component integration. Three charac-calls procedures defined in componemté/ord, OutWord
teristics are particularly emphasized in the ABRIE design: andRecognizer InWord inputs words from annFile port

that is configured to the standard inpuDutWord writes
words to a port that is configured to the standard output.

1|

Hle LSLChecker fuseriZsicheny ongishr _list.Is1

Recognizedefines and exports a procedus®alindrome sk Lyt IR 9T by AR for wmrehng et o eovek i
that checks if a word is a palindrome wordRecognizer LS a1l cesuleni. E, aslf, self pre, self past. €, resultn?. mosl
imports and uses a character stack through a connector UA TRt GeTE Fast) <> se1E post. - enpts.
ComponentCharStaclkdefines and exports an AD3stack Zii:;;gag"ﬁzgggi:i%}ﬁéi,=5\ il e o A e

In orderto illustrate the process of evaluating and reusing D =) TR pan DR Re) (O et o,
existing components in ABRIE, let us consider the im- ?éﬁggzié1‘%5522.&;{%?%E“‘fé::%i%i Dicadtoeten)
plementation of componer@harStack The “Component TeetBs Y ioinpth(lale) > result02 - (self = eupts) ;
Property” window in Figure 8 shows the properties of com-

ponentCharStack By clicking the “Reuse” button in the) o

“Component Property” window, the user instructs ABRIE Figure 10. Proof Obligations

to search its component library and return all the candidate

components that are of the same typ&asrStack Based yeysapility of the library component. Figure 11 shows a

on their specifications, the user selects one candidate fosnapshot of LP while it is discharging the proof obligations
further evaluation. Figure 9 shows the scenario of matchingfor our example. LP is an interactive theorem proving sys-

a library componerttist for satisfyingCharStackwhereB tem for multi-sorted first-order logic. In certain cases, user
andC represent behavior and constructor, respectively. interaction may be required in proving/disproving a conjec-

= ture. However, for our example, all the proof obligations are
st | net | et | prootogatn| L Pover | automatically proved by LP. Therefore the assumed map-
Taget Conpanent: ChaStack Typer ADT Uorary Camponent: List Tye: ADT ping is justified and we can reuse thist component for
Portlane Type Matohing Status [N [Porthane Type Al Sat|sfy|ng Componerﬁharstack
1. cstack EDTD=£ 1. List ADTDef
— list C
cstack C list. addatHead B
gtk T — a3
pope B detachAtHead detachAtHead B LP1.15: prove
tope # pead e 3 (iéErﬁpty(self post) => self post = empty)
LSEmty B isEmpty — .
q T 4 | | d Attempting to prove conjecture cstack_listTheorem.1:
isEmpty(self_post) => self_post = empty
Cancel Apply Conjecture cstack_listTheorem.1
[l Proved by normalization.

Deleted formula cstack_listTheorem.1, which reduced
to ‘true’.

Figure 9. Component Matching

LP1.16: prove
(self_post = (xE \precat self_pre) =>

Both List andCharStackhave only a provided service: a (xE = head(self_post) A self_pre = tail(self_post)))

data item specified with a set of operations and their respec- - _ _
. . . - Attempting to prove conjecture cstack_listTheorem.2:
tive behavior. In order to determine the reusability of com- *“seif post = x ~ \precat self pre =>
ponentList, we need to establish whether the AR3tack x = head(self_post) A self_pre = tail(self_post)
. . . R Conjecture cstack_listTheorem.2
defined in componertharStackis more general thalist [l Proved by normalization.
in Componenﬂ_ist' We proceed by assigning a mapp|ng E)elﬁ:sg* formula cstack_listTheorem.2, which reduced
between the operators of the two ADTs. As shown in Fig- '
ure 9, we assume that the construastackis more general
than constructolist, pushcthanaddAtHeadpopcthande-
tachAtHeadand etc.. Given the mapping, ABRIE will au-
tomatically generate the proof obligations for justifying the
mapping. Figure 10 depicts the proof obligations generated
for the mapping shown in Figure 9.

Figure 11. A Snapshot of LP in resolving proof
obligations

Based on the justified mapping between ports (and be-

The_ pr?‘)f obligations are generated based on the_'_‘amhhavior of ports), ABRIE will automatically generate code
specifications of the two components. In order to facilitate necessary for resolving naming conflicts between the li-

the application of the Larch Prover (LP) for analyzing them, brary component and the target component during the sys-
the proof obligations are represented in terms of LSL speci- tem packaging process [3].

fications. After preprocessing the proof obligations, we can

invoke the Larch Prover (LP) from the “Component Match-

ing” window to assist in proving these obligations. If all 5. Related Work

these obligations are successfully resolved, then the user- Jeng and Cheng [8] proposed specification matching for
assigned mapping is justified, and thereby establishing thereuse based on order-sorted predicate logic (OSPL). They

defined both exact and relaxed matches. Zaremski and
Wing [13] summarized several types of specification match-
ings to capture different behavioral relations. Both ap-
proaches discussed module specification matching, where
a module simply refers to a collection of individual func-
tions, rather than an architectural unit such as those that we
considered in this paper. In both approaches, there is no
support for capturing assumptions that a module requires
of its environment, nor are the dependence relations of the
functions within a module considered.

Several behavioral notions of subtyping in object-
oriented design have recently been proposed [1, 5, 10].
These notions capture the substitutability property of sub-
types: Given a progran?, when an objecb of type 7' in

P is substituted by’ of type S, wheresS is a subtype of [5]

T, the behavior of? will remain unchanged. Similar to our
notion for interface generality relation, these definitions for

[2] V. R. Basili, L. C. Briand, and W. L. Melo.

de Roever, and G. Rozenberg, editdrBlCS volume 489,
pages 60-90. Springer-Verlag, 1991.

Measuring
the impact of reuse on quality and productivity in object-
oriented systems. Technical Report UMIACS-TR-95-2,
University of Maryland, Computer Science Department,
1995.

3] Y. Chen and B. Cheng. Facilitating an automated approach

to architecture-based software reuse Phoc. of 12th IEEE
Intl. Conference on Automated Software Engineering (to ap-
pear), November 1997.

[4] Y. Chen and B. H. C. Cheng. Formalizing and automat-

ing component reuse. Technical Report MSU-CPS-97-15,
Michigan State University, Computer Science Department,
May 1997.

K. K. Dhara and G. T. Leavens. Forcing behavioral sub-
typing through specification inheritance. Broceedings of
the 18th International Conference on Software Engineering
(ICSE’18) Berlin, Germany, March 1996.

behavioral subtyping not only consider syntactic constraints [g] w. B. Frakes and S. Isoda. Success factors of systematic

(such as matches between signatures), but also emphasize

reuse.[EEE Softwargell, September 1994.

the semantic obligations. The main difference between our [7] J. V. Guttag and J. HorningLarch: Languages and Tools

work and these projects lies in the granularity of compo-

for Formal SpecificationSpringer-Verlag, 1993.

nents: their components (objects or object types) are rela- [8] J.-J. Jeng and B. H. C. Cheng. Specification matching for

tively fine-grained, whereas we consider architectural units
that have structural constraints imposeddxyuiring or pro-
viding services. In addition to theoretical investigations, we
also explored the use of the interface generality relation as
a basis for component evaluation and selection in ABRIE.

ABRIE integrates tools to facilitate the determination of the [10]

interface generality relation.

6. Summary and Future Investigations
In this paper, we addressed an important issue in soft-

ware component reuse: determining the reusability of an [12]

existing component for fulfilling a requirement. We first

presented a formalism for describing component interfaces, [13]

and then we defined a component interface generality re-
lation that explicitly captures the semantic obligations for
an existing component to satisfy a requirement. We also
showed how this interface generality relation can be used in
automating the evaluation and selection of reusable compo-
nents in a software architecture-based reuse and integration
environment.

The interface generality relation defined in this paper is
applicable to components that have data or procedures as
their services. However, an actual system may consist of
other kinds of components, such as filters that interact with
their environment through pipes. We are currently investi-
gating the generality relation for these kinds of components.

References

[1] P. America. Designing an object-oriented programmiug |
guage with behavioral subtyping. In J. W. de Bakker, W. P.

(9]

[11]

software reuse: A foundation. BSR'95ACM SIGSOFT,
ACM Press, April 1995.

M. R. Laux, R. H. Bourdeau, and B. H. C. Cheng. An in-
tegrated development environment for formal specification
In Proc. of the IEEE 5th Intl. Conf. on Software Engineering
and Knowledge Engineeringune 1993.

B. H. Liskov and J. M. Wing. A behavioral notion of sub-
typing. ACM Transactions on Programming Languages
16(10), November 1994.

H. Mili, F. Mili, and A. Mili. Reusing software: Issuesnd
research directionslEEE Transactions on Software Engi-
neering 21(6):528-561, June 1995.

R. Prieto-Diaz and J. M. Neighbors. Module intercortiet
languagesJ. Systems and Softwaf{4), Nov 1986.

A. M. Zaremski and J. M. Wing. Specification matching of
software components. Brd ACM SIGSOFT Symposium on
the Foundations of Software Engineerjr@@ctober 1995.

