
in Proc. of 9th IEEE Intl. Conference on Tools with AI, page 94-101, Newport Beach, CA, Nov. 3-8, 1997

Formalizing and Automating Component Reuse�
Yonghao Chen and Betty H. C. Chengy

Department of Computer Science
Michigan State University
East Lansing, MI 48824

email:fchenyong, chengbg@cps.msu.edu

Abstract
Using existing components to construct software systems

has significant potential to improving software productivity
and quality. A key problem in software component reuse
is the selection of appropriate components for satisfying a
given requirement. In this paper, we define a component
interface generality relation that provides a foundation for
component selection. This generality relation, represented
in terms of formal specifications, precisely captures the se-
mantic obligations for an existing component to satisfy the
requirements of a target system. The formal specifications
facilitate the (semi-) automatic determination of the gen-
erality relation. We show how this generality relation has
been used to determine the reusability of software compo-
nents in a software architecture-based reuse and integration
environment.

1. Introduction

The use of existing software components to construct
new systems is recognized as having significant potential to
improving software development productivity and software
quality [2, 6, 11]. Recently, a great deal of effort has been
directed towards an architecture-driven, component-based
software development paradigm. A software architecture is
a collection of components, connectors, and a configuration
of how the components should be connected via connectors.
By specifying the interfaces of constituent components and
connectors of a target system, software architectures serve
as frameworks for assembling existing components. Given
an architecture specification, the assembly process of soft-
ware components consists of two phases: First, the existing
components are retrieved, evaluated, and matched to the in-
terfaces in the architecture specification. Then a packaging
process is invoked to integrate these components, generat-
ing code as necessary for adapting components and/or im-�This work is supported in part by National Science Foundation grants
CCR-9633391, CCR-9407318 and CCR-9209873.yPlease contact this author for all correspondences.

plementing connections.
A key step in the assembly process is the component se-

lection. Given an interface specification, the objective of
component selection is to locate the most appropriate com-
ponents that satisfy the interface. The criteria necessary for
a component to satisfy an interface is usually implicit and
not precisely captured. For example, a simple, but widely
used, criterion is name (keyword) matching. However, key-
words cannot convey significantly useful information, un-
less they are widely accepted terminology, such as mathe-
matical functions, for example,sin, cos, etc.. A more in-
formative criterion may be based on signatures (syntax and
type information). Although signatures encapsulate type in-
formation, they still fail to capture the behavior of a com-
ponent precisely. Natural language descriptions may doc-
ument semantic information of components. However, the
inherent ambiguity of natural languages (together with pos-
sible inconsistencies in the documentation) may make it dif-
ficult to locate the “right” component.

Recent work in formal methods has produced rich for-
malisms for use in software development. Among others
is the Larch family of specification languages [7] used to
specify programs written in C, C++, Modula-3, Smalltalk,
Ada, and CLU. This paper describes an approach to soft-
ware reuse that takes advantage of the logical reasoning and
automated processing enabled by formal specifications of
software components to determine which existing compo-
nents can be used to satisfy the requirements of a new (tar-
get) system.

The remainder of this paper is organized as follows. The
next section discusses the specification of software com-
ponents. A Larch-styled formalism is presented to specify
component interfaces. Based on the formal specifications,
we define a component interface generality relation in Sec-
tion 3. In Section 4, we describe the application of the in-
terface generality relation in a software architecture-based
reuse and integration environment. We discuss the use of
the Larch theorem prover LP to determine the interface gen-
erality relation. Related work is described in Section 5. We

conclude this paper with a summary and a brief description
of future investigations.

2. Component Specification

In simplistic terms, a component is a computational unit.
As a part of a system, each component provides certain ser-
vices to its environment, as well as requires some services
from its environment. The services provided by a compo-
nent represent thecapabilitiesof the component, and the
services required by a component constitute theassump-
tions that the component requires of its environment. A
service may be in a variety of forms, for example, an event
in event-based systems, or a data stream in a pipeline sys-
tem. In this paper, we consider components that have either
data or functions (procedures) as their services. These com-
ponents are also termed modules, since they have the same
properties as those described in a conventional module in-
terconnection language (MIL) [12].

The specification of the capabilities and assumptions of
a module is encapsulated in the interface of the module. A
module may or may not have an implementation. A compo-
nent without an implementation is also termed an abstract
component or simply an interface. Each existing compo-
nent must have an implementation. The implementation of
a module should conform to its interface.

Definition 1 (Conformance of modules to interfaces) A
moduleM conforms to an interfaceI (denoted asM j= I)
iff (1) M implements all of the capabilities ofI , and (2) in
order to implement the capabilities ofI , M must use and
only use all of the assumptions stated inI . M is called a
conforming module ofI , andI is a conformed interface ofM .1

The conformance definition makes it possible to system-
atically check the reusability of a component solely based
on its conformed interface. It should be noted that an ex-
isting module may conform to multiple interfaces, each of
which describes a collection of possible behaviors (provid-
ing services and/or requiring services) that the module may
exhibit in constructing a system.

Example 1 Consider a simple data access system. The sys-
tem has three components that are organized into layers,
where a given layer uses services provided by the layer be-
low it. At the top is the user interface that accepts user data
access requests, and handles them by calling data access
functions provided in the middle layer. The middle layer
component, in turn, uses an abstract data type (ADT) ob-
ject defined in the bottom layer of the system. Figure 1 de-
scribes the interface of the middle layer component, where

1In this context, module refers to the implementation of the module.

functionsreadandwrite are used by the top layer compo-
nent, and the data objectx of typedtModelis defined by the
bottom layer component.

This example will be referenced and refined in the fol-
lowing discussions.

comp dataAccess is
assumptions

dtModel x;
capabilities

bool read(... ...);
bool write(... ...);

end dataAccess

Figure 1. An example component interface
specification

2.1. Refining Interface Specifications
In this section, we refine the definition of interfaces. In

addition to the capabilities and assumptions of a component,
we also include dependence information among capabili-
ties and assumptions in an interface specification. We use
Larch-styled formal specifications [7] to specify interfaces.
Formal specifications of interfaces precisely capture the
functionalities and provide a rigorous foundation to reason
about the relations between interfaces. We choose Larch as
the target specification language for several reasons. Larch
has a simple syntax and provides support for commonly
used programming languages, including C, C++, Smalltalk,
Modula-3, and ML [7]. Second, Larch has support for li-
braries of specifications, thus promoting the reuse of speci-
fications. Finally, there is good tool support for developing
and analyzing Larch specifications, including a graphically-
based browser and editor [9], syntax checker [7], and theo-
rem prover [7].

2.1.1. Specifying Domain Theories
Larch specifications consist of two tiers: one tier spec-

ifies domain theories, and the other tier specifies module
interfaces in terms of the problem domain. A domain the-
ory is an algebraic model of a problem domain. It defines a
set of abstract types (sorts) and operations over those sorts.
The Larch Shared Language (LSL) is used to specify a do-
main theory termed atrait. An LSL specification for a table
is shown in Figure 2.

The specification starts with the inclusion of another
trait, Integer. TheInteger trait defines the theory of inte-
ger, including constants0, 1, and operator+, and so on. TheInteger trait is specified in the LSL handbook [7], which
is a collection (library) of many useful LSL specifications.
Theintroducesclause declares a set of operators, each with

// LSL specification for Table
Table: trait

includes Integer
Entry tuple of index: Ind, value: Val
introduces�: ! Tab

add: Tab, Entry ! Tab
lookup: Tab, Ind ! Val
__ 2 __: Ind, Tab ! bool
size: Tab ! Int

asserts
Tab generated by �, add
Tab partitioned by 2, lookup8i, i1: Ind, v, v1: Val, t: Tab, e: Entry
˜(i 2 �);
i 2 add(t, e) == i = e.index _ i 2 t;
lookup(add(t, e), i1) == if e.index = i1

then e.value else lookup(t, i1);
size(�) = 0;
size(add(t, e)) == if e.index 2 t

then size(t) else size(t)+1;

Figure 2. LSL specification for a table

its own signature. The body of a trait contains, following
the keywordasserts, equations between terms containing
operators and variables. The theory of a trait is the set of
all logical consequences of its assertions. Thegenerated
by clause asserts that each value of the sortTab is gener-
ated by applying� andadd a finite number of times. And
thepartitioned by clause asserts that all distinct values ofTab can be distinguished by using only thelookup and2
operators.

2.1.2. Interface Specifications
In Larch, an interface specification defines an interface

between program components. Interface specifications are
written in Larch Interface Languages (LILs), which are pro-
gramming language dependent. For instance, LCL [7] is de-
signed to specify C programs, whereas LM3 [7] is a Larch
interface language for Modula-3. The components specified
by these LILs are usually programming units, such as pro-
cedures, classes, and packages. In the following discussion,
we present a Larch style interface specification for architec-
tural components that not only provides services, but also
requires services. The interface specification includes two
sections, one for specifying the capabilities, the other for
specifying the assumptions. In addition, we also specify the
dependencies among capabilities and assumptions.

A template for an interface specification is given in Fig-
ure 3. Theusesclause integrates the domain theory speci-
fications and the interface specifications. Interface specifi-
cations are written using sorts and values defined in LSL
traits. Theassumptionsclause declares the services re-
quired by the conforming module, whereas thecapabilities
clause specifies the services provided by the conforming

interface interfaceName is
uses LSL traits
assumptionsfdataSpec; | functionSpec; g�
capabilitiesfdataSpec; | functionSpec; g�

end interfaceName

Figure 3. Template for interface specification

module. A service can be prefixed with the keywordvir-
tual, indicating that the service is not an actual capability
or assumption, but it is needed for the purposes of specify-
ing other services. A service is either a piece of data or a
function.

A function is formally specified by giving its precondi-
tion and postcondition, as depicted in Figure 4. A precon-

functionSpec = function typeName functionName (argList)
[depends on dependencyList] f

[requires logicalFormula]
[modifies dataNames]
ensures logicalFormulag

Figure 4. Function specification

dition (specified in therequires clause) specifies when the
function is applicable, whereas a postcondition (specified in
theensuresclause) states what should be established by the
execution of the function. In addition, themodifies clause
specifies what data will be modified by the function. The
dependencyList in thedepends onsection is used to list the
specific assumptions for a given capability. An assumption
specific for a capability is either an assumption of the inter-
face or another capability that is required by the interface
in order to provide the capability. By default (if not ex-
plicitly specified), the assumptions specific for a capability
are those assumptions specified in theassumptionsclause
of the interface. By introducing the dependency list of a
capability, we have a finer-grained description of the rela-
tions between capabilities and assumptions, rather than just
a description of the assumptions of an interface as a single
entity.

Data is specified by simply declaring it as shown in Fig-
ure 5. The behavioral specification for a complex data type
(such as an ADT) is attached using thewith behavior key-
words. A behavioral specification consists of a set of func-
tion (method) specifications that each specify externally ob-
servable behavior of an object of the type.

Figure 6 is the refined interface specification for the com-
ponentdataAccessfrom the previously presented example,

dataSpec = data typeName dataName
[depends on dependencyList]

with behavior behavioralSpec

Figure 5. Data specification

where within a function specification,result represents the
return value of the function,xˆ andx’ represent the val-
ues of data (variable)x before and after the function is ex-
ecuted, respectively. The specification states that the com-
ponentdataAccesshas two capabilities,readandwrite, that
depend on a data assumption,x. x is a table with behavior
specified for checking the existence of a record in the table,
inserting a record into the table, querying and updating the
table.

comp dataAccess is
uses Table(dtModel for Tab, int for Ind, int for Val)
assumptions

data dtModel x with behavior f
bool exists(int recNo) f

ensures result = recNo 2 x;g
void insert(int recNo, int val) f

requires ˜(recNo 2 xˆ);
modifies x;
ensures recNo 2 x’ ^ lookup(x’, recNo) = val;g

int query(int recNo) f
requires recNo 2 x;
ensures result = lookup(x, recNo);g

void update(int recNo, int newVal) f
requires recNo 2 xˆ;
modifies x;
ensures lookup(x’, recNo) = newVal;gg

capabilities
function bool read(int recNo, int recVal) depends on x f

modifies recVal;
ensures result = recNo 2 x^ (if result then recVal’ = lookup(x,recNo));g

function void write(int recNo,int recVal) depends on x f
modifies x;
ensures recNo 2 x’ ^ recVal = lookup(x’, recNo)g

end dataAccess

Figure 6. dataAccess interface specification

3. Interface Generality Relation
In this section, based on the formal specifications of

component interfaces, we define a logic-based generality re-
lation between interfaces. This generality relation provides
a rigorous basis, amenable to automation, to determine the

reusability of an existing component for satisfying a given
requirement.

3.1. Generality Relation of Function Specifications

Since the provided and required services of an interface
are a set of functions or data items, we first define the gen-
erality relation of two function specifications.

Definition 2 (Generality relation of function specifica-
tions) Given two function specifications,g andh, g is more
general thanh, denoted ash �f g, if the following rules
hold:� Signature matching

– Arguments rule.g andh have the same number
of arguments. Let the list of argument types ofg
be (T 1g , T 2g , : : :, Tng), and that ofh be (T 1h , T 2h ,: : :, Tnh), then there exists a permutation of the
list (T 1h , T 2h , : : :, Tnh), denoted as (T 10h , T 20h , : : :,Tn0h), such that for alli, 1 � i � n, T i0h is the
same asT ig .

– Result rule.Either bothg andh have a result or
neither has one. If there is a result, thenh’s result
type is the same asg’s result type.� Specification rule2

Let pre(f) andpost(f) be the precondition and post-
condition of function specificationf , respectively.

– Precondition rule. pre(g) ! pre(h), the pre-
condition ofg implies the precondition ofh.

– Postcondition rule.post(h)! post(g), the post-
condition ofh implies the postcondition ofg.

The signature matching requires that the two functions’
range types match and their domain types match after per-
mutation. The specification rule requires that a more gen-
eral function have a stronger precondition and a weaker
postcondition.

Intuitively, the generality relation between function
specifications captures the following implementation prop-
erty: let H be a function implementing function specifica-
tion h, thenH also implements the function specificationg that is more general thanh. In other words, whenever a
function implementingg is needed, the functionH imple-
mentingh can be used.

3.2. Generality Relation of Data Specifications

The generality relation of data items is determined based
on their behavioral specifications.

2Parameter renaming has been conducted based on signature matching
so that the specifications of functiong andh are consistent.

Definition 3 (Generality relation of data specifications)
Given two data specificationsd1 andd2, letSPECi be the
set of function specifications ofdi’s behavioral specifica-
tion (wherei is 1 or 2), d2 is more general thand1, de-
noted asd1 �d d2, if there exists a map� from SPEC2 toSPEC1, such that for any function (method) specificationm 2 SPEC2, there exists a function specification�(m) inSPEC1, andm is more general than�(m), i.e.,�(m) �fm.3

The above definition captures the behavioral property
that a data specification should provide all the behavior pro-
vided by a more general data specification. In terms of im-
plementation, the generality relation between data specifi-
cations implies thata data object that implements a data
specification also implements any more general data speci-
fications.

3.3. Generality Relation of Interfaces

An interface specification contains a set of provided ser-
vices (capabilities) and a set of required services (assump-
tions) that are needed for providing all of the capabilities.
The assumptions for a specific capability are specified in
the dependency list of the capability specification. An as-
sumption for a specific capability is either an assumption of
the interface or another capability of the interface. The re-
lations among the services (both provided and required) of
an interface can be depicted using adirected acyclic graph
(DAG), called a dependence DAG. For instance, Figure 7
contains the dependence DAG of the interfacedataAccess
depicted in Figure 6.

read write

x

Figure 7. Dependence DAG of dataAccess in-
terface

In Figure 7, there are three nodes, each of which corre-
sponds to a service. The dashed circle (node) represents an
assumption, whereas the solid circle (node) represents a ca-

pability. The directed edge
�!hu; vi means thatu depends onv (v is an assumption needed for providingu).

3There should be an abstraction function that maps the value space (de-
scribed in terms of the Larch Shared Language) ofd1 to that ofd2. We
omit it here for simplicity. For details please see [1, 10].

Definition 4 (Dependence DAG of interfaces) Given an in-
terfaceI , the dependence DAG ofI , denoted asGI =hV;Ei, is derived from the interface specification forI .
Specifically, each service ofI defined both in terms of the
capabilities and the assumptions corresponds to a node inV (we name the node using its service name). If a serviceu depends on another servicev, then directed edge

�!hu; vi2 E.

In the following discussion,CI andAI represent the set
of capabilities and the set of assumptions specified in inter-
faceI , respectively.

Definition 5 (Assumptions specific to a single capability)
In an interfaceI , letAcI denote the set of assumptions upon
which a capabilityc depends, thenAcI = ft j t 2 AI andt is reachable fromc in GIg.

whereGI is the dependence DAG of interfaceI . A nodeu is reachable from a nodev in a directed acyclic graph
(DAG), if there exists a directed path fromv to u.

For example, in thedataAccessinterface,AreadI = fxg andAwriteI = fxg.

Definition 6 (Assumptions specific to a set of capabilities)
For a set of capabilities,K, of interfaceI , letAKI be the set
of assumptions upon which capabilities ofK depend, thenAKI = [c2KAcI

According to the above definition, it is true thatACII �AI for any interfaceI . However, a correctly specified inter-
face should not have the case whereACII � AI , because
this would mean that stronger assumptions than needed
have been imposed over the interface.

Definition 7 (Interface generality relation) Given two in-
terfacesI1 andI2, I2 is more general thanI1, i.e.,I1 � I2,
if there exists a map�c : CI2 ! CI1 , such that the follow-
ing rules hold:� Capabilities rule.8s2 2 CI2 , there exists as1, s1 2 CI1 , such thats1 =�c(s2), ands1 ands2 are both data specifications or

function specifications, ands2 is more general thans1,
that is,

– s1 �d s2, if s1 ands2 are both data specifications

– s1 �f s2, if s1 ands2 are both function specifi-
cations

� Assumptions rule.
There exists an onto map�a : A�c(CI2)I1 ! AI2 , such

that,8s1 2 A�c(CI2)I1 , let s2 = �a(s1), s1 ands2 are
both data specifications or function specifications, ands1 is more general thans2, that is,

– s2 �d s1, if s1 ands2 are both data specifications

– s2 �f s1, if s1 ands2 are both function specifi-
cations

The capabilities rule states that a more specific interfaceI1 should provide a corresponding capability for each ca-
pability specified in a more general interfaceI2, and the
corresponding capability inI1 should be more specific than
that in I2. The assumptions rule states that every assump-
tion required by the more specific interfaceI1 needed to
provide the specified capabilities should have a correspond-
ing assumption inI2 that is more specific. Moreover, the
corresponding relation between the assumptions should be
onto.

We claim that the interface generality relation defined
in Definition 7 has the following property: (An informal
justification for this claim is given in [4].)

Property 1 Given two interfacesI1 andI2, if I1 � I2, i.e.,I2 is more general thanI1, then any moduleM conforming
to I1 also conforms toI2.

Based on the generality relation, we can define the
reusability of an existing module for fulfilling a given re-
quirement, either for the construction of new systems or in
the maintenance of existing systems.

Definition 8 (Reusability) Given a requirement, repre-
sented as an abstract component (interface)I , an existing
componentM (with conformed interfaceIm) is reusable
for fulfilling I if Im � I .

According to Property 1, it is easy to seeM j= I , that is,M conforms toI . Therefore, we can useM to implementI . More specifically, we can map every capabilityc in I to�c(c) of Im, and every assumptiona in A�c(CI)Im to�a(a) ofI .

4. ABRIE: A Software Architecture-Based
Reuse and Integration Environment

ABRIE is an experimental system designed to explore
the use of software architectures as a framework for as-
sembling software components. The design objective is to
provide an integrated environment to address various reuse
issues: composition specification, component management
and evaluation, and component integration. Three charac-
teristics are particularly emphasized in the ABRIE design:

visualization, multilevel abstractions, and automation. In
addition to the textual form, visual representation and ma-
nipulation of components, connections, and architectures
are supported. ABRIE uses three levels of abstraction in
determining the reusability of existing components: types,
signatures, and formal (logic-based) specifications. Au-
tomation is one main potential benefit of architecture-based
reuse. In ABRIE, the component integration (packaging)
process is fully automated. Based on the formal (logic-
based) specifications, (semi-)automatic support in compo-
nent evaluation is provided by integrating the Larch Theo-
rem Prover (LP) to assist in the determination of the inter-
face generality relation between components.

In ABRIE, a component has a set of ports, each of which
describes a service that the component provides or requires.
Connectors are encapsulations for interactions among com-
ponents. A connector consists of a collection of roles for
the participants of the interaction specified by the connec-
tor. Components and connectors are put together to describe
an architecture by configuring the ports of components to
roles of connectors. Components, connectors, and ports are
typed. The type of a component is intended to capture the
architectural properties, that is, the way the component may
be used. Connector types capture recurring component in-
teraction styles. Finally, port types encapsulate information
about services provided or required by a component.

In the following discussion, we focus on the integration
and use of LP in ABRIE. We illustrate how LP can facilitate
the determination of interface generality relation, and thus
automate the component evaluation process. More detailed
discussions on ABRIE regarding its features and develop-
ment can be found in [3].

The main working area of ABRIE is a canvas that
provides a graphical representation and manipulation for
architectural elements. Figure 8 shows a main pro-
gram/subroutine style architecture for an example system
pwr for recognizing palindrome words.

Figure 8. ABRIE Architecture Design

In pwr, Coordinatoris the main control component that
calls procedures defined in componentsInWord, OutWord,
andRecognizer. InWord inputs words from anInFile port

that is configured to the standard input.OutWordwrites
words to a port that is configured to the standard output.
Recognizerdefines and exports a procedureisPalindrome
that checks if a word is a palindrome word.Recognizer
imports and uses a character stack through a connector UA.
ComponentCharStackdefines and exports an ADTcstack.

In order to illustrate the process of evaluating and reusing
existing components in ABRIE, let us consider the im-
plementation of componentCharStack. The “Component
Property” window in Figure 8 shows the properties of com-
ponentCharStack. By clicking the “Reuse” button in the
“Component Property” window, the user instructs ABRIE
to search its component library and return all the candidate
components that are of the same type asCharStack. Based
on their specifications, the user selects one candidate for
further evaluation. Figure 9 shows the scenario of matching
a library componentList for satisfyingCharStack, whereB
andC represent behavior and constructor, respectively.

Figure 9. Component Matching

BothList andCharStackhave only a provided service: a
data item specified with a set of operations and their respec-
tive behavior. In order to determine the reusability of com-
ponentList, we need to establish whether the ADTcstack
defined in componentCharStackis more general thanlist
in componentList. We proceed by assigning a mapping
between the operators of the two ADTs. As shown in Fig-
ure 9, we assume that the constructorcstackis more general
than constructorlist, pushcthanaddAtHead, popcthande-
tachAtHead, and etc.. Given the mapping, ABRIE will au-
tomatically generate the proof obligations for justifying the
mapping. Figure 10 depicts the proof obligations generated
for the mapping shown in Figure 9.

The proof obligations are generated based on the Larch
specifications of the two components. In order to facilitate
the application of the Larch Prover (LP) for analyzing them,
the proof obligations are represented in terms of LSL speci-
fications. After preprocessing the proof obligations, we can
invoke the Larch Prover (LP) from the “Component Match-
ing” window to assist in proving these obligations. If all
these obligations are successfully resolved, then the user-
assigned mapping is justified, and thereby establishing the

Figure 10. Proof Obligations

reusability of the library component. Figure 11 shows a
snapshot of LP while it is discharging the proof obligations
for our example. LP is an interactive theorem proving sys-
tem for multi-sorted first-order logic. In certain cases, user
interaction may be required in proving/disproving a conjec-
ture. However, for our example, all the proof obligations are
automatically proved by LP. Therefore the assumed map-
ping is justified and we can reuse theList component for
satisfying componentCharStack.

LP1.15: prove
(isEmpty(self_post) => self_post = empty)
..

Attempting to prove conjecture cstack_listTheorem.1:
isEmpty(self_post) => self_post = empty

Conjecture cstack_listTheorem.1
[] Proved by normalization.
Deleted formula cstack_listTheorem.1, which reduced
to ‘true’.

LP1.16: prove
(self_post = (x:E nprecat self_pre) =>
(x:E = head(self_post) ^ self_pre = tail(self_post)))
..

Attempting to prove conjecture cstack_listTheorem.2:
self_post = x nprecat self_pre =>
x = head(self_post) ^ self_pre = tail(self_post)

Conjecture cstack_listTheorem.2
[] Proved by normalization.
Deleted formula cstack_listTheorem.2, which reduced
to ‘true’.

Figure 11. A Snapshot of LP in resolving proof
obligations

Based on the justified mapping between ports (and be-
havior of ports), ABRIE will automatically generate code
necessary for resolving naming conflicts between the li-
brary component and the target component during the sys-
tem packaging process [3].

5. Related Work
Jeng and Cheng [8] proposed specification matching for

reuse based on order-sorted predicate logic (OSPL). They

defined both exact and relaxed matches. Zaremski and
Wing [13] summarized several types of specification match-
ings to capture different behavioral relations. Both ap-
proaches discussed module specification matching, where
a module simply refers to a collection of individual func-
tions, rather than an architectural unit such as those that we
considered in this paper. In both approaches, there is no
support for capturing assumptions that a module requires
of its environment, nor are the dependence relations of the
functions within a module considered.

Several behavioral notions of subtyping in object-
oriented design have recently been proposed [1, 5, 10].
These notions capture the substitutability property of sub-
types: Given a programP , when an objecto of typeT inP is substituted byo0 of typeS, whereS is a subtype ofT , the behavior ofP will remain unchanged. Similar to our
notion for interface generality relation, these definitions for
behavioral subtyping not only consider syntactic constraints
(such as matches between signatures), but also emphasize
the semantic obligations. The main difference between our
work and these projects lies in the granularity of compo-
nents: their components (objects or object types) are rela-
tively fine-grained, whereas we consider architectural units
that have structural constraints imposed byrequiringorpro-
vidingservices. In addition to theoretical investigations, we
also explored the use of the interface generality relation as
a basis for component evaluation and selection in ABRIE.
ABRIE integrates tools to facilitate the determination of the
interface generality relation.

6. Summary and Future Investigations
In this paper, we addressed an important issue in soft-

ware component reuse: determining the reusability of an
existing component for fulfilling a requirement. We first
presented a formalism for describing component interfaces,
and then we defined a component interface generality re-
lation that explicitly captures the semantic obligations for
an existing component to satisfy a requirement. We also
showed how this interface generality relation can be used in
automating the evaluation and selection of reusable compo-
nents in a software architecture-based reuse and integration
environment.

The interface generality relation defined in this paper is
applicable to components that have data or procedures as
their services. However, an actual system may consist of
other kinds of components, such as filters that interact with
their environment through pipes. We are currently investi-
gating the generality relation for these kinds of components.

References

[1] P. America. Designing an object-oriented programming lan-
guage with behavioral subtyping. In J. W. de Bakker, W. P.

de Roever, and G. Rozenberg, editors,LNCS, volume 489,
pages 60–90. Springer-Verlag, 1991.

[2] V. R. Basili, L. C. Briand, and W. L. Melo. Measuring
the impact of reuse on quality and productivity in object-
oriented systems. Technical Report UMIACS-TR-95-2,
University of Maryland, Computer Science Department,
1995.

[3] Y. Chen and B. Cheng. Facilitating an automated approach
to architecture-based software reuse. InProc. of 12th IEEE
Intl. Conference on Automated Software Engineering (to ap-
pear), November 1997.

[4] Y. Chen and B. H. C. Cheng. Formalizing and automat-
ing component reuse. Technical Report MSU-CPS-97-15,
Michigan State University, Computer Science Department,
May 1997.

[5] K. K. Dhara and G. T. Leavens. Forcing behavioral sub-
typing through specification inheritance. InProceedings of
the 18th International Conference on Software Engineering
(ICSE’18), Berlin, Germany, March 1996.

[6] W. B. Frakes and S. Isoda. Success factors of systematic
reuse.IEEE Software, 11, September 1994.

[7] J. V. Guttag and J. Horning.Larch: Languages and Tools
for Formal Specification. Springer-Verlag, 1993.

[8] J.-J. Jeng and B. H. C. Cheng. Specification matching for
software reuse: A foundation. InSSR’95. ACM SIGSOFT,
ACM Press, April 1995.

[9] M. R. Laux, R. H. Bourdeau, and B. H. C. Cheng. An in-
tegrated development environment for formal specifications.
In Proc. of the IEEE 5th Intl. Conf. on Software Engineering
and Knowledge Engineering, June 1993.

[10] B. H. Liskov and J. M. Wing. A behavioral notion of sub-
typing. ACM Transactions on Programming Languages,
16(10), November 1994.

[11] H. Mili, F. Mili, and A. Mili. Reusing software: Issues and
research directions.IEEE Transactions on Software Engi-
neering, 21(6):528–561, June 1995.

[12] R. Prieto-Diaz and J. M. Neighbors. Module interconnection
languages.J. Systems and Software, 6(4), Nov 1986.

[13] A. M. Zaremski and J. M. Wing. Specification matching of
software components. In3rd ACM SIGSOFT Symposium on
the Foundations of Software Engineering, October 1995.

