
A Gridified Artificial Neural Network Resource

Erich Schikuta and Peter Beran

University of Vienna

Department of Computer Science and Business Informatics

Rathausstr. 19/9, A-1010 Vienna, Austria

{erich.schikuta, peter.beran}@univie.ac.at

Abstract

We present N2Grid, a system for the usage of neural net-

work resources on a world-wide basis. The approach em-

ploys the infrastructure of the Grid as a transparent envi-

ronment to allow users the exchange of information (neural

network resources, as neural network objects and neural

network paradigms) and exploit the available computing re-

sources for neural network specific tasks leading to a Grid

based, world-wide distributed, neural network knowledge

and simulation system. Our system uses only standard pro-

tocols and services aiming for a wide dissemination of this

Grid application.

1 Introduction

The driving stimulus for development is the exchange of

information and resources between researchers. This prin-

ciple is just as valid for the neural information processing

community as for any other research community.

As described by the UK e-Science initiative [16] several

goals can be reached by the usage of new stimulating tech-

niques, as enabling more effective and seamless collabora-

tion of dispersed communities, both scientific and commer-

cial, enable large-scale applications comprising of 10,000

computers, large-scale pipelines etc, transparent access to

“high-end” resources from the desktop, provide an uniform

“look & feel” to a wide range of resources, and location

independence of computational resources as well as data.

A Grid [7] based computational infrastructure couples

a wide variety of geographically distributed computational

resources (such as PCs, workstations, and supercomputers),

storage systems, databases, libraries, and special purpose

scientific instruments, and presents them as a unified inte-

grated resource which can be shared transparently by com-

munities (virtual organizations).

The Grid started out as a means for sharing resources and

was mainly focusing high performance computing. By the

integration of Web Services as an inherent part of the Grid

infrastructure the focus evolved to the sharing of knowledge

to enable collaborations between different virtual organiza-

tions or subjects.

In the “Computational Intelligence” community these

current developments are not used to the maximal possi-

ble extent. As justification of our hypothesis we want to

put a light on the situation of artificial neural network sim-

ulators. In the last few years many different systems were

proposed, but only a few got accepted by the community.

There are systems developed specifically for certain net-

work paradigms, as SOM-PAK [15], and some to deliver

a comprehensive environment, as SNNS [19].

Basically all these systems, reaching from highly sophis-

ticated interactive systems to programming language exten-

sions, share the same common problems:

• A clumsy software environment, which mostly do not

present an intuitive interface to the user.

• Most of these systems present a proprietary system,

which is not capable to interconnect to other software

systems.

• All these systems lack a generalized framework for

handling data sets and neural networks homogenously.

These problems lead to the situation that large number

of rarely used simulation systems exist, because most sci-

entists, scared of existing programs, develop their own sys-

tems for their specific neural network applications. We be-

lieve that this situation is one of the reasons of an obstructed

open information and data exchange within the Computa-

tional Intelligence community.

We see a solution to this problem by the N2Grid system

[14].

N2Grid is an artificial neural network simulation envi-

ronment and provides basic neural network functions like

creating, training and evaluating neural networks. The sys-

tem is Grid-based in order to make it open to the growing

19th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/07 $25.00 © 2007 IEEE
DOI 10.1109/ICTAI.2007.152

396

19th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/07 $25.00 © 2007 IEEE
DOI 10.1109/ICTAI.2007.152

396

19th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/07 $25.00 © 2007 IEEE
DOI 10.1109/ICTAI.2007.152

396

19th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/07 $25.00 © 2007 IEEE
DOI 10.1109/ICTAI.2007.152

396

Internet/Grid community. The simulator interacts with Grid

data resources (as databases) to store and retrieve all rele-

vant data about the static and dynamic components of neu-

ral network objects, and with Grid computing resources to

harness free processing cycles for the “power-hungry” neu-

ral network simulations. Further the system allows to in-

tegrate additional paradigms found on the Grid, provided

by arbitrary users, into the simulator. In a former project

the NeuroWeb system [13], a much simpler Internet based

neural network simulator, was developed, which passes on

several proven design principles to N2Grid.

The layout of the paper is as follows. In the following

section we give a motivation for the development of such a

system and describe the goals we are aiming for. This is fol-

lowed by an overview of the N2Grid architecture, describ-

ing the design principles and justifying them. In Section 3

we present the dynamic service evolution technique, which

enables a highly dynamic client-server communication in

an open world scenario. Next we present a working imple-

mentation describing the use cases followed by a detailed

section on the execution workflow. The paper closes with a

look at future developments and research directions.

2 N2Grid Architecture

The N2Grid system is a neural network simulator using

the Grid infrastructure as deploying and running environ-

ment. It is an evolution of the existing NeuroWeb [13] and

NeuroAccess [2] systems. The idea of these systems was,

to see all components of an artificial neural network as data

objects in a database. Now we extend this approach by iden-

tifying them as resources of the world-wide Grid infrastruc-

ture.

Accordingly to the definition of the notion of “infor-

mation” of Gundry we propose a layered Grid architecture

based on the dimensionality of information in focus which

allows to differentiate three different Grid layers:

• Data Grid, 0-dimensional. The Data Grid builds the

basis layer and stores data which represent just facts.

• Information Grid, 1-dimensional. The Information

Grid collects data of the Data Grid in a structured man-

ner and attributes it with semantic contents.

• Knowledge Grid, 2-dimensional. The Knowledge Grid

provides problem solution mechanisms on the admin-

istered information allowing a human for acting, de-

ciding or planning.

In this architecture each layer (starting from the data

layer) provides its functionality to the next layer in form

of specific services.

N2Grid is based on a service oriented architecture and

spans all three layers of the Grid layer architecture defined

in Section 1. In Table 1 we give the mapping of the specific

N2Grid services to the Grid layer architecture.

Table 1. N2Grid component mapping

Knowledge N2Grid Paradigm Service

Grid N2Grid Java Application/Applet

N2GPort Web Portal

Information N2Grid Paradigm Archive Service

Grid Resource Broker, Replica Manager

Data N2Grid Simulation Service

Grid N2Grid Data Services

N2Grid Services

N2Grid Information Services

N2Grid Clients

R
equest

R
equest

Data Request Local SimulationsData Request Local Simulations

D
iscovery

D
iscovery

C
om

pu
ta

tio
n

C
om

pu
ta

tio
n

R
eg

is
tra

tio
n

R
eg

is
tra

tio
n

Web Portal

N2GPort

Web Portal

N2GPort

Java

Application

N2Grid

Java

Application

N2Grid

Java

Applet

N2Grid

Java

Applet

N2Grid

Broker Services,

Resource Broker,

Replica Manager

Broker Services,

Resource Broker,

Replica Manager

Data Services

GridFTP, OGSA-DAI

Data Services

GridFTP, OGSA-DAI

Simulation Services

Globus Gatekeeper

Simulation Services

Globus Gatekeeper

Paradigm Archive Services

GridFTP, OGSA-DAI

Paradigm Archive Services

GridFTP, OGSA-DAI

Figure 1. N2Grid application model

Figure 1 shows the overall application model of the

N2Grid system in the final implementation phase. We as-

sume a sophisticated Grid infrastructure, including indepen-

dent resource brokers and replica manager. A client does

not care about the execution hosts or data sources. It can

control a local simulation or a simulation in the Grid infras-

tructure in a transparent way. Parts of the remote execution

are the authentication to the Grid resources, the processing

of the job descriptions and the usage of Grid data sources.

For local simulation runs the client can also use local arbi-

trary data sources.

The components of N2Grid represent a novel, service

oriented, tripartite Grid application. N2Grid Services re-

alize Simulation Services, Paradigm Archive Services and

Data Services. The end user can choose between three dif-

ferent N2Grid Clients. These are respectively a Java appli-

cation with the possibility of direct database connections, a

Java Applet and a Web portal. N2Grid services and clients

are interconnected by standard Grid broker services, using

standard Grid information services.

397397397397

2.1 Grid Infrastructure

The N2Grid system is based on the common middleware

Globus [5], and some extensions of Globus especially the

DataGrid project [4] and the “Open Grid Services Archi-

tecture Data Access and Integration” (OGSA-DAI) project

[3].

As independent and transparent service the resource bro-

ker accepts simulation jobs from the client. The job sub-

mission for the client is the same in the case of submitting

it to a resource broker or directly to a simulation service.

The N2Grid system uses the DataGrid [4] resource bro-

ker. Thus for huge data files, as training-, evaluation-, and

propagation-data for artificial neural networks, the replica

manager of the DataGrid project provides an optimized data

file access.

The replica manager implements also a N2Grid key

component, the N2Grid Paradigm Service. It gives the

clients the possibility to find N2Grid paradigm archive ser-

vices providing paradigm implementations. The services

establish the mapping between logical paradigm names and

the physical location and enables the user to search for dif-

ferent types of paradigms (e.g. Back propagation, Quick

propagation, Jordan, ART, etc.).

2.2 N2Grid Services

N2Grid Services are Grid Services hosted by the Grid in-

frastructure. They execute neural network simulation tasks

(as creation, training and evaluation), which are submitted

to the Grid; so they do not consume local client resources.

By the submission the workload is minimized on a local

machine.

We can run the following tasks of neural network simu-

lation remotely in the Grid:

1. Training of neural networks

2. Evaluation of neural networks

3. Processing of data by a neural network

4. Archiving of paradigms

5. Archiving of network objects (nodes, structures,

weights, etc.)

6. Using data sources and archives

Task 1, 2 and 3 are integrated into one component of

the N2Grid system, the Simulation Service, which accom-

plishes the training, evaluation and propagation function of

the neural network simulator. A selected paradigm and net-

work instantiation is executed on a Globus Gatekeeper [10].

The necessary data are provided by other N2Grid services,

described below.

Task 4 is implemented as a N2Grid Paradigm Archive

Service. As mentioned in the previous subsection, the users

can find paradigm archive services over the replica manager.

Paradigms are implemented as Java classes using the Java

Commodity Grid (CoG) Kit [17] and are transferred by the

GridFTP protocol.

Task 5 and 6 are unified by the N2Grid Data Services.

OGSA-DAI provides the access to a database storing all

training-, evaluation-, propagation-data and of course net-

work objects (nodes, structures, weights, etc.).

2.3 N2Grid Clients

We propose three different clients as shown in Figure 1.

First, there exists a N2Grid Java Application client for an

advanced, high end user, who can run also a local database

storing his own data.

Second, we provide a N2Grid Java Applet having a sim-

ilar user interface as the Java application but with lim-

ited functionality. Because of the sandbox principle local

database and file accesses are not allowed. The user can use

the built-in client functions (paradigms) and shared func-

tions of the N2Grid system.

Third, for the purpose of thin clients a simple web

browser can be used as a front end of the N2Grid system by

accessing a Web portal called N2GPort. It provides control

over running simulation jobs on the N2Grid Services and

presents their results. All the functions are implemented by

Java Server Pages (JSP) and Java Servlets.

3 Dynamic Client - Server communication

A service oriented architecture provides interoperability

by defining the interfaces independent of the protocol, ac-

cording to [8]. Further service semantics are necessary for

Grid Services. This means, that service interactions needs

not only an agreement over an interface but also over se-

mantics and meaning. A main problem for using neural net-

works in a Grid infrastructure is that no standard exists for

describing neural networks (problem domain, semantics).

In WSRF [11] the semantic data of a resource is de-

scribed by a XML Schema inside a WSDL interface. How-

ever it does not enable dynamic services concerning the se-

mantics, because semantics is a description about the ser-

vice.

As for N2Grid Services also for other WSRF Services,

restricting specifications of possible semantic values is con-

tra productive. Moreover a client needs to get and imple-

ment the semantic information of the service in a dynamic

way to be Grid aware. A common language (standard) is

needed, to get an agreement over the semantics (service de-

scription) of a service.

398398398398

Only a service and its developer know about the proper

semantics. Therefore the service itself must describe its ca-

pability and semantics, functions and parameters in a client

interpretable format, e.g. using a GUI Meta Description

Format in XML Schema. A client can instantiate service

data in a dynamic way by using this GUI description. The

format of the dynamic service data can be defined in a sepa-

rate service data schema, as WSRF provides by a Resource

Property XML Schema [6].

By an agreement over two XML Schemas, respectively,

firstly the client schema to describe the service semantics

and secondly the service data schema to describe the ser-

vice data, the semantics of a service can change without al-

terations in the client implementation. Therefore we have a

more powerful, dynamic way to deal with services in a Grid.

The XML schema pair builds together a common language.

We call this approach “Dynamic Service Evolution”

(DSE) [18] because of two reasons.

Firstly, the service can change the semantics dynam-

ically and the appropriate semantical description passes

through an evolutionary process. In this case no adaptations

are necessary on client side.

Secondly, also the language can go through an evolu-

tionary process. A big advantage of our approach is that

no strict standardization of a general and powerful semantic

language is necessary. A flexible pair of two schemas de-

fines a new language. Therefore, different languages can be

built depending on the problem domain.

Client

valid

valid

In
sp

e
ct

io
n

In
sp

e
ct

io
n

D
e
liv

e
ry

D
e
liv

e
ry

AA

DD

Web

Service

wsdl

Client Client

Dynamic Service

Description (DSD)

XSD Format

O
rd

e
r

O
rd

e
r

CC

D
e
s
crip

tio
n

D
e
s
crip

tio
n

BB

wsdl

Dynamic Service

Interface (DSI)

XSD Format

Figure 2. Dynamic Service Evolution (DSE)

Figure 2 shows the whole process with the following

steps, while the new components for the novel approach

compared to common Web Services are depicted by a bub-

ble.

A. The client contacts a service found via a registry to get

detailed semantic information about the service. This

information is a service description beyond the pure

interface description. We name the used format the

“Dynamic Service Description” (DSD).

B. The service sends back the semantics by representing it

in a valid client format. This respond can be processes

automatically or by a GUI representation to allow user

interactions.

C. The client produces out of the user input or the auto-

mated processing valid service data to get a proper ser-

vice instance. This service instance can represent re-

sources or other stateful services. We name the service

data combined with the interface definition “Dynamic

Service Interface” (DSI).

D. In this step the service delivers a service instance (re-

source) or other processing results to the client.

We applied our dynamic services approach in N2Grid

for the interaction between the client and the N2Grid Simu-

lation Service, which is a proof-of-concept implementation

for our novel approach. We need dynamism because of the

lack of a general neural network language. The semantics

can not be defined strictly.

The implementation is based on a Web Service architec-

ture and uses WSDL for the interface definition. We use the

Apache Axis [1] library together with an Apache Tomcat

Web container to run our services.

The service publishes its semantic description in the reg-

istry (information service), which can also be used to es-

tablish flexibility for the client. Thereupon the client can

search in the registry for a specific property to find an ade-

quate simulation service.

The header of the XML Schema to describe the seman-

tics of a N2Grid simulation service is listed below. The

N2Grid simulation services can use this schema in a proper

way, for example to publish the possible parameters and

available training methods of the implemented neural net-

work algorithm. Later, after further developments of the

service, the description can change dynamically.

<x s : sch ema x m l n s : x s ="http://www.w3.org/2001/XMLSchema">

<x s : i n c l u d e sch emaLo ca t io n ="n2grid-types.xsd" />

<x s : e l e m e n t name="NNServiceDESCRIPTION">

<x s :co mp lex Ty p e>

<x s : s e q u e n c e>

<x s : e l e m e n t name="PARADIGM" t y p e ="xs:string" />

<x s : e l e m e n t name="DESCRIPTION" t y p e ="xs:string" />

<x s : e l e m e n t name="TRAINSERVICE" t y p e ="xs:anyURI" />

<x s : e l e m e n t name="EVALUATIONSERVICE"

t y p e ="xs:anyURI" />

<x s : e l e m e n t name="STRUCTURE">

<x s :co mp lex Ty p e>

<x s : s e q u e n c e>

<x s : e l e m e n t name="INPUT" t y p e ="BLOCKTYPE" />

<x s : e l e m e n t name="MAXHIDDENBLOCKS"

t y p e ="SIZEMAX" />

. . .

399399399399

An example of a concrete N2Grid simulation service

description is shown in the following listing. We get in-

formation on the available neural network structure and

other characteristics of the N2Grid simulation service by

the XML document. Based on the information of this doc-

ument the client can produce dynamically a GUI for user

interactions, allowing the user to define a specific neural

network.

The GUI can be created out of our service description,

but we can also apply a standard GUI language to describe

our service, as e.g. XUL [12] from the Mozilla project.

<NNServiceDESCRIPTION xmlns=""

x m l n s : x s i="http://www.w3.org/2001/XMLSchema-instance"

x s i :n o Namesp aceSch emaLo ca t io n="nns-description.xsd">

<PARADIGM>B a c k p r o p a g a t i o n</PARADIGM>

<DESCRIPTION>M u l t i l a y e r Back−Prop NN</ DESCRIPTION>

<TRAINSERVICE>

h t t p : / / c s . u n i v i e . ac . a t / t r a i n s e r v i c e

</ TRAINSERVICE>

<EVALUATIONSERVICE>

h t t p : / / c s . u n i v i e . ac . a t / e v a l s e r v i c e

</ EVALUATIONSERVICE>

<STRUCTURE>

<INPUT>

<ID>i n p u t 1</ ID>

<DIMMIN>1</DIMMIN>

<DIMMAX>1</DIMMAX>

<SIZEMIN>1</ SIZEMIN>

<SIZEMAX>unbounded</ SIZEMAX>

</ INPUT>

<MAXHIDDENBLOCKS>unbounded</MAXHIDDENBLOCKS>

. . .

The definition of a specific neural network is submit-

ted to the N2Grid simulation service by the second XML

Schema. This schema defines the service data for OGSI,

Resource Properties for WSRF or any other service instance

data depending on the service implementation. The follow-

ing listing shows an example XML Schema:

<x s : sch ema x m l n s : x s ="http://www.w3.org/2001/XMLSchema">

<x s : i n c l u d e sch emaLo ca t io n ="n2grid-types.xsd" />

<x s : e l e m e n t name="NNDEFINITION">

<x s :co mp lex Ty p e>

<x s : s e q u e n c e>

<x s : e l e m e n t name="NNSERVICEID" t y p e ="xs:string" />

<x s : e l e m e n t name="PARADIGM" t y p e ="xs:string" />

<x s : e l e m e n t name="DESCRIPTION" t y p e ="xs:string" />

<x s : e l e m e n t name="STRUCTURE">

<x s :co mp lex Ty p e>

<x s : s e q u e n c e>

<x s : e l e m e n t name="INPUT" t y p e ="BLOCK" />

<x s : e l e m e n t name="HIDDEN" t y p e ="BLOCK"

minOccurs ="0"

maxOccurs="unbounded" />

. . .

The two listed XML Schemas define a common language

used in our system. A service-client pair has to agree on

one schema pair. We learned that the possible dynamism is

much more powerful than the usage of ordinary service data

only, because of the following reasons:

• A second schema gives the service the possibility to

change the semantics inside the service without adap-

tation on the client side.

• By decoupling two parts of one language, only a

smaller part of the system has to be changed or ex-

tended in the cases of changes in one schema, or intro-

duction of a new schema.

• The client can implement and interpret different se-

mantic schemas and map them to one common service

interface.

4 Use Cases – Scenarios

For the N2Grid system we propose several use cases, de-

pending on the state of the dynamic and changing Grid in-

frastructure. Table 2 shows the categorization of the scenar-

ios according to the Grid layers.

Table 2. Use case scenario mapping

Knowledge Search Paradigm

Grid Search Net Object

Create Neural System

Information Directed Remote Exec.

Grid Data-driven Remote Exec.

Computation-driven Remote Exec.

Paradigm-driven Remote Exec.

Stand-alone Local Exec.

Data Data Pull (GET)

Grid Data Push (PUT)

Paradigm Pull (GET)

Net object Pull (GET)

Net object Push (PUT)

4.1 Knowledge Grid – Scenarios

4.1.1 Search Paradigm

The Search Paradigm scenario allows users to find a

paradigm by the paradigm services (replica manager) in

a paradigm archive (N2Grid Paradigm Archive Service).

The available neural network paradigms are categorized and

mapped to paradigm archive services offering correspond-

ing implementations.

The user can locate the physical location of a paradigm

by the paradigm archive service directory (OGSA-DAI

database). Depending on its properties one of the remote

execution scenarios (see Directed Remote Exec., Data-

driven Remote Exec., Computation-driven Remote Exec.,

Paradigm-driven Remote Exec.) can be chosen.

This way of searching for an available paradigm is diffi-

cult and only possible if it is exactly known what to search

for. Normally a neural network researcher is searching for a

solution to a given problem. In this case the above described

scenario is not very useful.

Therefore work is on the way to define a totally new

interface for the search of appropriate neural network

paradigms for specific problems. This approach is based

on a pattern oriented classification of available paradigms

on the Grid. We followed the vision of Alexander, who

sees patterns as ”A recurring solution to a common prob-

lem in a given context and system of forces”. First, all of

N2Grid available paradigms and, in a second stage, neural

400400400400

objects are classified and described by the following struc-

ture, derived from design patterns [9]: Name and Classi-

fication, Intent, Also-known-as, Motivation, Applicability,

Structure, Participants, Implementations, Example-Code,

Known-uses, Related-patters, and so on.

4.1.2 Search Net Object

A specific neural network is defined by its paradigm and its

describing attributes like the number/type of nodes, struc-

tures or weights of connections. Trained neural network

objects are solutions to specific problems. Therefore an

ever increasing number of neural network objects, each

representing a specific problem solution, will be stored by

N2Grid Data Services and, in turn, will be available as high

level problem solver to the users.

For the search, description and the exchange of neural

network objects we defined an xML-based Neural Network

Definition Language, which we called xNNDL.

4.1.3 Create Neural System

For many applications in the area of knowledge representa-

tion and management a single neural network is not enough

to fulfill the task. In these cases it is often necessary to build

neural systems consisting of a number of, possibly, differ-

ent neural networks interconnected by data streams, where

the output of one net is the input of another network.

We developed an extension of xNNDL for the descrip-

tion of such systems. The language allows to describe the

layout of the neural system consisting of net objects ad-

ministered by N2Grid. This language provides appropriate

hooks for the specification of the data streams between the

networks.

4.2 Information Grid – Scenarios

4.2.1 Directed Remote Execution

If a client knows about the available remote execution hosts

(Globus Gatekeeper) it can direct a simulation run directly

by the Directed Remote Execution. No interaction with the

resource broker is necessary.

4.2.2 Data-driven Remote Execution

The Data-driven Remote Execution scenario uses the re-

source broker to execute remote simulation runs. The client

does not care about the used host machines. Depending on

the location of the needed data the resource broker aligns

the job on the computation nodes next to the data. This

is an advantage for data intensive simulation runs, because

transfer of data to other compute nodes is communication

intensive and slow.

4.2.3 Computation-driven Remote Execution

In opposite to the data-driven remote execution the

Computation-driven Remote Execution scenario applies an-

other align policy. For less data intensive simulations the

resource broker chooses free, power-full compute nodes.

Some paradigms can also have parallel implementations. To

execute these, the resource broker has to assign the jobs to

front ends of clusters or other parallel architectures.

4.2.4 Paradigm-driven Remote Execution

In the Paradigm-driven Remote Execution scenario the re-

source broker and simulation client have to choose a defined

host for the execution of the specific paradigm simulation.

This is due to proprietary restrictions and copyrights of the

paradigm, which allows the owner to sell the program with

restricted access and execution rights. In turn this scenario

gives the user the advantage of more economic access, be-

cause she/he has only to pay for the usage of the paradigm

and not for the paradigm itself.

4.2.5 Stand-alone Local Execution

In the case of the Stand-alone Local Execution of the

N2Grid client (Java Application or Applet) a comprehen-

sive set of standard built-in functions and paradigms are

available for local simulation runs. The user can define spe-

cific network instantiations of the built-in paradigms and

execute them. At the time being the Backpropagation,

Quickpropagation, Resilient propagation, Self organizing

maps, Counter propagation, Hopfield net, ART 1/2, Koho-

nen net, Jordan net, Elman net, Cascade Correlation (with

Quickpropagation) and CNN paradigms are supported by

the N2Grid prototype.

4.3 Data Grid – Scenarios

4.3.1 Data Pull (GET)

Besides the neural network instantiations also the input data

is stored in the Grid infrastructure. The N2Grid Data Ser-

vice provides an interface to these data by OGSA-DAI to re-

lational and XML databases or by GridFTP to simple files.

The Data Pull scenario establishes the connection between

a local simulation and remote input data source, which can

provide training-, evaluation- or process (propagation) data.

4.3.2 Data Push (PUT)

In opposite to the Data Pull case the N2Grid Data Service

can also be used to store and write output data into the Grid

by the Data Push (PUT) scenario. A local client can save

the neural network simulation results by the OGSA-DAI in-

terface or directly to a file over GridFTP.

401401401401

4.3.3 Paradigm Pull (GET)

As mentioned in Scenario Search Paradigm it is possible to

download and install a paradigm locally on a client by the

Paradigm Pull (GET) scenario, if the running configuration

allows the download.

4.3.4 Net object Pull (GET)

Like Scenario Paradigm Pull (GET) also specific neural net-

work object instantiations can be downloaded on a local

client by the Net object Pull (GET) scenario.

4.3.5 Net object Push (PUT)

If a neural network simulation run has produced a trained

network object of a given paradigm for a specific problem,

it is possible to store this new network instantiation by the

Net object Push (PUT) scenario.

5 The N2Grid Execution Workflow

In this section we will give an in-depth description of the

N2Grid execution workflow of the actual implementation.

During the execution of a N2Grid resource request several

steps take place, which are depicted in Figure 3.

Web Service

N2Grid Service

Web Service

N2Grid Service

Neuronal Network

Evaluation

Neuronal Network

Evaluation

Neuronal Network

Training

Neuronal Network

Training

Web Service

Archive

Web Service

Archive

Servlet / JSP

N2Grid

Client

Servlet / JSP

N2Grid

Client

Web Service

N2Grid

Registry

Web Service

N2Grid

Registry

Files (XML, CSV, …)

Database

Files (XML, CSV, …)

Database

1 Advertisement

Neuronal Networks

Paradigm

Repository

Neuronal Networks

Paradigm

Repository

2Lookup

3 Listing

4
Structure Request

5
Structure Reply

8
Training Request

9
Training Reply

7Data Reply

6 Data Request

12 Store 1 Advertisment

10
Evaluation Request

11
Evaluation Reply

Use

Figure 3. N2Grid execution workflow

1. Advertisment: The N2Grid Neural Net Web Service

registers at N2Grid Registry by providing its self de-

scription (as laid out in Section 3) containing the

Paradigm, Description, Service Endpoints, Structure,

Parameters and Data information.

Some archive services will later store trained neural

nets, therefore they have to register at the N2Grid Reg-

istry.

2. Lookup: The N2Grid Client asks the N2Grid Registry

for a list of available and registered Neural Net Ser-

vices (see Figure 4). A lookup may contain some ex-

tra search criteria, like a paradigm or a layer (input,

hidden, output) count, to allow the user to restrict the

lookup range.

Figure 4. N2Grid lookup screen

3. Listing: Returns the acquired - through the Lookup

step - list of N2Grid service endpoints to the user.

4. Structure Request: The client requests the service de-

scription for a particular N2Grid Service.

5. Structure Reply: The N2Grid Client retrieves the

XML-based service description and parses it to dy-

namically generate the Web frontend and its user in-

teraction fields like input fields, drop down lists, file

upload fields and so on. By using this generated con-

trols specifying a new neuronal net the client creates

the neural net definition.

6. Data Request: The training data is requested from an

external data source, possibly on the Grid.

7. Data Reply: Returns the training data.

8. Training Request: The client sends the service defini-

tion together with the training data to the N2Grid Ser-

vice (see Figure 5).

The service performs the training in an asynchronous

way and returns a ticket, given by a requestId, to the

client. The client has to use this ticket to poll the result

of the Training Request.

9. Training Reply: After the training phase the trained

net is returned as a XML document to the client, which

presents the results within the Web browser (see Figure

6). This document contains two parts:

• service definition: Well defined neural net as pro-

vided in step 8.

• neural net object: A trained neural net instance

serialized as a XML document.

402402402402

Figure 5. N2Grid training request

10. Evaluation Request: In this step the trained neural net

instance together with some simulation data is sent to

the evaluation endpoint of the N2Grid Service. Like

in the training phase the request is performed asyn-

chronously and the user receives a ticket containing a

requestId.

11. Evaluation Reply: The client uses the ticket to poll the

service for an evaluation result of a previously submit-

ted Evaluation Request.

12. Store: Enables the user to store a trained neural net

instance.

A running N2Grid system can be accessed at

http://big.pri.univie.ac.at/n2grid/.

6 Conclusion

We presented the N2Grid project as next step in the pro-

gram evolution for neural network simulation. It is a frame-

work for the usage of neural network resources on a world-

wide basis assisted by the Grid infrastructure. Our system

uses only standard protocols and services to allow a wide

dissemination and acceptance.

The first final version of the N2Grid system is devel-

oped, however there is enough space for further extensions,

specifically in two areas:

Figure 6. N2Grid training reply

• The description of the paradigm has to be enhanced,

to establish easier sharing between paradigm providers

and customers.

• The actual N2Grid client controls single simulation

runs. To allow the building of large connectionist sys-

tems consisting of several neural network instantia-

tions (possibly of different paradigms) an extension of

the N2Grid system is on the way.

At the moment a master thesis finishes which provides a

new searching frontend to N2Grid, similar to Google, which

allows to find a specific solution to a described problem.

The user describe his/her problem in a quasi natural lan-

guage form, by mapping of problem ontologies (built from a

problem space with typical heuristic solutions approaches)

to solution ontologies (built from known neural network so-

lutions). As a result a set of possible neural network solu-

tions found in the N2Grid archives is delivered.

7 Acknowledgment

On this occasion the authors want express their thank to

Thomas Weishaeupl, Helmut Wanek, Stephan Wurm and

Leander Krammer for their help in the design and imple-

mentation of N2Grid.

403403403403

References

[1] Apache Project. Apache WebServices Axis Project, 2004.

http://ws.apache.org/axis.

[2] C. Brunner and C. Schulte. NeuroAccess: The Neural Net-

work Data Base System. Master’s thesis, University of Vi-

enna, Vienna, Austria, 1998.

[3] e-Science Grid Core Project. Open Grid Services

Architecture Data Access and Integration OGSA-DAI.

http://www.ogsa-dai.org.uk/.

[4] EU DataGrid Project. The DataGrid Project.

http://www.edg.org/.

[5] I. Foster. The Globus Toolkit R©: The Open Source Solution

for Grid Computing. Keynote, GlobusWorld, San Diego,

January 14 2003.

[6] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Cza-

jkowski, D. Ferguson, F. Leymann, M. Nally, I. Sedukhin,

D. Snelling, T. Storey, W. Vambenepe, and S. Weerawarana.

Modeling Stateful Resources with Web Services, May, 3

2004. Version 1.1.

[7] I. Foster and C. Kesselman, editors. The Grid: Blueprint for

a New Computing Infrastructure. Morgan Kaufmann, 1998.

[8] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The

Physiology of the Grid: An Open Grid Services Architecture

for Distributed Systems Integration. Technical report, Open

Grid Service Infrastructure WG, Global Grid Forum, June

2002.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns - Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1995.

[10] Globus. Globus Project. http://www.globus.org.

[11] Globus. WS-Resource Framework (WSRF), 2004. http:

//www.globus.org/wsrf.

[12] Mozilla.org. XML User Interface Language (XUL), 2004.

[13] E. Schikuta. NeuroWeb: an Internet-based neural net-

work simulator. In 14th IEEE International Conference on

Tools with Artificial Intelligence, pages 407–412, Washing-

ton D.C., November 2002. IEEE.

[14] E. Schikuta and T. Weishäupl. Artificial neural networks

and the grid. In International Conference on Computational

Science, pages 486–489, 2004.

[15] SOM Programming Team SOM-PAK. The self-organizing

map program package, user guide, 1992.

[16] UK e-Science. UK e-Science programme.

http://www.escience-grid.org.uk.

[17] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java

Commodity Grid Kit. Concurrency and Computation: Prac-

tice and Experience, 13(8-9):643–662, 2001.

[18] T. Weishäupl and E. Schikuta. Open language approach for

dynamic service evolution. In GCC Workshops, pages 132–

139, 2004.

[19] A. Zell, G. Mamier, M. Vogt, N. Mache, R. Hbner,

S. Dring, K.-U. Herrmann, T. Soyez, M. Schmalzl, T. Som-

mer, A. Hatzigeorgiou, D. Posselt, T. Schreiner, B. Kett,

G. Clemente, and J. Wieland. SNNS Stuttgart Neural Net-

work Simulator user manual. Technical report, University of

Stuttgart, 3/92 1992.

404404404404

