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Abstract

New approaches are needed to extract useful patterns from in-
creasingly large multi-spectral remote sensing image databases in
order to understand global climatic changes, vegetation dynam-
ics, ocean processes, etc. Supervised learning, which is often used
in land cover (thematic) classification of remote sensing imagery,
requires large amounts of accurate training data. However, in
many situations it is very difficult to collect labels for all train-
ing samples. In this paper we explore methods that utilize un-
labeled samples in supervised learning for thematic information
extraction from remote sensing imagery. Our objectives are to un-
derstand the impact of parameter estimation with small learning
samples on classification accuracy, and to augment the parameter
estimation with unlabeled training samples to improve land cover
predictions.

We have developed a semi-supervised learning method based
on the Expectation-Maximization (EM) algorithm, and maximum
likelihood and maximum a posteriori classifiers. This scheme uti-
lizes a small set of labeled and a large number of unlabeled train-
ing samples. We have conducted several experiments on multi-
spectral images to understand the impact of unlabeled samples on
the classification performance. QOur study shows that though in
general classification accuracy improves with the addition of un-
labeled training samples, it is not guaranteed to get consistently
higher accuracies unless sufficient care is exercised when design-
ing a semi-supervised classifier.

Keywords: MAP, MLE, EM, GMM, semi-supervised
learning

1 Introduction

A common task in analyzing remote sensing imagery is
supervised classification, where the objective is to construct
a classifier based on few labeled training samples and then
to assign a label (e.g., forest, water, urban) to each pixel
(vector, whose elements are spectral measurements) in the
entire image. There is a great demand for accurate land use
and land cover classification derived from remotely sensed
data in various applications. However, increasing spatial
and spectral resolution puts several constraints on super-
vised classification. The increased spectral resolution re-
quires a large amount of accurate training data. Collecting
ground truth data for a large number of samples is very dif-

ficult. Apart from time and cost considerations, in many
emergency situations like forest fires, land slides, floods,
it is impossible to collect accurate training samples. As a
result, often supervised learning is carried out with small
training samples, which leads to large variance in parame-
ter estimates and thus higher classification error rates. How-
ever, a large number of training samples without labels are
always available for classification of remote sensing im-
ages.

Recently, semi-supervised learning techniques that uti-
lize large unlabeled training samples in conjunction with
small labeled training data are becoming popular in ma-
chine learning and data mining [8, 6, 9]. This popular-
ity can be attributed to the fact that several of these studies
have reported improved classification and prediction accu-
racies, and that the unlabeled training samples comes al-
most for free. This is also true in case of remote sensing
classification, as collecting samples is free, however assign-
ing labels to them is not. However, it was not clear whether
semi-supervised learning improves classification accuracies
or not. In this work we developed a method that utilizes un-
labeled samples in supervised learning framework and did
extensive experimental studies to understand the usefulness
of unlabeled training samples in remote sensing imagery
classification.

Related Work and Our Contributions: Supervised
methods are extensively used in remote sensing imagery
classification [12, 7]. Several approaches can be also be
found in the literature that specifically deal with small sam-
ple size problems in supervised learning [4, 5, 11, 10, 15,
14]. These methods are aimed at designing appropriate clas-
sifiers, feature selection, and parameter estimation so that
classification error rates can be minimized while working
with small sample sizes. However, only recently that at-
tempts have been made to incorporate unlabeled samples
in supervised learning, which gave raise to new breed of
techniques, collectively known as semi-supervised learning
methods. Well-known studies in this area include, but not
limited to [8, 6, 9, 2]. The semi-supervised learning tech-
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niques have not been well explored in the remote sensing
and GIS domains. Only notable study is reported in [13]
for hyperspectral data analysis. The common thread be-
tween many of these methods is the Expectation Maximiza-
tion (EM) algorithm. The EM algorithm, first proposed in
[3], has become one of the most popular methods for maxi-
mum likelihood (ML) based parameter estimation from in-
complete data. Key feature of the EM algorithm is that it
estimates parameters in the absence of feature values in the
input data (also known as incomplete data). Many of the
semi-supervised learning methods pose class labels as the
missing data and use EM algorithm to improve initial (ei-
ther guessed or estimated from small labeled samples) pa-
rameter estimates.

In text data mining, often it is assumed that the features
(words) are independent [9], which leads to simpler sta-
tistical models. Often features (spectral bands) in remote
sensing imagery are highly correlated, which leads to the as-
sumption of multivariate normal distributions with general
covariance matrices. This assumption increases the number
of parameters to be estimated. In this paper we provided a
new semi-supervised learning method based on expectation
maximization (EM) algorithm. As features are highly cor-
related, we use a Gaussian mixture model (GMM) for de-
scribing the training samples and use explicit formulas for
estimating all model parameters. In addition, we borrowed
the weighting scheme proposed in [9] to weight labeled and
unlabeled samples differently in the learning process.

Another objective of this study is to understand the effec-
tiveness of semi-supervised learning with unlabeled sam-
ples for multi-spectral remote sensing image classification.
Towards this, we have conducted several experiments to
evaluate the usefulness of this method in thematic informa-
tion extraction from multispectral remote sensing imagery.

Paper organization: The rest of this paper is organized
as follows. In Section 2, we provide a basic statistical
framework for Bayesian classification and maximum likeli-
hood based parameter estimation. In Section 3, we present
our semi-supervised learning scheme. Experimental results
are given in Section 4, followed by conclusions and future
directions in Section 5.

2 Statistical classification framework

In the classification of a remote sensing image, our ob-
jective is to assign a class label (y) to each pixel (z — a
feature vector) based on a certain decision criterion. Max-
imum likelihood classification (ML) and maximum a pos-
teriori (MAP) are two of the most widely used statistical
classification schemes in remote sensing, which are based
on the Bayesian decision theory.

Bayesian Classification: In the Bayesian approach, the
objective is to find the most probable set of class labels

given the data (feature) vector and a priori or prior probabil-
ities for each class. Formally, we can state Bayes’ formula
as: P(y;|z) = %. Bayes’ formula allows us to
compute the posterior probability (P(y;|x)) provided that
we know the class conditional probability density (p(z|y;))
and the a priori probability distribution (P(y;)). The term
p(z) is often called the evidence factor, that is, the prob-
ability of finding a feature vector  from any of M. The
evidence p(z) acts as a scale factor that guarantees that the
posterior probabilities sum to one; it has no consequence on
the decision rule and is thus often omitted from the decision
rule. For a two class (y1, y2) problem, the Bayes’ decision
rule is given by: decide y; if P(y1]|z) > P(yz2|x); otherwise
decide yo.

Parameter estimation: We can compute the class con-
ditional densities, p(z|y;), by assuming suitable parametric
model, such as, multivariate normal or Gaussian density.
This assumption reduces the difficult problem of estimating
an unknown density function p(x|y;) into a simpler para-
meter (©) estimation problem. Here we use a well-known
parameter estimation technique, maximum likelihood esti-
mation (MLE), to obtain the parameter vector © from the
training samples. First, let us assume that the given train-
ing dataset, D, contains n random samples, z1,...,ZxN,
drawn independently from the pdf p(z|@). Then p(D|0) is
given by, p(D|0) = [],_; p(z|0) The p(D|6) in the above
equation is also known as the likelihood function of 6 with
respect to the data D (set of training samples for a given
class). The likelihood function is often represented by the
symbol /() or by I(6|D). The MLE of 6 is the parameter
(f) that maximizes the likelihood function p(D|0), and is
given by, § = argmaxg [[}_, p(xx|0). Often it is math-
ematically simpler to deal with the log-likelihood function,
[(#) = Inp(D|#). Since the In function is monotonically
increasing, the parameter 6 that maximizes the likelihood
function also maximizes the log-likelihood function.

3 Our Approach (Semi-supervised Learn-
ing).

In this section, we reformulate the likelihood estimation
in the context of finite mixture models and describe a pa-
rameter estimation technique that is based on expectation
maximization algorithm. This framework also utilizes unla-
beled training samples. First let us assume that each sample
x; comes from a super-population D, which is a mixture of
a finite number (M) of populations Dy, ..., Dy, in some
proportions a4, . . ., ar, respectively, where Zf\il a; =1
and o; > 0(z = 1,...,M). Now we can model the data
D = {z;}7, as being generated independently from the

following mixture density: p(z;|©) = E]Ail a;p;(xil6;)

Here pj;(x;|6;) is the pdf corresponding to the
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mixture j and parameterized by 6;, and © =
(a1y...,00,01,...,0)) denotes all unknown parameters
associated with the M -component mixture density. For
a multivariate normal distribution, §; consists of elements
of the mean vectors p; and the distinct components of
the covariance matrix ;. The log-likelihood function
for this mixture density can be defined as: L(©) =
Yoiiln {Zﬁl a;p; (x1|9j)} In general, this equation is
difficult to optimize because it contains the In of a sum term.
However, this equation greatly simplifies in the presence of
unobserved (or incomplete) samples. Let us now pose X as
an incomplete dataset, and assume that we have unobserved
dataY = y;7*,, such that, y; tells us which component den-
sity generated each x;. Assuming that we know the values
of Y, the log-likelihood equation can then be simplified as:
L(©) = I(P(X,Y)|0)) = Y, In(P(zily) P(y) =
D ir In(ay, py, (24]0y,)).

In many supervised learning situations, the class labels
(y;)’s are not readily available. However, assuming that the
initial parameters ©F can be guessed (as in clustering), or
can be estimated (as in semi-supervised learning), we can
easily compute the parameter vector © using the expecta-
tion maximization algorithm. The expectation maximiza-
tion (EM) algorithm at the first step maximizes the expec-
tation of the log-likelihood function, using the current esti-
mate of the parameters and conditioned upon the observed
samples. In the second step of the EM algorithm, called
maximization, the new estimates of the parameters are com-
puted. The EM algorithm iterates over these two steps until
the convergence is reached. The log-likelihood function is
guaranteed to increase until a maximum (local or global or
saddle point) is reached. For multivariate normal distribu-
tion, the expectation E[.], which is denoted by p;;, is noth-
ing but the probability that Gaussian mixture j generated
the data point i, and is given by:

—-1/2

J el =3 @iy S (@i—py) }

pij = ‘,1/2 (D

lfV_fl o el =3 (@i—p)t S (@i—ju) }

The new estimates (at the k" iteration) of parameters in
terms of the old parameters at the M-step are given by the
following equations:

1 & Er.l_ TiDii
~k ~k i=1 ")
ab==3"p; and ph =SS (g
! n.= ! ’ 2ic1Pij
n ~k Ay
~ i1 Pig\ L — W5 )\ Tq — W5
E§: Zz_lpj( IU’J)( MJ) (3)

Z?:l Dij

More detailed derivation of these equations can be found
in [1]. Standard semi-supervised algorithms obtain ini-
tial estimates of the parameters using the labeled samples

Dy, and then uses EM algorithm (equations 2- 3) and un-
labeled samples D,,; to refine the initial estimates. How-
ever, we derived slightly different equations which allows
one to use D; throughout the EM iterations. The new
formulation also allows to weight D; and D,,; differently.
First, we note that for any two constants, a and b, two
correlated random variables can be combined, such that,
E(aX +bY) = apx + buy. By treating X and Y random
variables as D; and D,,;, and constants a and b as different
weights, one can emphasize (or deemphasize) the impor-
tance of unlabeled samples in the semi-supervised learning
using our formulation.

4 Experimental Results

We used a spring Landsat 7 scene, taken on May 31,
2000 over the Cloquet town located in Carlton County of
Minnesota state. We designed four different experiments to
understand the size and quality of initial labeled samples on
the performance of semi-supervised learning, and the im-
pact of unlabeled samples generated from random sampling
and informed sampling methods. For all these experiments
the test dataset was fixed and consisted of 85 plots. Ini-
tial labeled and unlabeled samples were varied as explained
in each experiment. From each plot, we extracted exactly
9 feature vectors by centering a 3 x 3 window on the plot
center.

We have two groups of experiments (1,2 and 3,4). Each
of these experiments are described below in more detail.
In the first group of experiments (1,2) we have about 100
labeled samples which are divided into various subsets of
different sizes and a fixed set of 85 unlabeled samples. In
all the experiments (1 to 4), we used a fixed test dataset con-
sisting of 85 labeled samples. For discussion purposes we
summarized key results as graphs for easy understanding.
Experiment 1. For this experiment, we generated 5 disjoint
labeled training sets, each set consisting of 20 plots at 2
plots per class. We have a fixed unlabeled training dataset
consisting of 85 plots.

Experiment 2. For this experiment, we combined 2 sets of
labeled samples at a time from the previous experiment to
form °Cy = 10 labeled datasets, each consisting of 20 +
20 = 40 plots. In a similar fashion, we combined 3 different
datasets at a time from the above 10 datasets to obtain 3
datasets, each consisting of 70 labeled sample plots (after
eliminating duplicate plots).

Experiment 3. The objective of this experiment was to
understand the quality and quantity of unlabeled training
samples and their impact on overall performance of semi-
supervised learning. For this experiment we devised two
sampling schemes, simple random sampling, and informed
sampling. For the simple random sampling, we generated
10 datasets, each consisting of multiples of 100 sample
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plots. No labels were available for these plots. For labeled
sample plots we chose two datasets from the first experi-
ment (best [B20] and worst [W20] in terms of MLC accu-
racies).

Experiment 4. We used informed sampling to generate
about 300 unlabeled sample plots. By informed sampling
we mean generating random samples in a constrained way
using additional information (e.g., existing land-use or land-
cover maps, ecological zone maps, population density, clus-
tered or classified image using only labeled samples). These
plots were then randomly divided into 4 partitions. The first
subset consists of 5 independent training sets, each consist-
ing of 30 plots; second subset consists of 5 training datasets,
each consisting of 60 unlabeled plots. Third experiment
consists of 3 training datasets, each consisting of 110 un-
labeled plots and finally the fourth experiment consists of 2
training datasets each consisting of 170 unlabeled plots. For
labeled training we used the same two datasets that were
used in experiment 3. For each of these labeled training
datasets, semi-supervised learning was carried out against
each of the unlabeled training datasets from the above 4 par-
titions.

Supery sed (BC) vs. Sem -supery sed [BG-EM)
MLC Performance

Accuracy

4 45 50 55 60 65 70 75

9 £ 0 El ) 1 123
Number of (iabeled) samples
Numos- of samoee

(a) MLC (b) SSL
Figure 1. Classification Performance as the
number of (labeled) training samples in-
creases (a) MLC, (b) Semi-supervised.

4.1 Discussion

From the first experiment it is clear that maximum like-
lihood estimates are highly dependent on both the quantity
and the quality of labeled training samples. The plot in Fig-
ure 1(a) shows that as the number of training (labeled) sam-
ples increases, the conventional maximum likelihood esti-
mates gets better and hence the classification performance
of the Maximum likelihood classifier (BC) also improves.
It is also interesting to note that the difference between best
and worst accuracies gets reduced as the number of sam-
ples increase. This is because the noise averages out as the
number of samples increases.

The second experiment shows that as the number of la-
beled samples increases the usefulness of unlabeled sam-

ples diminishes (see Figure 1(b)). Thus the main benefit of
semi-supervised learning occurs when there is only a small
number of labeled samples available for training.

Vary g Number of U1 ab ed {Raadom) Samp & Pots Vary ng Number of Un ab ed ‘Ra~dom) Samp e P ols

—— G20 ablcd samples - Wi
2

@ D e —— Bo 20 - H5)
0. BG-EM I¥arying Urlabled Samplos)

? 1 2 » 9 2 2 a m 2 E 3 B 60

Nun e of Un a3 ¢d Sama &8 Randath Samna ng)

(a) Against W20

Unas i Sama 2 P ats Rardoin Sana ngy

(b) Against B20

Figure 2. Performance of semi-supervised
classification as the number of unlabeled
samples increases (random sampling).

In next two experiments we explore the impact of the
number unlabeled training samples and how they are gen-
erated. Figure 2(a) and (b) provides the comparison of ran-
domly generated unlabeled training plots against best and
worst cases (labeled training data) taken from the experi-
ment 1. On the other hand Figure 3(a) and (b) shows the re-
sults against unlabeled training plots generated by informed
sampling. From these two experiments it is clear that ac-
curacy increases as the number of unlabeled training sam-
ples increase, however pure random samples might degrade
performance quite considerably. The main problem we no-
ticed is that random sampling did not generate enough sam-
ples for small (geographic area) classes, as a result the cor-
responding covariance matrices are becoming singular or
close to singular, and the mixing coefficients «; are close
to zero. On the other hand equal (or in proportion to class
area) number of samples were generated for each class. It
can be seen from the figure that the semi-supervised learn-
ing using informed sampling generated unlabeled training
plots performed consistently well.

Vary 1g Unab ed Samp e P ols {Iformed Samp 1g) Vary 1g Unabed Samp e P ols {Jaformed Samp 1g)

o

—— BG 120 Lobded Samples - Hi)
Bes. Acaazien) —— BG 20 Lobled somples H)
B )

G EM (Bon. Aeouracies)

@ @ m  sm ® @ W m im m s e s W 9@ e i@ s

Numgs- of Unagsd Sama as Nume- of Un a0 ed Samoe P ats

(a) Against W20 (b) Against B20
Figure 3. Performance of semi-supervised
classification as the number of unlabeled
samples increases (informed sampling).
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5 Conclusion and Future Directions

In this study first we presented a semi-supervised learn-
ing algorithm for classification of multi-spectral remote
sensing imagery. The semi-supervised method presented
here uses the classical EM algorithm to augment unlabeled
samples to improve initial estimates generated using a small
set of training samples. Except for pure randomly gener-
ated unlabeled training samples, the semi-supervised learn-
ing showed an improved performance in many of the ex-
periments. The overall accuracies varied between —8.67%
and +27.07%, and on an average the semi-supervised learn-
ing method showed an improvement of 8% in overall accu-
racy. Given the fact that this is a multi-class (10 classes)
classification problem, the accuracies are higher than one
would expect from coarse multi-spectral resolution images.
This method is very useful in remote sensing data mining,
as collection of sufficient training samples for supervised
learning is often difficult and costly. However, we also note
that getting consistently higher accuracies are not guaran-
teed with semi-supervised learning method described in this
paper. Sufficient care should be taken when selecting the la-
beled samples as the EM algorithm for Gaussian mixtures
is not guaranteed to converge to global optimum. Similarly,
appropriate sampling scheme should be employed, such as
informed sampling described in this paper, when selecting
unlabeled training samples.

Further classification improvements can be expected by
incorporating additional GIS layers like population density,
upland and lowland maps, digital elevation models, and soil
maps. However, these additional layers doesn’t follow mul-
tivariate normal distribution. We are working on develop-
ing a mixture model that admits both continuous random
variables and discrete random variables. Also in problem
formulation we assumed that the samples follow an i.i.d.
distribution, however this assumption is not valid in images
as pixels are often spatially auto-correlated. We are work-
ing on extending this semi-supervised algorithm to model
spatial context in the learning process.
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