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Abstract. High-assurance and complex mission-critical software systems are heavily dependent on

reliability of their underlying software applications. An early software fault prediction is a proven

technique in achieving high software reliability. Prediction models based on software metrics can predict

number of faults in software modules. Timely predictions of such models can be used to direct cost-

effective quality enhancement efforts to modules that are likely to have a high number of faults.

We evaluate the predictive performance of six commonly used fault prediction techniques: CART-LS

(least squares), CART-LAD (least absolute deviation), S-PLUS, multiple linear regression, artificial neural

networks, and case-based reasoning. The case study consists of software metrics collected over four

releases of a very large telecommunications system. Performance metrics, average absolute and average

relative errors, are utilized to gauge the accuracy of different prediction models. Models were built using

both, original software metrics (RAW) and their principle components (PCA). Two-way ANOVA

randomized-complete block design models with two blocking variables are designed with average absolute

and average relative errors as response variables. System release and the model type (RAW or PCA) form

the blocking variables and the prediction technique is treated as a factor. Using multiple-pairwise

comparisons, the performance order of prediction models is determined. We observe that for both average

absolute and average relative errors, the CART-LAD model performs the best while the S-PLUS model is

ranked sixth.

Keywords: Software quality prediction, software metrics, fault prediction, CART, S-PLUS, multiple

linear regression, neural networks, case-based reasoning.

1. Introduction

Software reliability is an important attribute of high-assurance and mission-critical
systems. Such complex systems are heavily dependent on reliability and stability of
their underlying software applications. The challenges involved in achieving high
software reliability increases the importance in developing and quantifying measures
for software quality. Early fault prediction is a proven technique in achieving high
software reliability, and can be used to direct cost-effective quality enhancement
efforts to modules that are likely to have a high number of faults. A software fault is
a defect that causes software failure in an executable product.
Previous research (Khoshgoftaar et al., 2000b) has shown that software quality



models based on software metrics (Schneidewind, 1995; Schneidewind, 1997) can
yield predictions with useful accuracy. Such models can be used to predict the
response variable which can either be the class of a module (e.g. fault-prone or not
fault-prone) or a quality factor (e.g. number of faults) for a module. The former is
usually referred to as classification models (Khoshgoftaar and Allen, 2001; Ohlsson
and Runeson, 2002) while the latter is usually referred to as prediction models
(Gokhale and Lyu, 1997; Khoshgoftaar and Seliya, 2002; Troster and Tian, 1995).
The focus of this paper is on the latter, i.e., prediction models. Software quality
prediction models can predict quantities like number of faults and software
development effort. Software metrics used by the model and the response variable
are referred to as the independent variables and dependent variable respectively.
Over the last few decades many software quality modeling techniques have been

developed and used in real life software quality predictions. A few commonly used
modeling techniques for software quality estimation include, regression trees
(Gokhale and Lyu, 1997; Khoshgoftaar and Allen, 2001; Khoshgoftaar and Seliya,
2002; Takahashi et al., 1997; Troster and Tian, 1995), artificial neural networks
(ANN) (Finnie et al., 1997; Khoshgoftaar and Lanning, 1995), case-based reasoning
(CBR) (Ganesan et al., 2000; Kolodner, 1993), and multiple linear regression (MLR)
(Berenson et al., 1983). Other recently developed techniques that have also been used
include, fuzzy logic (Xu, 2001) and optimal set reduction (Briand et al., 1993). Many
of these techniques facilitate software quality estimation modeling using both
classification and prediction models.
Despite the fact that currently many techniques are used to build and apply

prediction models for real life software quality estimations, not many extensive
studies have been done that compare the performance of commonly used prediction
modeling techniques. Very few studies have performed comparative evaluations of a
few of the available techniques and methods, for example, Finnie et al. (1997) and
Gray and MacDonell (1999).
Gray and MacDonell (1999), use three small-scale case studies to evaluate

software development effort (or maintenance changes) estimation accuracy of
prediction models built using MLR and ANN. The importance of factors other than
predictive accuracy such as data characteristics, expertize, and interpretability have
been demonstrated, however, the comparative study lacks statistical verification. The
overall conclusion was that no single modeling technique can be used as a panacea
for software effort estimation problems. Finnie et al. (1997) compare models built
using ANN, CBR, and MLR. Similar to Gray and MacDonell, (1999), this study
compares software effort estimation accuracy of different modeling methods. It was
concluded that both ANN and CBR gave similar accuracy, however, both of them
yielded better results than MLR. Statistical verification using t-test was performed to
determine the significance of their conclusions. In both of the comparative studies
mentioned above, the case studies used were relatively small-scale and the research
did not include other available prediction techniques, such as regression trees.
This study presents a comparative evaluation of predictive accuracy of six

commonly used software quality prediction modeling techniques or algorithms. These
are,1 CART-least squares (CART-LS), CART-least absolute deviation (CART-
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LAD), S-PLUS, MLR, ANN, and CBR. Software quality models that predict the
number of faults in software modules, were built using all of the six techniques.
Performance metrics, average absolute error (AAE) and average relative error (ARE),
are used to gauge the fault prediction accuracy of modeling techniques. To our knowl-
edge this is the first extensive study that compares the fault prediction capabilities of
commonly used modeling techniques in the context of a large-scale case study.
The case study used to build models consists of software metrics collected over

four historical releases of a very large legacy telecommunications system,
abbreviated as LLTS. Software metrics collected included 24 product and four
execution metrics, i.e., a total of 28 independent variables. Each system release has
over 3500 updated modules or observations. A common model building and
validation methodology was adopted for all six techniques. Release 1 was used to
build the models while Releases 2, 3 and 4 were used to validate the final models. For
each of the modeling techniques considered, models were built using both RAW and
domain (reduced by principle components analysis) metrics, and the models built are
denoted as LLTS-RAW and LLTS-PCA models, respectively.
CART-LS, CART-LAD, and S-PLUS (it’s regression tree algorithm) are tree-

based prediction techniques (Khoshgoftaar and Seliya, 2002; Seliya, 2001) that
provide simple white-box models which are attractive to analysts (Breiman et al.,
1984; Clark and Pregibon, 1992). To our knowledge, these are the only tree-based
prediction techniques currently available. CBR is a problem-solving technique which
solves new problems by adapting solutions that were used to solve similar problems
(Kolodner, 1993). ANN (Khoshgoftaar and Lanning, 1995) adopt a learning
approach to deriving a predictive model. MLR (Berenson et al., 1983) is a traditional
statistical means of predicting a dependent variable as a function of known
independent variables. A more elaborate description of each of these methods is
presented in the later sections.
Software metrics extracted (usually referred to as RAW metrics) from configura-

tion and problem reporting systems are often heavily correlated to each other
(Fenton and Pfleeger, 1997). This is usually because they often represent
measurements of related attributes of the given software system. The correlation
among the independent variables can often lead to poor robustness and prediction
accuracy of models built based on them. Principle components analysis (PCA) is a
statistical technique that is used to alleviate the problems due to correlation of
independent variables. As we will see shortly, we use domain (PCA) metrics in
addition to RAW metrics to build and evaluate our prediction models.
The use of AAE and ARE for comparing different prediction techniques can

sometimes be difficult and may lead to erroneous results. The problem is increased
when comparing models based on multiple releases (Khoshgoftaar et al., 2000b). A
scenario with two releases that illustrates the possible difficulties is presented next.
For Release 2, method A may have better AAE than method B, but for Release 3,
method B may have better AAE than method A. The problem arises as to which
release to use to compare methods A and B. The issue is further complicated with the
use of over two releases to compare modeling methods.
The comparative approach adopted by Finnie et al. (1997) is not suited for
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comparing models based on multiple releases. It is geared more towards case studies
involving data collected from only one project release, i.e. fit and test data sets are
extracted from the same release. A unique approach is adopted in our study to
compare software quality estimation models. The approach compares the models
over all system releases, which alleviates the problem addressed above.
Two-way ANOVA (analysis of variance) randomized-complete block design

models with two blocking variables are built. These ANOVA models use AAE and
AREas the response variables. System release (Releases 2, 3, and 4) and themodel type
(LLTS-RAW or LLTS-PCA model) form the two blocking variables, while the
modeling technique or algorithm is treated as a factor. Release 1 is not used as a block
since it was used to build or train the fault predictionmodels.Model type was used as a
blocking variable (in ANOVA models) to observe if models built using RAWmetrics
were significantly apart from those built using domain metrics. It was observed that
both models types performed similar, however, it should be noted that models based
on principle components are generally more robust than the corresponding models
based on RAW metrics. ANOVA models indicated that both system releases and
modeling techniques were significantly different from their respective counterparts.
Multiple-pairwise comparisons (Berenson et al., 1983) were performed to evaluate a
performance or rank order of the six modeling techniques considered.
Comparisons of fault prediction accuracy (based on AAE and ARE) of the

different modeling techniques considered in our study revealed the following
performance order (decreasing accuracy): CART-LAD, CBR, MLR, ANN, CART-
LS, and S-PLUS. It is indicated that CART-LAD and CBR models have better fault
prediction than the MLR, ANN, CART-LS, and S-PLUS models. The superior
performance of CART-LAD and CBR as well as the inferior performance of S-
PLUS is verified in a similar study that used data from other case studies
(Khoshgoftaar and Seliya, 2002; Seliya, 2001). The comparative technique presented
in our study is not limited to only six modeling methods. It can be extended to
compare fewer or more prediction modeling methods. However, data from multiple
releases or multiple projects is needed to effectively utilize ANOVA design models
(one-way or two-way) for performance comparisons of fault prediction models for
software quality estimation.
The layout of the of rest the paper is as follows. Description of the different

modeling methods is presented in Section 2. In Section 3, the adopted modeling
methodology, comparative techniques used, and related technical concepts are
presented. Section 4 describes the case study used in our study. Sections 5 and 6,
present the results and conclusions of our comparative study.

2. Fault Prediction Techniques

2.1. Classification and Regression Trees

Classification and regression trees (CART) is a statistical tool for tree structured
data analysis (Breiman et al., 1984). CART uses a regression tree to show how data
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may be predicted by a series of decisions at each internal node of the tree. In
regression, a case consists of data ðxi; yiÞ where, xi is the ith measurement vector of
independent variables and yi is the ith response variable. The CART algorithm
partitions the input data set into terminal nodes by a sequence of recursive binary
splits. Binary splits are generated by CART, based on the significant independent
variables. At each binary partition, the two subsets are as homogeneous as possible
with respect to the dependent variable, which in our case is the number of faults in a
software module.
The CART algorithms initially build a large tree (Breiman et al., 1984; Briand et

al., 2000), and then prune it back using cross validation to avoid overfitted trees
(Khoshgoftaar et al., 2001). Starting with the fit data set (learning sample L), three
elements are necessary to determine a regression tree predictor: (1) A way to select a
split at every internal node; (2) A rule for determining when a node is terminal, and
(3) A rule for assigning a value ŷyðtÞ to every terminal node, where ŷyðtÞ is the
predicted value of the response variable for terminal node t.
CART provides three ways to estimate the accuracy of regression trees:

resubstitution estimate, test sample estimate and v-fold cross validation estimate.
Empirical studies in this paper use the v-fold cross validation estimate to evaluate
regression tree models. In a v-fold cross validation estimate, the learning sample L (fit
data set) is divided into v subsets of approximately equal size. (v-1) subsets are used
as fit data sets while one remaining subset is used as a test data set. v such trials are
performed such that each subset of the learning sample is used once as a test data set.
The average error over these v trials, gives the cross validation error estimate. In our
empirical studies we have used the 10-fold cross validation approach.
Certain parameters can be controlled when building regression trees with CART.

These include number of terminal nodes, depth or level of regression tree, and node
size before splitting. The first two parameters by default are automatically forecasted
by the algorithm depending on the case study. The third parameter, node size, is set
to 10 by default. In our experiments in regression tree modeling for the LLTS case
study (Seliya, 2001) we have used default values for these parameters.
In the following two sections we present the essential differences between the

CART-LS (least squares) and CART-LAD (least absolute deviation) methods of
CART. Further in-depth mathematical details including tree pruning methods and
standard error estimates of the CART regression tree algorithms can be found in
Breiman et al. (1984). The final tree models are selected based on their cross
validation2 (mean square or average absolute deviation) relative errors, described in
the following subsections.

2.1.1. Least Squares Method

This method generates regression trees using the within node mean value observed in
each terminal node as its predicted value. Ranking of regression trees of different
sizes is evaluated based on the mean square error estimate. Given a learning sample
L consisting of ðx1; y1Þ; . . . ; ðxN ; yNÞ, L is used to construct regression trees and also
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to estimate their accuracy. The resubstitution error estimate for the CART-LS
method, as a measure of accuracy for a regression tree T is given by,

RðTÞ ¼ 1

N

X
t [T

X
ðxn;ynÞ [ t

ðyn � �yyðtÞÞ2 ð1Þ

where, N is the total number of cases in the learning sample, t is a terminal node in
the regression tree T, and �yyðtÞ is the mean value of response variables in t.
Given any set of possible splits S of a current terminal node t, the best split š of t is

that split in S which most decreases R(T). For any split s of t into tL and tR, let
DRðs; tÞ ¼ RðtÞ � RðtLÞ � RðtRÞ. Then the best split š is given by,

DRð�ss; tÞ ¼ maxfDRðs; tÞg ð2Þ

Thus, a regression tree is formed by iteratively splitting nodes so as to maximize the
decrease in RðTÞ. The best split at a node is that split which most successfully
separates the high response values from the low ones.
When using the test sample estimate, a fit data set is used to build regression trees,

while a test data set is used to evaluate the accuracy of the tree models. The test
sample error estimate for the CART-LS method is given by,

RtsðTÞ ¼ 1

N2

X
ðxn;ynÞ [L2

ðyn � dðxnÞÞ2 ð3Þ

where, L2 is the test data set with N2 cases and dðxnÞ denotes the predictor
corresponding to the xn measurement vector of independent variables. The learning
sample L1 is used to build regression trees, while the test sample L2 is used to
evaluate the accuracy of trees.
The v-fold cross validation error estimate for the CART-LS method is given by,

RcvðTÞ ¼ 1

N

X
v

X
ðxn;ynÞ [Lv

ðyn � dvðxnÞÞ2 ð4Þ

where, dvðxnÞ denotes the predictor for the vth trial of the cross validation and Lv is
the vth subset of the learning sample L.
Let �yy be a sample mean of y1; . . . ; yN , and set Rð�yyÞ as,

Rð�yyÞ ¼ 1

N

X
n

ðyn � �yyÞ2 ð5Þ

Then the mean square relative error estimates for resubstitution, test sample and v-
fold cross validation are given by, RðTÞ=Rð�yyÞ;RtsðTÞ=Rð�yyÞ and RcvðTÞ=Rð�yyÞ,
respectively.
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2.1.2. Least Absolute Deviation Method

This method generates regression trees using the within node median value observed
in each terminal node as its predicted value. Ranking of regression trees of different
sizes is evaluated based on the mean absolute deviation estimate.
The resubstitution error estimate RðTÞ for the CART-LAD method is given by,

RðTÞ ¼ 1

N

X
t [T

X
ðxn;ynÞ [ t

jyn � ~yyðtÞj ð6Þ

where, N is the total number of cases in the learning sample, t is a terminal node in
the regression tree T and ~yyðtÞ is the median value of the y values in node t. The
splitting criteria is analogous to that mentioned for the CART-LS method.
The test sample error estimate for the CART-LAD method is given by,

RtsðTÞ ¼ 1

N2

X
ðxn;ynÞ [L2

jyn � dðxnÞj ð7Þ

The v-fold cross validation error estimate for the CART-LAD method is given by,

RcvðTÞ ¼ 1

N

X
v

X
ðxn;ynÞ [Lv

jyn � dvðxnÞj ð8Þ

Let ~yy be a sample median of y1; . . . ; yN , and set Rð~yyÞ as,

Rð~yyÞ ¼ 1

N

X
n

jyn � ~yyj ð9Þ

Then the absolute relative error estimates for resubstitution, test sample and v-fold
cross validation are given by, RðTÞ=Rð~yyÞ;RtsðTÞ=Rð~yyÞ and RcvðTÞ=Rð~yyÞ respectively.

2.2. S-plus Regression Trees

S-PLUS is a solution for advanced data analysis, data mining, and statistical
modeling. It combines an intuitive graphical user interface with an extensive data
analysis environment to offer ease of use and flexibility. Statistics in S-PLUS include
regression tree models among other data mining functions. At the core of the S-
PLUS system is S, the only language designed specifically for data visualization and
exploration, statistical modeling and programming with data. S provides a rich,
object-oriented environment designed for interactive data discovery. With a huge
library of functions for all aspects of computing with data, S offers good
extensibility.
In-depth mathematical details of the S-PLUS regression tree algorithm are

presented in Clark and Pregibon (1992). The predictors are software metrics treated
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by S-PLUS as ordinal measures, which are used to build regression trees to predict
the response variable. The S-PLUS tree algorithm that can process only numerical
data, constructs a regression tree which is a collection of decision rules determined
by recursive binary partitioning of the training data set. These decision rules can be
controlled by specifying certain parameters, which limit the growth of the tree model.
These parameters are minsize, the size threshold which limits the number of
observations in a leaf node and mindev, the uniformity threshold which limits the
allowable deviance in the leaf nodes. By controlling these parameters, the analyst can
prune the tree model to the desired level. However, S-PLUS provides a function that
can be used to prune the tree after it has been constructed by the algorithm, without
sacrificing the goodness-of-fit of the tree model. In the course of the S-PLUS
regression tree algorithm, modules in the fit data set are assigned to tree nodes. A
software module is considered as an object.
Predictors are derived from software metrics as explained below. Let xij be the jth

predictor’s value for module i, xi be the vector of predictors for module i, and yi be
the response variable, i.e., number of faults. The algorithm initially assigns all the
modules in the fit data set to the root node. The algorithm then recursively partitions
each node’s modules into two subsets that are assigned to its child nodes, until a
stopping criterion halts further partitioning.
The deviance of module i is minus twice the log-likelihood, scaled by the variance,

which reduces to the following (Clark and Pregibon, 1992).

Dðmi; yiÞ ¼ ðyi � miÞ2 ð10Þ

where, mi is estimated by the mean value of y over all training modules that fall in the
same leaf as module i. The deviance of a node l is the sum of the deviances of all the
training modules in the node (Clark and Pregibon, 1992).

Dðml; yÞ ¼
X
i [ l

ðyi � miÞ2 ð11Þ

The tree-building algorithm chooses the predictor whose best split maximizes the
change in deviance between the deviance of the current node and the sum of the
deviances of the prospective child nodes. The ‘‘best split’’ of a predictor partitions
the current node’s set of modules into two subsets choosing the cut-point that
minimizes the sum of the deviances of the left and right prospective child nodes.
Partitioning stops when the node deviance is less than a small fraction of the root
node deviance.

Dðml; yÞ
Dðmroot; yÞ

< mindev ð12Þ

or the number of modules in the current node is less than a threshold,

nl < minsize ð13Þ

where, mindev and minsize are model parameters.
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Let LðxiÞ be the leaf that the ith module falls into according to the structure of the
tree. The predicted value of the response variable for module i is the mean of training
modules in the leaf it falls into.

ŷyi ¼ mLðxiÞ ð14Þ

Empirical studies using regression tree modeling with S-PLUS were performed by
our research team in Seliya (2001). Regression trees were built for the LLTS case
study, by varying parameters mindev and minsize. For each of the models,
performance metrics AAE and ARE was computed and the final model was selected
based on quality of fit values.

2.3. Case-based Reasoning

A CBR system arrives at a solution by retrieving past instances of the same or a
similar problem (Kolodner, 1993). The past instances are in a library of cases
containing all known data. Each case in the library contains information about the
program module it describes, which will include predictors and the response variable.
A CBR system can take advantage of availability of new or revised information, by
adding new cases or by removing obsolete cases from the case library. Good
scalability of CBR provides fast retrieval even as the size of the case library goes up.
CBR systems can be designed to alert users when a new case is outside the bounds of
current experience.
The first step is to determine a good software quality model that can predict the

dependent variable with minimal error. This is done by varying the parameter which
in this case is the value of nearest neighbors. Let N be the complete set of nearest
neighbors, which are cases in the fit data set that are most similar to the present case
in the target (test) data set. The number of nearest neighbors, nN (number of cases), is
empirically determined by the user.
A CBR model is the training data with associated parameters like similarity

functions, i.e., Euclidean Distance, Absolute Difference, or Mahalanobis Distance,
and solution algorithms, i.e., Unweighted Average or Inverse Distance Weighted
Average. The case library is also known as the fit data set and the new cases, whose
number of faults is to be predicted, is known as the test data set. The problem is to
estimate the value of the dependent variable for a future or currently under
development program module, relatively early in its life cycle. The closer the
predicted value is to the actual value, the better the accuracy of prediction.
The model selection is done by using the case library as both fit and target (test)

data sets. Cross-validation is used to build the model. If the fit data set (case library)
has n observations, at each iteration one case or observation is removed from the
case library and the dependent variable (i.e., number of faults) is predicted using the
remaining n� 1 cases, i.e., the case library will have n� 1 observations and the
target (test) data set will have one observation. The one isolated observation acts as
the test case to evaluate the prediction made by the n� 1 cases. The prediction error
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(i.e., AAE and ARE) of the n iterations is computed and the CBR model with the
least error is finally selected. The algorithms described below are used in the retrieval
of the cases from the fit data set that are most similar to the target module and to
estimate the dependent variable.
The RAW metrics in a software system module usually have vastly differing

measurement units and highly varied ranges. Often, each metric has a unit of its own.
Standardization is a technique that converts all the metrics to a uniform system of
co-ordinates so that they will all have the same unit of measure. For each metric, xi,
the standardized metric is given by,

Zi ¼
xi � �xxi
si

where �xxi is the mean and si is the standard deviation of the ith metric, xi. All
independent variables in the data set are standardized to a mean of zero and a
variance of one. While other studies used normalization technique (Briand et al.,
2000), we used standardization (except for Mahalanobis Distance function, in which
neither is required (Sundaresh, 2001)).
A similarity function is used to compute the distance dij between the current

module i and each of the modules j in the case library. Let cjk be the value of the kth
independent variable of case j, and let cj be the vector of independent variable values
for case j. Let xik be the value of the kth independent variable for target module i,
and xi be the vector of independent variable values for module i. The Euclidean
Distance is given by,

dij ¼
Xm
k¼1

ðwkðcjk � xikÞÞ2
 !1=2

ð15Þ

where m is the number of independent variables and wk is the weight of the kth
independent variable. The Absolute Difference or City Block Distance is given by,

dij ¼
Xm
k¼1
wk cjk � xik
�� �� ð16Þ

The Mahalanobis Distance is given by,

dij ¼ ðcj � xiÞ0S�1ðcj � xiÞ ð17Þ

where ð0Þ means transpose, and S�1 is the inverse of the variance-covariance matrix
of the independent variables for all the modules in the case library. S becomes an
identity (unit) matrix andMahalanobis becomes the Euclidean distance squared when
the independent variables are orthogonal and have unit variance. When the
independent variables are highly correlated and/or vary on vastly differing scales, the
Mahalanobis distance is a very good alternative to other distance measures.
Whenever the Mahalanobis measure is used, the independent variables do not need
to be standardized or normalized.
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The solution algorithm finally predicts the value of the dependent variable, yi. The
Unweighted Average solution algorithm is given by,

ŷyi ¼
1

nN

X
j [N

yj ð18Þ

where, ŷyi is the mean value of the dependent variable of the most similar nN modules
from the case library.
The Inverse Distance Weighted Average solution algorithm is given by,

dij ¼
1=dijP
j [N 1=dij

ð19Þ

ŷyi ¼
X
j [N

dijyj ð20Þ

where, yi is estimated using the distance measures for the nN closest cases as weights
in a weighted average. Since smaller distances indicate a closer match and each case
is weighted by a normalized inverse distance. The case most similar to the target
module has the largest weight, thus playing a major role in prediction.
Fault prediction models were built by our research group (Khoshgoftaar et al.,

2000a; Sundaresh, 2001) for the LLTS case study. All three similarity functions
mentioned above were considered. The number of similar cases, nN , selected from
the fit data set is a significant parameter during model building process. The model
whose nN results in the least value of AAE with cross validation is selected as the
final model (Sundaresh, 2001). Experiments were therefore conducted by varying nN
to find the optimum value. It was observed that the Mahalanobis Distance function
gave better prediction results as compared to prediction obtained with Euclidean
Distance and Absolute Difference functions. It was also observed that the Inverse
Distance Weighted Average solution algorithm yielded better prediction than the
Unweighted Average solution algorithm. Thus, Inverse Weighted Distance Average
together with Mahalanobis Distance gave the best prediction results.

2.4. Artificial Neural Networks

Artificial neural networks (ANN)3 are systems that are deliberately constructed to
make use of some organizational principles resembling those of the human brain.
ANN have been studied since Rosenblatt (1962) first introduced single layer
perceptrons. Because of the limitations of single-layer systems pointed out by
Minsky and Papert (1969), interest in ANN has been dwindling. Recent resurgence
in the field of ANN was encouraged by the new learning algorithms (Nielsen, 1987),
analog VLSI techniques, and parallel processing (Lippmann, 1987).
According to learning rules, ANN can be classified into two categories,

supervised-learning networks and unsupervised-learning networks (Lin and Lee,
1996). The ANN we studied are supervised learning networks, in which at each
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instant of time when input is applied to an ANN, the corresponding desired response
of the system is given. The network is thus told precisely what it should be emitting
as output. In summary, we confine our study to feedforward supervised-learning
neural networks, in particular backpropagation (Lippmann, 1987; Nielsen, 1987)
neural networks. Figure 1 illustrates the structure of a feedforward supervised-
learning neural network.
Neural networks consist of neurons. Figure 2 shows the structure of a neuron. In

this model, the kth processing element computes a weighted sum of its inputs xj
(independent variable) and basis bk as the input to the activation function, the
output of the activation function is the output of the neuron ok (dependent variable).
Suppose there are m inputs, x1; x2; . . . ; xm, to the neurons and the weights associated
with these inputs are w1k;w2k; . . . ;wmk. So the operation of the neuron can be
described as following.

netk ¼ w1kx1 þ w2kx2 þ 
 
 
 þ wmkxm þ bk ð21Þ

ok ¼ f ðnetkÞ ð22Þ

where f ð ? Þ is the activation function of this neuron.

Figure 1. A feedforward neural network.

Figure 2. Anatomy of a neuron.
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Backpropagation (Rumelhart et al., 1962) is the most popular training algorithm for
multilayer neural networks. The algorithm initializes the network with a random set
of weights and basis, and the network trains from a set of input-output pairs. Each
pair requires a two stage learning algorithm: forward pass and backward pass. The
forward pass propagates the input vector through the network until it reaches the
output layer. First the input vector propagates to the hidden units. Each hidden unit
calculates the weighted sum of the input vector and its interconnection weights. Each
hidden unit uses the weighted sum to calculate its activation. Next, hidden unit
activations propagate to the output layer. Each node in the output layer calculates its
weighted sum and activation. The output of the network is compared to the expected
output of the input-output pair, and their difference (error vector) is used to train the
network tominimize the error, this is called backward pass. First the error passes from
the output layer to the hidden layer updating output weights. Next each hidden unit
calculates an error based on the error from each output unit, the error from the hidden
units updates input weight. The training stops only when the sum of squared error
satisfies the requirement or the number of epochs passes the set point, where an epoch
means that all the training data go through the forward pass and backward pass once.
The least mean square algorithm computes the weight updates for each input

sample and the weights are modified after each sample. This procedure is called
sample-by-sample learning. An alternative solution is to compute the weight update
for each input sample and store these values (without changing the weights) during
one pass through the training set (epoch). At the end of the epoch, all the weight
updates are added together, and only then will the weights be updated with the
composite value. This is called batch training and is what we used in our case studies.
A neural network model was built for the LLTS case study (both RAW and PCA

data sets) in Sundaresh, (2001). Since the neural networks use the unipolar sigmoid
function as their activation function for all the nodes, the dependent variable,
number of faults, was scaled to the range [0,1]. After the training process, the result
was converted back to the original scale. The training data set was normalized to
avoid a slow network training process, and it was found that the training speed
increased after normalization. The overall architecture of the final neural network
model was determined empirically, and further details of our study is presented in
Khoshgoftaar and Lanning (1995) and Sundaresh (2001).

2.5. Multiple Linear Regression

This technique provides a statistical means of estimating or predicting a dependent
variable as a function of known independent variables. The model is in the form of
an equation where the response variable is expressed in terms of predictors. The
general form of a multiple linear regression (MLR) model can be given by,

ŷyi ¼ a0 þ a1xi1 þ 
 
 
 þ apxip ð23Þ

yi ¼ a0 þ a1xi1 þ 
 
 
 þ apxip þ ei ð24Þ
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where, xi1; . . . ; xip are the independent variables’ values, a0; . . . ; ap are the parameters
to be estimated, ŷyi is the dependent variable to be predicted, yi is the actual value of
the dependent variable, and ei ¼ yi � ŷyi is the error in prediction for the ith case.
The data available is initially subject to statistical analysis, with the aim to remove

any correlation existing between independent variables and to remove insignificant
independent variables, not accounting for the dependent variable. The process of
determining the variables which are significant is known as model selection. Several
methods of model selection exist. They are forward elimination, stepwise selection
and backward elimination. Here, stepwise regression is used.
Stepwise regression (Berenson et al., 1983) selects an optimal set of independent

variables for the model. In this process, variables are either added or deleted from
the regression model at each step of the model building process. Once the model is
selected, the parameters a0; . . . ; ap are then estimated using the least squares method.
The values of the parameters are selected such that they minimize

PN
i¼1 e

2
i , where, N

is the number of observations in the fit data set.

3. Modeling Methodology

In this section, we present a discussion of the approach adopted in comparing the
different fault prediction modeling techniques discussed earlier. Theory and related
principles of our comparative technique is also presented in this section.

3.1. Building Fault Prediction Models

The general model building and validation approach adopted in fault prediction
modeling with CART-LS, CART-LAD, S-PLUS, CBR, ANN, and MLR is
summarized by the following steps.

1. Preprocessing Data: A few modeling tools demand preprocessing of data before
analysis. Some preprocessing may include, logarithmic transformation, standard-
ization, and grouping of data.

2. Formatting Data: The fit and test data sets may have to be converted to a format
acceptable by the tool. For example, when using CART, data sets have to be
converted to the SYSTAT file format.

3. Building Prediction Models: Release 1, the fit data set is used to build different
models. Certain parameters specific to the modeling technique (Section 2), are
varied. Average absolute (AAE) and average relative errors (ARE) of models
built are computed (for Release 1).

4. Selecting Prediction Models: Models with the lowest AAE and ARE values are
selected as our final fault prediction models. In the case of CART-LS and CART-
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LAD the models were selected based on the lowest cross-validation relative error4

value (Seliya, 2001). S-PLUS, ANN, and MLR models were selected based on
their quality-of-fit values. A cross-validation (with lowest AAE) model selection
approach (Sundaresh, 2001) was adopted for CBR.

5. Validating Prediction Models: Releases 2, 3, and 4 are used as test data sets to
evaluate the prediction accuracy of the models selected. Performance metrics,
AAE and ARE are computed. These are used to observe the estimation accuracy
of models.

3.2. Performance Metrics

Fault prediction accuracy of the models selected is determined by estimating
performance metrics. Two common statistics for evaluating predictions, AAE and
ARE are computed as,

AAE ¼ 1

n

Xn
i¼1

jyi � ŷyij ð25Þ

ARE ¼ 1

n

Xn
i¼1

yi � ŷyi
yi þ 1

����
���� ð26Þ

where, n is the number of modules in the target data set. The denominator in ARE
has a one added to avoid division by zero (Khoshgoftaar et al., 1992). Our study
compares fault prediction models using both AAE and ARE, since the effectiveness
of one over the other is out of scope for this paper.

3.3. Analysis of Variance Models

ANOVA, abbreviated for analysis of variance, is a commonly used statistical
technique when comparing differences between the means of three or more
independent groups or populations. In our study, we employ the two-way ANOVA:
randomized complete block design modeling approach (Berenson et al., 1983; Neter
et al., 1996), in which n heterogeneous subjects are classified into b homogeneous
groups, called blocks so that the subjects in each block can then be randomly
assigned, one each, to the levels of the factor of interest prior to the performance of a
two-tailed F test, to determine the existence of significant factor effects.
Selecting the appropriate experimental design approach depends on the level of

reduction in experimental error required. Since the primary objective for selecting a
particular experimental design is to reduce experimental error (variability within
data), a better design could be obtained if subject variability is separated from the
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experimental error (Neter et al., 1996). A two-way ANOVA randomized complete
block design, is a restricted randomization design in which the experimental units are
first sorted into homogeneous groups, i.e., blocks, and the treatments are then
assigned randomly within the blocks.
We are interested in observing if different prediction techniques are different from

each other and if the system releases are different from each other. We are also
interested in observing if principle components analysis (Khoshgoftaar et al., 2000c)
of the independent variables, results in better fault prediction accuracy of models.
Substantial reduction in experimental errors can be obtained if more than one
variable is used for determining blocks (Berenson et al., 1983). We designed two-way
ANOVA models using two blocking variables, namely, system release and model
type, i.e. models build based on RAW metrics and their principle components.
AAE and ARE values predicted by models for different releases and data sets

(RAW and PCA) are the response variables in our experimental design models
(ANOVA), which involve six factor treatments (six fault prediction techniques) and
two blocking variables. The first one has three blocks (system releases 2, 3, and 4)
while the second one has two blocks (RAW and PCA models). The p-values obtained
from the ANOVA design models (Table 5, p. 276), indicate the significance of the
difference between the different modeling methods, between the different system
releases, and between the models built using RAW and PCA metrics.
To develop the ANOVA procedure for a randomized complete block design, Yijk,

the observation in the ith block ði ¼ 1; 2; . . . ; bÞ of B and the kth block ðk ¼
1; 2; . . . ; cÞ of C under the jth level ð j ¼ 1; 2; . . . ; aÞ of factor A, can be represented by
the model,

Yijk ¼ mþ Aj þ Bi þ Ck þ eijk ð27Þ

where,
m is the overall effect or mean common to all observations; Aj ¼ m ? j ? – m, a

treatment effect peculiar to the jth level of factor A (method); Bi ¼ mi ? ? – m, a block
effect (system release) peculiar to the ith block of B; Ck ¼ m ? ? k – m, a block effect
(model type, RAW or PCA) peculiar to the kth block of C; eijk is the random
variation or experimental error associated with the observation in the ith block of B
and kth block of C under the jth level of factor A; m ? j ? is the true mean for the jth
level of factor A; mi ? ? is the true mean for the ith block of B; m ? ? k is the true mean
for the kth block of C.

3.4. Hypothesis Testing: a p-value Approach

Hypothesis testing is concerned with the testing of certain specified (i.e.,
hypothesized) values for those population parameters. Statisticians and software
analysts alike, often perform hypothesis tests (Berenson et al., 1983) when comparing
different models. A null hypothesis, H0, is tested against its compliment, the
alternative hypothesis, HA. Hypotheses are usually set up to determine if the data
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supports a belief as specified by HA. These tests indicate the significance ðaÞ of
difference between two methods or populations.
The selection of the pre-determined significance level, a, may depend on the

analyst and the project involved. In some cases the selection of a may be too
ambiguous or difficult (Beaumont, 1996). In such situations, it may be preferred to
perform hypothesis testing without setting a value for a. This may be achieved by
employing the p-value approach to hypothesis testing (Beaumont, 1996; Berenson et
al., 1983). This approach involves finding a value p such that a given H0 will not be
accepted for any a � p. Otherwise, H0 will not be rejected, i.e., a < p. If this
probability (p-value) is very high, H0 is not rejected, while if this likelihood is very
small (traditionally � 0:05), H0 is rejected. Hypotheses tests may be one-tailed or
two-tailed, depending on the alternative hypothesis of interest to the researcher.
In this study, we use the Minitab software tool (Beaumont, 1996), which has

provision for statistical comparative analysis. We compute the p-values to determine
if a prediction method is significantly better than another method. These p-values are
used in deciding on the performance order of the different fault prediction methods.
In making decisions regarding the rejection or non-rejection of H0, the appropriate
test statistic would be compared against the critical values for the particular
sampling distribution of interest. For our comparative study, we use the F statistic
(Berenson et al., 1983). If the test statistic, F, is distributed as Fðn1; n2Þ, then the
p-value is given by,

p ¼ PrfFðp; n1; n2Þ � Fðn1; n2Þg ð28Þ

where, n1 and n2 are the degrees of freedom for the F distribution, Fðp; n1; n2Þ is the
entry in the F-table (Beaumont, 1996), and Fðn1; n2Þ is the computed statistic for the
hypothesis test.

3.5. Multiple-Pairwise Comparison

The ANOVA block design models do not specify or indicate which means differ
from which of the other means. Multiple comparison methods provide more detailed
information about the differences of these means. Specifically they provide a
statistical technique to compare two methods (e.g. method A and method B) at a
time. A variety of multiple comparison methods are available, and for our study we
employ Bonferroni’s multiple comparison equation (Beaumont, 1996). Hypothesis
testing using the p-value approach is performed as discussed in Section 3.4. The null
and alternative hypotheses used for the multiple-pairwise comparisons, using AAE
are given by Equations (29) and (30). Comparisons for ARE, are done by
substituting ARE for AAE in the below stated equations.

H0 : AAEA � AAEB ð29Þ

HA : AAEA < AAEB ð30Þ
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4. System Description

The data for the case study used in this paper was collected over four releases, from a
very large legacy telecommunications system (abbreviated as LLTS). Each release
has approximately 3500 to 4000 updated software modules. The software system is
an embedded-computer application that included finite-state machines. The software
was written in PROTEL, a high-level language, using the procedural development
paradigm and was maintained by professional programmers in a large organization.
A software module was considered as a set of related source-code files. Fault data,

collected at the module-level by the problem reporting system, comprised of faults
discovered during post unit testing phases. Post unit testing phases recorded faults
that were discovered before and after the product was released to customers. Faults
that were discovered by customers were recorded only if the discovery resulted in
changes to the source code of the module.
Configuration management data analysis, identified software modules that were

unchanged from the prior release. Fault data collected from the problem reporting
system were tabulated into problem reports and anomalies were resolved. The
number of modules that had faults was too few to facilitate effective software quality
modeling. As a result, we considered only the updated modules, i.e., those modules
that were new or had at least one update to its source code since its prior release. For
modeling, we selected updated modules with no missing data in relevant variables.
These updated modules had several million lines of code, and there were a few
thousands of these modules in each system release.
The set of available software metrics is usually determined by pragmatic

considerations. A data mining approach is preferred in exploiting software metrics
data (Fenton and Pfleeger, 1997), by which a broad set of metrics are analyzed rather
than limiting data collection according to predetermined research questions. Data
collection for LLTS involved extracting source code from the configuration
management system. Measurements were recorded using the EMERALD software
metrics analysis tool (Hudepohl et al., 1996). Preliminary data analysis selected
metrics that were appropriate for our modeling purposes.
Software metrics for this system was collected over four different releases. We

label these releases as Release 1, Release 2, Release 3, and Release 4. The number of
observations in Release 1, Release 2, Release 3, and Release 4 were 3649, 3981, 3541,
and 3978 respectively. The software metrics collected included 24 product metrics, 14
process metrics and four execution metrics. The 14 process metrics were not used in
our empirical study, because our research study is focussed on early fault prediction
of modules for software quality modeling. Only the software metrics used in our
empirical study, are presented in this paper (Tables 1 and 2). The data sets consist of
28 independent variables that were used to predict the number of faults in a software
module during the post unit testing phases. We shall refer to this case study as LLTS-
RAW.
The software product metrics in Table 1 are based on call graph, control flow

graph, and statement metrics. An example of call graph metrics is number of distinct
procedure calls. A module’s control flow graph, consists of nodes and arcs depicting
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the flow of control of the program. Statement metrics are measurements of the
program statements without implying the meaning or logistics of the statements. The
problem reporting system maintained records on past problems. The proportion of
installations that had a module, USAGE, was approximated by deployment data on
a prior release (Jones et al., 1999). Execution times in Table 2 were measured in a
laboratory setting with different simulated workloads.
Software metrics extracted (usually referred to as RAW metrics) from configura-

tion and problem reporting systems are often highly correlated to each other
(Khoshgoftaar et al., 2000c). This is usually because they often represent
measurements of related attributes of the given software system. The correlation
among the independent variables can often lead to poor robustness and prediction
accuracy of models built based on them. Principle components analysis (PCA) is a
statistical technique that is used to alleviate the problems due to correlation of

Table 1. Software product metrics.

Symbol Description

Call graph metrics

CALUNQ Number of distinct procedure calls to others.

CAL2 Number of second and following calls to others.

CAL2 ¼ CAL � CALUNQ where CAL is the total number of calls.

Control flow graph metrics

CNDNOT Number of arcs that are not conditional arcs.

IFTH Number of non-loop conditional arcs, i.e., if-then constructs.

LOP Number of loop constructs.

CNDSPNSM Total span of branches of conditional arcs. The unit of measure is arcs.

CNDSPNMX Maximum span of branches of conditional arcs.

CTRNSTMX Maximum control structure nesting.

KNT Number of knots. A ‘‘knot’’ in a control flow graph is where arcs cross due

to a violation of structured programming principles.

NDSINT Number of internal nodes (i.e., not an entry, exit, or pending node).

NDSENT Number of entry nodes.

NDSEXT Number of exit nodes.

NDSPND Number of pending nodes, i.e., dead code segments.

LGPATH Base 2 logarithm of the number of independent paths.

Statement metrics

FILINCUQ Number of distinct include files.

LOC Number of lines of code.

STMCTL Number of control statements.

STMDEC Number of declarative statements.

STMEXE Number of executable statements.

VARGLBUS Number of global variables used.

VARSPNSM Total span of variables.

VARSPNMX Maximum span of variables.

VARUSDUQ Number of distinct variables used.

VARUSD2 Number of second and following uses of variables.

VARUSD2 ¼ VARUSD � VARUSDUQ where VARUSD is the total

number of variable uses.
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independent variables. The appendix describes the details of principle components
analysis.
The dimensionality of the 28 RAW metrics was reduced using PCA. Earlier

research (Khoshgoftaar et al., 2000b) indicated that the product and execution
metrics groups of the RAW data were not correlated with each other. Hence, PCA
was performed only on the 24 product metrics. Table 3 shows the six principle
components extracted from the 24 product metrics of the LLTS-RAW data set. This
table contains a 2466 matrix, in which the 24 rows represent the product metrics

Table 2. Software execution metrics.

Symbol Description

USAGE Deployment percentage of the module.

RESCPU Execution time of an average transaction on a system serving consumers.

BUSCPU Execution time of an average transaction on a system serving businesses.

TANCPU Execution time of an average transaction on a tandem system.

Table 3. Factor pattern of product metrics for LLTS-RAW.

Metric PROD1 PROD2 PROD3 PROD4 PROD5 PROD6

CALUNQ 0.9024 0.0518 0.1044 0.2323 0.1739 0.0616

VARUSDUQ 0.8950 0.1889 0.1527 0.1770 0.1468 0.1938

LOC 0.8861 0.2807 0.1816 0.1693 0.1643 0.1445

NDSENT 0.8797 � 0.1114 0.0177 0.1839 0.1099 0.1720

STMEXE 0.8687 0.2587 0.1761 0.1732 0.2688 0.0717

STMCTL 0.8670 0.2607 0.2741 0.1726 0.0851 0.1743

NDSEXT 0.8467 0.0197 0.1086 0.2010 0.0857 0.3529

STMDEC 0.8460 0.2013 0.1415 0.1492 0.0712 0.1490

IFTH 0.8457 0.3416 0.2788 0.1816 0.1040 0.1066

NDSINT 0.8419 0.3436 0.2761 0.1525 0.1849 0.1092

CNDNOT 0.8348 0.3117 0.2623 0.1522 0.2370 0.1750

LOP 0.8282 0.1082 0.2084 0.0171 0.0213 � 0.0959

VARGLBUS 0.8019 0.3596 0.2012 0.1437 0.2120 0.2045

VARUSD2 0.7909 0.4410 0.2711 0.1119 0.1808 0.1293

CAL2 0.5972 0.2042 0.0728 0.1932 0.5690 � 0.0526

VARSPNSM 0.3917 0.8602 0.1772 0.1043 0.0675 0.0842

VARSPNMX 0.1404 0.8349 0.1772 0.3515 0.1036 0.0914

CNDSPNMX 0.1212 0.2763 0.7566 0.1429 0.2565 0.3060

CTRNSTMX 0.3223 0.0960 0.7092 0.4210 � 0.0073 � 0.0157

CNDSPNSM 0.6097 0.2155 0.6424 0.0070 0.2201 0.1309

FILINCUQ 0.3956 0.2579 0.1554 0.7265 � 0.0357 0.1696

LGPATH 0.2102 0.3796 0.3579 0.6396 0.1699 � 0.0415

KNT 0.2136 0.0691 0.1746 � 0.0064 0.8890 0.0972

NDSPND 0.4021 0.1489 0.2169 0.0751 0.0841 0.8156

Variance 11.6164 2.8209 2.3717 1.6952 1.6428 1.2300

% Variance 48.40% 11.75% 9.88% 7.06% 6.85% 5.13%

Cum. % 48.40% 60.15% 70.03% 77.09% 83.94% 89.07%

Stopping rule: at least 89% of variance
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while the 6 columns represent the principle components, PROD1, PROD2, PROD3,
PROD4, PROD5 and PROD6. Each element in the matrix indicates the correlation
between a principle component and a raw metric. These six principle components
and the four execution metrics in Table 2 form the second set of data sets. We refer
to this case study as LLTS-PCA.

5. Empirical Results

Two models were built for the LLTS case study using each of the six prediction
techniques, namely, CART-LS, CART-LAD, S-PLUS, CBR, ANN, and MLR. The
first model was built using the LLTS-RAW data set while second model was built
using the LLTS-PCA data set. Performance metrics AAE and ARE are computed
for the both models, and are shown in Table 4. The values shown in Table 4 are for
Releases 2, 3, and 4 only since Release 1 was used as the fit data set.
The two-way ANOVA randomized complete block design models built using

AAE and ARE as response variables, consisted of two blocking variables, i.e.,
system release and model type (RAW and PCA) and one factor, i.e., prediction
technique. ANOVA models were built over all the test data sets, i.e., Releases 2, 3,
and 4. The results of the ANOVA models are presented in Table 5. Notations of
Table 5 are, DF—degrees of freedom, SS—sums of squares, MS—mean squares, and

Table 4. LLTS-RAW: AAE and ARE values.

Model based on LLTS-RAW case study

Modeling method Release 2 Release 3 Release 4

AAE ARE AAE ARE AAE ARE

CART-LS 0.948 0.618 0.942 0.602 1.407 0.838

CART-LAD 0.705 0.324 0.803 0.391 0.867 0.418

S-PLUS 0.909 0.577 0.954 0.602 1.267 0.774

CBR 0.884 0.585 0.861 0.499 0.831 0.492

ANN 0.946 0.584 1.016 0.620 1.249 0.749

MLR 0.890 0.571 0.960 0.602 0.926 0.584

Model based on LLTS-PCA case study

Modeling method Release 2 Release 3 Release 4

AAE ARE AAE ARE AAE ARE

CART-LS 0.972 0.647 0.975 0.633 1.113 0.682

CART-LAD 0.727 0.344 0.823 0.407 0.860 0.456

S-PLUS 0.925 0.602 0.973 0.621 1.568 0.948

CBR 0.835 0.523 0.871 0.519 0.810 0.477

ANN 0.887 0.555 0.948 0.576 0.989 0.615

MLR 0.875 0.567 0.976 0.626 0.954 0.637

FAULT PREDICTION MODELING FOR SOFTWARE QUALITY ESTIMATION 275



F—the F statistic (Berenson et al., 1983). In the ANOVA models we have six
(treatments) modeling methods, three (first blocking variable) system releases, and
two (second blocking variable) types of data sets. Consequently, we have (36–1)
degrees of freedom.
It is observed from Table 5, for both AAE and ARE the system releases are

significantly apart from each other (p-value ¼ 0.001 and 0.004, respectively). It is
also seen that the prediction techniques are also significantly apart from each other,
i.e., p-value ¼ 0.001 (AAE) and 0.000 (ARE). However, the LLTS-RAW and LLTS-
PCA models interestingly performed similar, i.e., have similar prediction accuracies.
Since the AAE and ARE values of the prediction techniques are significantly
different from each other, we proceeded with multiple-pairwise comparisons of the
different techniques.
Each of the six modeling methods is compared with the other five methods using a

one-tailed pairwise comparison. For example, CART-LAD is compared with
CART-LS, S-PLUS, CBR, ANN, and MLR individually. Thus, for each pair of
techniques we have two comparisons, for example, is CART-LAD better than CBR?
and is CBR better than CART-LAD? The p-value of the comparison is computed,
and is used to observe whether a method is better than the one it is compared with.
Table 6 presents the p-values obtained from multiple pairwise comparisons.

Comparisons are shown for both AAE and ARE performance metrics. The table can
be viewed as a matrix, i.e., each pair of two methods forms a comparison. This
implies each method listed in the first column is compared with (except itself)
methods listed as headings of subsequent columns. For example, CART-LAD vs.
CART-LS, CART-LAD vs. S-PLUS, and so on. Methods are not compared to
themselves, and this is indicated by a * in the two tables. Since we compared six
prediction techniques, there are 30 comparisons for each of the performance metrics.
The p-values indicate the significance level of the difference in AAE or ARE values

Table 5. ANOVA models for LLTS case study.

Source DF SS MS F p-value

Average absolute error

Technique 5 0.4262 0.0852 5.99 0.001

Model Type 1 0.0022 0.0022 0.16 0.695

Release 2 0.2460 0.1230 8.64 0.001

Error 27 0.3842 0.0142

Total 35 1.0586

Average relative error

Technique 5 0.3688 0.0738 15.8 0.000

Model Type 1 0.0000 0.0000 0.00 0.989

Release 2 0.0657 0.0329 7.02 0.004

Error 27 0.1264 0.0047

Total 35 0.5609
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between two prediction techniques, and are used to conclude the final performance
or rank order.
To indicate how we inferred the final performance order of the prediction

methods, we present details for ARE in the next few paragraphs. A similar approach
was followed in computing the performance order for AAE. Let’s look at the ARE
section of Table 6. Comparisons CART-LAD vs. CART-LS, CART-LAD vs. S-
PLUS, CART-LAD vs. ANN, CART-LAD vs. MLR, and CART-LAD vs. CBR
have very low p-values, therefore indicate that CART-LAD has better predictive
accuracy than the other five techniques. Hence, CART-LAD will be ranked first in
the final order. Let’s denote this deduction as Da.
From comparisons CBR vs. CART-LAD ðp ¼ 1.0000Þ, CBR vs. CART-LS

ðp ¼ 0.0014Þ, CBR vs. S-PLUS ðp ¼ 0.0004Þ, CBR vs. ANN ðp ¼ 0.0414Þ, and CBR
vs. MLR ðp ¼ 0.1134Þ it is observed that CBR is better than all techniques except
CART-LAD (verified by Da). Hence, CBR will be ranked second in the final order.
Let’s denote this deduction as Db.
Comparisons MLR vs. CART-LS ðp ¼ 0.1821Þ, MLR vs. S-PLUS ðp ¼ 0.0773Þ,

Table 6. Multiple pairwise comparisons: p-values.

Average absolute error

CART-LAD CART-LS S-PLUS ANN MLR CBR

CART-LAD * 0.0019 0.0004 0.0134 0.1515 0.7328

CART-LS 1.0000 * 0.8092 0.9995 1.0000 1.0000

S-PLUS 1.0000 0.9982 * 1.0000 1.0000 1.0000

ANN 1.0000 0.7158 0.3850 * 0.9999 1.0000

MLR 1.0000 0.1670 0.0506 0.5318 * 1.0000

CBR 0.9993 0.0124 0.0028 0.0742 0.4826 *

Average relative error

CART-LAD CART-LS S-PLUS ANN MLR CBR

CART-LAD * 0.0000 0.0000 0.0000 0.0000 0.0090

CART-LS 1.0000 * 0.8682 1.0000 1.0000 1.0000

S-PLUS 1.0000 0.9959 * 1.0000 1.0000 1.0000

ANN 1.0000 0.3877 0.1945 * 0.9966 1.0000

MLR 1.0000 0.1821 0.0773 0.8548 * 1.0000

CBR 1.0000 0.0014 0.0004 0.0414 0.1134 *

Table 7. Performance order: LLTS case study.

Average absolute error

CART-LAD < CBR < MLR < ANN < CART-LS < S-PLUS

Average relative error

CART-LAD < CBR < MLR < ANN < CART-LS < S-PLUS
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MLR vs. ANN ðp ¼ 0.8548Þ, and ANN vs. MLR ðp ¼ 0.9966Þ indicate that MLR is
significantly better than both CART-LS and S-PLUS, but is only slightly better than
ANN. Using this observation together with Da and Db, we conclude that MLR will
be ranked third in the final order.
From comparisons ANN vs. CART-LS ðp ¼ 0.3877Þ and ANN vs. S-PLUS

ðp ¼ 0.1945Þ we observe that ANN is better than both CART-LS and S-PLUS, and
will be placed fourth in the rank order since we already have the first three. CART-
LS will be placed before S-PLUS because comparisons CART-LS vs. S-PLUS
ðp ¼ 0.8682Þ and S-PLUS vs. CART-LS ðp ¼ 0.9959Þ demonstrate that CART-LS
performs slightly better than S-PLUS. Hence, CART-LS and S-PLUS will be placed
fifth and sixth in the final rank order.
Performance orders for both AAE and ARE are shown in Table 7. The modeling

techniques are ordered from left to right with decreasing prediction accuracy. The
symbol < in the table indicates that the left hand side method has better fault
prediction than the method on the right hand side. Thus, it is observed that CART-
LAD and CBR yield better fault prediction as compared to MLR and ANN, which
in turn are better predictors than CART-LS and S-PLUS.

6. Conclusion

Software reliability is an important attribute of high-assurance and mission-critical
systems. Such complex systems are heavily dependent on the reliability and stability
of their underlying software applications. The challenges involved in achieving high
software reliability increases the importance of developing and quantifying measures
for software quality. Early software fault prediction, a proven technique for
achieving high software reliability, can be used to direct cost-effective software
quality enhancement efforts to modules that are likely to have a high number of
faults. Software quality models based on software metrics can yield predictions with
useful accuracy. Such models can be used for early fault predictions in software
quality estimation applications.
In this paper we compare the fault prediction accuracies of six commonly used

prediction modeling techniques, CART-LS, CART-LAD, S-PLUS, CBR, ANN,
and MLR. The large-scale case study used in this comparative study, consisted of
data collected over four successive system releases of a very large legacy
telecommunications system. Models were built using RAW metrics as well as
domain metrics (PCA). Two-way ANOVA models, with two blocking variables
(system release and model type) were designed (over all releases) to investigate: if the
releases were different from each other; if the techniques were different from each
other, and if the RAW models were different from the corresponding PCA models.
The ANOVA models were designed with average absolute error and average relative
error as the response variables.
From the ANOVA models, it was observed that the releases and the modeling

methods were significantly different than their respective counterparts, while the
RAW models and PCA models gave similar results. Therefore, it is indicated that
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PCA may not necessarily improve fault prediction accuracy of software quality
models. However, it should be noted that PCA removes correlation among the RAW
metrics and the resulting models are more robust. Multiple-pairwise comparisons for
the six modeling techniques were performed, and a performance or rank order was
determined based on the p-values obtained. The comparisons were performed for
both AAE and ARE. The rank order of the six modeling methods suggest that
CART-LAD and CBR have superior fault prediction accuracy than MLR, ANN,
CART-LS, and S-PLUS. In the final rank order for both AAE and ARE, CART-
LAD was ranked first while S-PLUS was ranked sixth.
Future work in related research areas may include investigating a similar

comparative study, with software metrics from a software system other than a
telecommunications system.

Appendix

Principle Components Analysis

Software metrics extracted (RAW metrics) from configuration and problem
reporting systems are often heavily correlated to each other (Khoshgoftaar et al.,
2000c). This is usually because they often represent measurements of related
attributes of the given software system. The correlation among the independent
variables, can often lead to poor robustness and prediction accuracy of models built
based on them. (PCA) is a statistical technique that is used to alleviate the problems
due to correlation of independent variables.
The RAW metrics are transformed into a smaller set of linear combinations that

account for, most if not all the variance of the RAW data set. PCA also reduces the
number of independent variables used in building models. The principle component
variables are called domain metrics as compared to original independent variables
which form the RAWmetrics. The first principle component, accounts for the largest
fraction of the total variance in the original data. Let’s denote the first component by
PC1. Thus PC1 is the linear combination of the observed independent variables xj,
where j ¼ 1; 2; . . . ;m.

PC1 ¼ wð1Þ1x1 þ wð1Þ2x2 þ 
 
 
 þ wð1Þmxm ð31Þ

In the above equation, the weights wð1Þ1;wð1Þ2; . . . ;wð1Þm have been chosen to
maximize the ratio of the variance of PC1 to the total variance, subject to the
constraint that

Pm
j¼1 w

2
ð1Þj ¼ 1. The second principle component, PC2, is the weighted

linear combination of the observed variables that are not correlated with the first
linear combination (i.e., PC1), and accounts for the maximum amount of the
remaining total variance. Let’s denote the second component by PC2. In general, the
ith principle component is the weighted linear combination of the x’s and is given by,

PCi ¼ wðiÞ1x1 þ wðiÞ2x2 þ 
 
 
 þ wðiÞmxm ð32Þ
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It is possible to extract the same number of principle components as the number of
the original variables. The goal, however, is to account for most of the total variance
with as few principle components as possible. Therefore, a stopping rule is
introduced to choose as few domain metrics as possible. Hence, given m software
metrics, a stopping rule chooses p5m domain metrics and ignores the remaining
domain metrics because they have insignificant variation across the data set. The
stopping rule, terminates principle components analysis, once a particular variance is
accounted for during analysis.
Suppose we have m product measurements on each of the n modules. PCA

performs the following calculations, given an n6m matrix of standardized metric
data, Z.

1. Compute the covariance matrix, R, of Z.

2. Compute the eigenvalues, lj, and the eigenvectors, ej, of R, j ¼ 1; . . . ;m.

3. Minimize the dimensionality of the data. If we choose to explain at least 90% of
the total variance of the original standardized metrics, we then choose the
minimum p such that

Pp
j¼1 lj=m � 0:90.

4. Compute a standardized transformation matrix T, where each column is defined
as,

tj ¼
ejffiffiffiffi
lj

p for j ¼ 1; . . . ð33Þ

5. Compute the domain metrics for each module, where

Dj ¼ Ztj ð34Þ
D ¼ ZT ð35Þ

The final result, of a principle components analysis of a given raw metrics, is an n6p
matrix of domain metrics data D, where each domain metric, Dj, has a mean of zero
and a unit variance.

Acknowledgments

We thank the anonymous reviewers for their suggestions. We also thank: Ken
McGill for his encouragement and support, Dr. Bojan Cukic for his helpful
comments and discussions, and John P. Hudepohl, Wendell D. Jones and the
EMERALD team for collecting the case-study data. This work was supported in
part by Cooperative Agreement NCC 2–1141 from NASA Ames Research Center,
Software Technology Division, and Center Software Initiative for the NASA
Software Independent Verification and Validation Facility at Fairmont, West

280 KHOSHGOFTAAR AND SELIYA



Virginia. The findings and opinions in this paper belong solely to the authors, and
are not necessarily those of the sponsor.

Notes

1. CART stands for the Classification and Regression Trees tool, while S-PLUS is a S language-based

statistical modeling tool.

2. Not to be confused with ARE (Section 3.2).

3. Notations in this Section are independent to those of other sections. They are used exclusively for

illustrating the theory of neural networks.

4. Not to be confused with ARE. Please refer to Section 2.1 for details.
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