
������������	
����
��������
�������������
����
���������

�����������������������
���

���������	
���
�������
��������������������	����

��������������� �� �!���"�

#$%&'� �� �!���"�������

��������(�������

�������)���*��+����
��	�����,-	��	��������������

��!�����*����.������	��

��������������� �� �!���"�

#$%&'� �� �!���"�������

/��!��+���*!����0���������
��	�����,-	��	��������������

��!�����*����.������	��

��������������� �� �!���"�

#$%&'� �� �!���"�������

ABSTRACT
Mobile services (m-services) play an important role in daily life
and work of modern societies. Current service oriented
architectures (SOA) are widely used to offer Web Services on
wired networks. However, no significant research has been done
in m-services field to provide availability service and dynamical
discovery to mobile users. Nowadays, mobile devices are
characterized by limited resources such as processing power,
memory, display screen and connection bandwidth. In this
context, we propose a service oriented architecture that addresses
the following issues: (1) dynamical integration of new services by
providers at anytime, (2) dynamical discovery of available
services and (3) the use of open source software to develop the
solution. With this approach, users require no prior knowledge of
accessible services nor require updating the application of their
mobile devices when new services are incorporated. The paper
includes results with service scenarios, showing that Web
Services can safely be used as paradigm to support m-services.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software architectures –
patterns, Interoperability – distributed objects.

General Terms
Design, Performance, Experimentation.

Keywords
Mobile and ubiquitous computing, M-services architecture,
dynamical m-services invocation.

1. MOTIVATION
Mobile technologies are revolutionizing the way people interact
with daily life, work and business. Many important functions of
modern society are being reshaped to exploit opportunities the
mobile devices open such is illustrated by I-mode technology [5].
Examples of mobile services (m-services) include access to
information resources (e.g., searching, language translation,
newspaper reports, weather forecast,…), telemetry (e.g., receiving
traffic updates and logistics tracking), mobile shopping (e.g.,
booking flights, reserving rental cars, restaurants,…) mobile

banking (e.g., billing of services, buying stocks and contacting
banks through mobile devices), m-government (online services
provided by government agencies to mobile users) and
technological assistance for dynamic wayfinding [15] .
Having pre-installed services on user’s wireless devices is an
option that cannot be considered in an open environment with
multiple users with different needs and providers looking for more
business opportunities (e.g., including publicity in their basic
services). Therefore, online delivery of services from providers to
mobile users and dynamical service discovery infrastructure
(where provider services can announce their presence and mobile
users can locate these services) is more appropriate in dynamic
contexts than pre-installing services.

At present, service oriented architectures (SOA), implemented by
Web Services technology, are widely used as approaches for
supporting services on wired networks (e-services); IRS (Internet
Reasoning Service) [16] is a clear example with descriptions of
semantic Web services at two different levels. On the other hand,
OSGI Service Platform [17] defines a standardized, component
oriented, computing environment for networked services.
However, no significant research has been done in mobile services
(m-services) field using Web services technology and dynamical
service discovery infrastructures. As the above examples imply,
wireless devices have to be viewed as full participants in
networked service-oriented architectures. To facilitate users the
discovery of these services is a challenging task judging from the
diversity of services and the dynamics of users as well as service
providers. First, mobile services are dynamic as service providers
may create, update and change them at anytime. Second, how to
locate a service in a dynamic and efficient way is also an
important issue such is illustrated in the Gravity framework [18].
Currently, the use of the available Web Services technology to
discover, access and invoke Web Services directly from mobile
devices lacks some important features. First, the using of static
stub based communication between a mobile client application
and Web Services framework implies a stub appended to the
client at compile time for each Web Service to be invoked. This
situation requires that all services must be specified at design time
or end users download specific applications to their devices when
new services are incorporated by service providers at the
marketplace. Second, available technology using open source
software does not allow users to access directly to UDDI registry
[9] from mobile devices. This situation involves that mobile users
cannot search new services at runtime without updating devices’
applications and all services must be described at mobile devices,
increasing the need of large memory resources.

Copyright is held by the author/owner(s).
ICWE'06, July 11-14, 2006, Palo Alto, California, USA.
ACM 1-59593-352-2/06/0007.

121

Against this background, this paper investigates the mechanisms
to dynamic support for m-services in a service oriented
architecture context in order to provide availability service and
dynamic discovery to mobile users at anytime and anywhere. In
particular, we first discuss the characteristics of service oriented
architectures on wired networks and current service discovery
infrastructures. Taking into account the available technology for
mobile devices and SOA paradigm for wired networks; we
propose our m-services architecture for supporting dynamical and
scalable mobile services. In more detail, we propose a service
manager entity with a service registry as an intermediate layer
between service providers and mobile users. This manager is
responsible of coordinating the interactions between services
providers and mobile users. These interactions involve how to
make service information available and delivery services to
mobile users at anytime. We investigate the use of dynamic
invocation interface as communication mechanism between
services providers and service managers in order to compute
service description and invocation at runtime. We propose XML-
encoded data exchange between service managers and mobile
devices to describe: (i) Web Services descriptions, (ii) operation
invocations and (iii) searching at UDDI registry.
With the framework proposed, service providers and new services
can easily be added at anytime without updating the application of
users’ mobile devices when new services are incorporated. As a
result, mobile users can search for additional facilities, when
needed without prior knowledge of available services, bring these
facilities to their wireless devices and carry out this process in a
transparent way.
 In order to take into account open standards and specifications,
the entire solution has been developed using open source
software. Different service scenarios have been implemented for
evaluating the performance of our m-services architecture. We
discuss the results of use of traditional UDDI registry for mobile
devices and our approach.
The remainder of the paper is structured in the following way.
Section 2 gives an overview of the related work about service
oriented architecture paradigm on wired networks and service
discovery infrastructures. Section 3 describes our architecture and
components to support m-services. Section 4 focuses on the
implementation of mobile Web Services using open source
software. Section 5 discusses results using different service
scenarios and Section 6 provides concluding remarks and future
work.

2. RELATED WORK

2.1 Service Oriented Architecture
A service-oriented architecture (SOA) is a contractual architecture
to offer and consume software as services. There are three entities
that make up SOA [4]: (1) service providers, (2) service
requestors (also known as service consumers) and (3) service
registry. Service providers are the owners that offer services. They
define descriptions of their services and publish them in the
service registry. Service requestors use a find operation to locate
services of interest. The registry returns the description of each
relevant service. The requestor uses this description to invoke the
corresponding service.

Currently, Web Services technology [4], [11] implements SOA by
means of standard XML-based initiatives. Three initiatives are
used in order to support interactions among Web Services: SOAP
(a way to communicate) [13], WSDL (a way to describe services)
[14] and UDDI (a name and directory server) [9]. Figure 1
illustrates the SOA paradigm graphically.

Figure 1: Service oriented architecture

Using SOAP, services can exchange messages by means of
standardized conventions to turn a service invocation into an
XML message, to exchange the message, and to turn the XML
message back into an actual service invocation.

Through WSDL, a designer specifies the programming interface
of a Web Service. This interface is specified in terms of methods
supported by the Web Service, where each method could take one
message as input and return another as output. Four type of
messages SOAP are possible: RPC/encoded, RPC/literal,
document/literal and document/encoded.

Using Web Services paradigm, a client application (service
requestor) makes a procedure call of a Web Service (service
provider) in the same way it invokes a local call. There are three
types of communication between a client application and a Web
Service:

• Static Stub: a procedure call of a client application is
an invocation of a proxy procedure located in a stub
appended to the client at compile time. As a result, a
client can invoke methods of a Web Service directly via
the stub. The advantage of this model is that it is simple
and easy to code. The disadvantage is that the slightest
change of Web Service definition leads to the stub being
useless and a generation of a new stub. Therefore, the
stub based approach is only appropriate in static
contexts, where services are not removed and updated
by service providers.

• Dynamic proxy: in this case, the client application calls
a remote procedure through a dynamic proxy that is
created at runtime. The dynamic proxy needs to be re-
instated whenever the service endpoint interfaces
change.

• Dynamic invocation interface (DII): this model
enables dynamic invocation of Web services without
having to know interface details at compile time. With
this approach, a client application can query for a
service it has never heard of and build on the fly a call
to that service. As a result, an application is able to
invoke a service that was not known prior to runtime: it
can dynamically download the appropriate WSDL file,

122

parse it, and construct all the elements required to use
the service. The use of this approach involves more
programming complexity.

2.2 Service Discovery Infrastructures
In a service discovery system, a common service description
framework is needed for service providers and service users in
order to describe service features so that they can understand each
other properly. Generally, each service can be described using a
set of attribute-value pairs, where each pair details a property
service. There are two ways to organize attributes: (i) a flat
structure where all attributes are at the same level and (ii) a
hierarchical structure where attributes can be at different levels.

As it is impossible to name and consider all existing service
discovery infrastructures in this paper, we have then highlighted
those that closely resemble our work and those that are most
relevant to the industry:

• Service Location Protocol (SLP): is a language-
independent protocol for resource discovery on IP
networks using an agent-based infrastructure [3]. The
base of the SPL lies on predefined service attributes,
which can be applied to universally describe software
and hardware services. The architecture consists of three
types of agents: user agent, service agent and discovery
agent. The user agents are responsible for discovering
available directory agents, and acquiring service handles
on behalf of end-user applications that request services.
The service agents are responsible for advertising the
service handles to directory agents. Directory agents are
responsible for collecting service handles and
maintaining the directory of advertised services.

• Jini: is a distributed service architecture developed by
Sun Microsystems [6], whose services can be realized to
represent hardware devices, software programs or their
combination using Java language programming. The
goal of Jini is to turn the network into an easily tool on
which human and computational clients can find
services in a flexible way.

• Universal Plug and Play (UPnP): this approach
extends the original Microsoft Plug and Play peripheral
model to support service discovery provided by network
devices from different providers [10]. UPnP works and
defines standards primarily at the lower-layer network
protocol suites. UPnP uses the Simple Service
Discovery Protocol (SSDP) for discovery of services
over IP networks, which can operate with or without a
lookup service in the network.

• Salutation: is an open standard and platform-
independent service discovery and session management
protocol [8]. The architecture provides applications,
services and defines a standard method for describing
and advertising their capabilities, as well as, locating
and determining other services and capabilities.

• DReggie: is a project [1] that presents a dynamic
service discovery infrastructure based on Jini that uses
DAML [2] to describe services and a Prolog reasoning

engine to perform matching using the semantic content
of service descriptions.

• UDDI: is a framework for describing and discovering
Web Services [9]. The core of UDDI revolves around
the notion of business registry, which is a naming and
directory service. UDDI defines data structures and
APIs for publishing service descriptions in the registry
and for querying the registry to look for published
descriptions.

• METEOR-S: is a Web Service discovery infrastructure,
which presents an ontology (XTRO) based
infrastructure to provide access to registries divided,
based on business domains and grouped into federations
[7].

2.2.1 Drawbacks
In this section, we discuss and analyze discovery infrastructures
described in section 2.2. These infrastructures have been designed
focusing on two premises:

• Coordination frameworks: these frameworks (SLP,
Jini, and UPnP) address the issues related to mobile and
specialized devices such as ability to announce their
presence on the network, automatic discovery of devices
in the neighborhood, ability to describe their
capabilities as well as query/understand the capabilities
of other devices and self configuration without
administrative intervention. However, these
architectures have some limitations that makes them
unsuitable for developing Web Services frameworks to
mobile devices: (i) SLP has been designed to locate
physical devices or basic services, (ii) UPnP has been
designed to accommodate home networks or small
office networks and (iii) Jini does not provide any
solutions to connect Jini federations which may reside
in global networks and this architecture requires service
advertisements to be expressed in the form of Java
interface descriptions.

• Web Services discovery based infrastructures: the
use of UDDI registry is only applicable where
performance is not a primary concern [4]. In fact, UDDI
has been designed neither with the response time
capabilities not the facilities necessary to support
dynamic binding. Although other Web Services
discovery infrastructures add semantic functionalities
such as METEOR-S [7], these infrastructures neither
solve the problems faced by UDDI infrastructures.

In order to provide a satisfactory solution to support m-services
scenarios, a different discovery infrastructure is required. There
are two reasons: (i) coordination frameworks work with mobile
devices but these frameworks are not targeted towards Web
Services solutions and (ii) Web Services discovery based
infrastructures are targeted to Web Services based frameworks but
they are not focused on dynamic binding and mobile devices
solutions.

123

3. M-SERVICES FRAMEWORK
In the previous sections, service oriented architectures and
discovery infrastructures are suggested as potential candidates to
the design and development of a framework offering m-services to
wireless devices-oriented users. However, current approaches are
not appropriate to support m-services, such as discussed in section
2.2.1.

Focusing on preceding premises, our goal is to provide a service
oriented framework to mobile users that fits with the available
technology using open source tools and the following features: (i)
automated access from mobile devices to services of a wired
network, without prior knowledge of available services, (ii) no
update of mobile users’ applications when new services are added,
(iii) appropriate response time to mobile users and (iv) the design
of a service discovery mechanism that allows service providers to
create, update and change services at anytime. Services can be
published or not published in UDDI registry.

Traditional service oriented architecture using stub-based model
as communication mechanism between client mobile applications
and provider services is not appropriate to support m-services.
There are two main reasons: (i) every service needs to be coded in
the client application assuming a detailed knowledge of each
service that will be invoked at runtime and (ii) a stub for each
service provided needs to be appended to the client application at
compile time in the mobile device, requiring a large use of
memory resource. This situation involves that all services must be
described (network address, operations to provide, parameters…)
at the design-time and no new services can be added after compile
time. This context means that service providers cannot create,
update and change services at anytime and that mobile users can
only access to pre-defined services at their mobile devices.

In order to solve the problems faced by traditional service
oriented architecture to mobile users, we propose a framework
with an intermediate entity between service providers and service
clients. This entity is represented by a service manager that
operates as a client of the distributed network of Web Services
offered by the different service providers and as server to mobile
devices.

3.1 Architecture
Our framework consists of four components, after a new element
has been integrated to the service oriented architecture. These
components are: (i) service providers, (ii) service managers, (iii)
service clients and (iv) UDDI registry. Figure 2 illustrates the
architecture of the framework proposed.

3.1.1 Services providers
Service providers are the owners that implement and offer
different services. They define descriptions of their services using
WSDL specifications [14].

3.1.2 Service clients
Service clients are wireless devices-oriented users interested in
standard services and searching of facilities, when it is needed
without prior knowledge of available services and bringing these
facilities to their wireless devices in a transparent way.

3.1.3 Service managers
Service managers act as a mediator layer between the service
providers and mobile devices. They are responsible for

information flow between both components. A service manager is
a Web Service entity that uses dynamic invocation interface (DII)
as communication mechanism between the different service
providers. With DII, a service manager can invoke Web Services
without knowing their communication interface at compile time.
As a result, (i) invocations of Web Services not known prior can
be computed by the service manager and (ii) service providers can
create, update and change Web Services at runtime.
The framework can support one or multiple service managers. If a
single service manager is used, a centralized framework that
supports the different service providers is provided. If multiple
service managers are used, different operators can be added at
anytime, where each operator can support different service
providers. In this situation, service clients may choose the service
managers, that they are interested.
Client applications that reside in mobile devices only interact with
a service manager. This leads to a generation of a single stub class
(corresponding to the service manager) and no several stub classes
corresponding to each Web Service of the available services.
XML is used as format of exchange data between applications that
reside in mobile devices and service managers.
Interactions between mobile devices and service providers using a
service manager entity consist of a five-step process:

• Start up: When a service manager starts up, it processes
a service registry. This registry is a structure that
enables service providers to store their list of URL
address (URI) of accessible services made available.
The service manager maintains a XML based structure
as registry. Dynamic invocation interface is used by the
service manager in order to obtain the service
descriptions at runtime. The use of DII communication
mechanism avoids the generation of each stub class
required for each available service, because the service
manager invokes dynamically the Web Services
description and posteriori, invokes them. Therefore, the
services list to offer to mobile users can change
dynamically, according to new services added at
anytime and at runtime.

• Service discovery: to discover services in the
networked service-oriented architecture, mobile clients
send a request for information about services made
available by service providers in the service manager
entity and/or services in UDDI registry. Mobile clients
request “all” services of the service manager or services
defined by some “generic” service type. For the
discovery of a particular service, keyword is used.

• Service delivery descriptions: description of services
(operations provided, parameters…) are defined by an
XML message, which is sent by the service manager to
the client application that resides at mobile devices,
after a request of services has been carried out by a
mobile user. Client application processes the received
information and shows it to the mobile user.

• Service invocation: service manager receives a request
encoded as an XML message with the necessary
information (Web Service name, selected operation,
parameter values introduced…) from a mobile device
when a user is interested in some service that has been

124

previously delivered to the mobile device in the service
delivery description step. Then, the service manager
makes the invocation of the Web Service selected using
dynamic invocation interface based communication
model to the service provider.

• Results transmission: the service manager sends the
information encoded as an XML message to the mobile
user, when it receives the response of the corresponding
service provider. This information is shown on the
screen display of the mobile device.

3.1.4 UDDI registry
UDDI service directory can also be used by mobile users in order
to locate new services. Service discovery is computed at runtime
by the service manager, once the user has sent their request of new
services in UDDI registry.

3.1.5 XML based infrastructure
A uniform infrastructure using XML-encoded data exchange is
used with two purposes: (i) to define the service registry structure
and (ii) establish the communication between the mobile device
and the service manager.

3.1.5.1 Service Registry
The XML based structure of the service registry enables service
providers to store their network address URL of WSDL
documents. The format of the XML document is the following:

<?xml version=”1.0” encoding=”windows-1252”?>
<WSDLaddresses>

<version>1.2</version>
<wsdl>http://api.google.com/GoogleSearch.wsdl</
wsdl>
 …
<wsdl>http://www.webservicex.com/TranslateServi
ce.asm?WSDL</wsdl>

<WSDLaddresses>

In this document, the tag WSDLaddresses contains two types of
elements: version and wsdl. version is the current version of the
Web Services set provided to the service manager. This element is
used in order to update new services to mobile devices. wsdl is the
URL address where is located the WSDL document of a Web
Service offered. There are so many wsdl elements like Web
Services offered.

3.1.5.2 Web Service description
The following format of XML document is sent from the service
manager to the mobile device, when the description of Web
Services available set and/or location of new services in UDDI are
required by the mobile user:

<webservices version=”1.0”>

<service name=”Calculator”>
wsdl=”http://81.45.231.68:8080/Server/Calculato
r.wsdl”>

<porType localPart=”Calculator”
namespaceURI=”http://calculator.com”>

<operation name=”add”>
<title> Add operation</title>
<description>To compute add operation
between two numbers</description>
<parameters>

<parameter name=”Operator1”
type=”number”>
<parameter name=”Operator2”
type=”number”>

</parameters>
<return>true</return>

</operation>
…
<operation name=”subtract”>

…
</operation>

</porType>
…

<porType>
…
</portType>

</service>
<service>

Service
Provider

S
O
AP

UDDI

Service
Provider

Service
Provider

S
O
AP

S
O
AP

XM
L

Service Registry

Dinamic Invocation Interface (DII)

Service Clients

Service Managers

Service Providers

Mobile Clients

Figure 2. Dynamical m-services architecture

125

…
</service>

</webservices>

The root of the document is the webservices tag. It represents the
start of the set of Web Services. The attribute version corresponds
to the current version of Web Services descriptions set provided
to the mobile device. The use of this attribute allows users check
their set of descriptions with the service manager and
downloading a new version, when new services have been added.
Each Web Service is described with two attributes: name and
wsdl. Different port types can be associated to a specific Web
Service through the element portType. This element contains three
attributes: localPart, namespaceURI and operation. A operation
is described by the following elements: title (title of the
operation), description (description of the operation), parameters
(input parameters of the operation), and return (true is returned if
the operation returns a value, false in other case)

3.1.5.3 Operation invocation
The structure of the XML document sent from service manager to
the mobile device when a Web Service operation is invoked is the
following:

<results>

<result>Search time:0.5 seconds</result>
<result>

<result>Department Store: XYZ</result>
<result>

<result>
<result>Name: wood table</result>
<result>Price: 50 euros</result>

</result>
…
</result>

</result>
</results>

The different results are enclosed between result tags. If a
complex type is returned (such as arrays and structures), the
different fields of this type are enclosed into different result tags.

3.1.5.4 UDDI search
A service manager sends to the mobile device, the next XML
document, when a user requests a search for new Web Services in
UDDI registry:

<UDDI>

<webservice
wsdl=”http://81.45.231.68:8080/Server/Calculato
r.wsdl”>

<description>=”To compute add, subtract
operations…”/>

…
</UDDI>

The different Web Services located are enclosed by a webservice
tag. wsdl and description attributes represent the URL address of
the WSDL document and the Web Service description.

4. IMPLEMENTATION
The m-services framework described in section 3, allows mobile
users to invoke Web Services published at World Wide Web, by
requesting a service manager entity at runtime.

In order to test the Web Services framework for mobile devices,
we have implemented on mobile phones different scenarios
services using a service manager entity.

The following services have been implemented and tested: (1)
Searching with Google engine, (2) text translation from one
language to another, (3) newspaper reports (this service allows
user to select one or several newspapers), (4) converser
temperatures, (5) weather forecast, (6) calculator operations and
(7) dynamic binding with UDDI registry.

The framework proposed has been implemented using the
following open source software: Apache Tomcat 5.0.28 for
application server, J2ME Wireless Toolkit (WTK) for
programming tool, and Eclipse 3.1 development platform with
WTP (Web Tools Platform) plug-in for building software and
developing Web applications.

We have developed the Java application and tested it on the Sun
emulator. Also, with the purpose of testing correct performance,
we have tested the application with mobile emulators of
commercial trademarks. Figure 3 shows the application running
on the Sun emulator and a commercial emulator.

Figure 3. Example of the J2ME application running on Sun’s
J2ME emulator and a commercial emulator

 In order to invoke Web Services from a J2ME application, the
mobile devices must support the Java Specification Request 172
(JSR-172). At present, however, JSR-172 has no support to UDDI
specification in a J2ME application. It must be pointed out that
our framework solves this problem through the use of the service
manager entity.

The application developed to mobile users presents different
menus with different options, e.g.,: invocation, update, delete and
searching of new Web Services. Figure 4 illustrate the main menu
of the application. This application is entirely dynamic, that is, all
screen display is generated according to the option selected by the
user at runtime. For example, the screen display “Select a
service”, is made up by the services downloaded by the user at the
present time; the screen display “Request of parameters” only
request user the parameters required by the user invoked
operation.

126

Figure 4. Main menu of the J2ME application and specific
menu of “Invoke a service”

The main menu presents three different options to the user such is
illustrated in Figure 4:

• Invoke a service: the set of available services to the
mobile device is shown to the user. Two set of different
services are available: (i) standard services registered by
the service manager entity (represented by a green star)
and (ii) services searched in UDDI (represented by a red
star). Right image of figure 4 depicts such functionality.
After a service is selected, the set of operations
supported is shown to the user. Figure 5 illustrates a
weather forecast service. Results of the operation
invocated are shown in Figure 6.

Figure 5. Global Weather forecast service: (a) Selection of the
operation to invoke and (b) Introduction of the parameter
values

Figure 6. Global Weather forecast service: Results of the
invoked operation

• Check results: allows users to check the results from
the different invocations achieved. A list with the
different invoked services by the user is saved with the
following attributes: operation, parameters values,
invocation date and result computed. This way, user can
read results of previous services invoked at anytime.
Figure 7 illustrates newspaper reports that have
previously been invoked and consulted later.

Figure 7. Consultation of newspaper reports that have
previously been invoked

• Services management: allows users to choose different
management tasks such as: (i) update Web Services
from servers, (ii) searching services in UDDI and (iii)
remove services from the mobile device. Figure 8
illustrates results computed for a search in UDDI about
services related to a currency conversion.

Figure 8: Results computed by services related to “currency
converters” in UDDI registry

5. DISCUSSION
The service oriented architecture described in section 3 is based
on open standards and specifications that allow accessing Web
Services of wired network from mobile phones at runtime without
prior knowledge of available services.
At present, we found that open source development tools for
building, deploying and testing production quality work well
together. However, we have found three drawbacks of using
general Web Services technology for developing mobile services.
First, the Java Specification Request 172 (JSR-172) required for
invocating Web Services from a mobile J2ME application does
not support UDDI specification and SOAP encoded messages. As
a result, mobile devices cannot access directly to UDDI registry
and the mobile devices can only access to Web Services with
SOAP messages with literal representation (RPC/literal and
document/literal). We have solved both problems by the use of
service manager entities.
Second, we have found that the use of UDDI registry provides
high time responses and also many of the services published in
UDDI registry are not correctly published. Thus, all the services
consulted through UDDI registry must be verified by the service
manager, before the results are sent to the mobile user. Also,
UDDI registry has been not designed in order to support dynamic
binding and fault-tolerance. Moreover, the UDDI registry can do
neither any load balancing nor automatic forward to a different

127

URI in case of failures. These problems need to be solved at the
level of individual Web Service providers using techniques like
replication and server clustering. In order to solve these problems,
a major verification of the services published in UDDI registry is
required. We have solved this problem verifying the services
required to UDDI registry by the service manager entity.
However, these confirmations increase the response time to
mobile users.
Third, specific implementations must be developed in order to
support complex types when dynamic invocation interface is used.

6. CONCLUSIONS & FUTURE WORK
In this paper, we propose mobile devices as complete participants
in networked service-oriented architectures to enlarge the variety
of accessible services and new business opportunities in the
mobile space. We introduce service managers as intermediate
entities between service providers and mobile devices. These
managers are Web Services components that act as clients over
the network of services and as servers to the mobile devices. We
propose the use of dynamic invocation interface in order to
compute at runtime: (i) Web Services descriptions from service
providers and UDDI registry and (ii) invoke services selected by
mobile users. We provide a uniform infrastructure using XML-
encoded data exchange between service managers and mobile
devices. With this approach, we delegate the business logic to
service managers, solving the problems faced by direct access
from mobile devices to Web Services and reducing the
computational cost of mobile devices and therefore, optimizing
the response times to mobile users and memory resources. The
design of our framework taking into account service manager’s
elements allows that service providers to create, update and
change services at anytime and mobile users may locate new
services without knowing the accessible services. We have
implemented a first prototype with open source tools. At the
present time, we have found that available technology to
implement Web Services technology using open source software
is appropriate. However, some drawbacks were detected such as:
(i) UDDI registry cannot be directly accessed by mobile devices
and (ii) specific implementation is required in order to support
complex types when dynamic invocation interface is used.
Once we have tested the viability of Web Services technology and
the dynamic invocation interface based paradigm to support basic
m-services, our future work will be focused on adding semantic
and context-awareness notions with the purpose of intelligent
matching and personalized responses. Future trends also involve
incorporating authentication policies and testing all it with the
available Web Services technology in m-commerce scenarios.

7. REFERENCES

[1] Chakraborty, F., Perich F., Avancha S., and Joshi A.

DReggie: Semantic service discovery for m-commerce
applications. Workshop on Reliable Secure Applications
Mobile Environments, 20th Symposium Reliable Distributed
System, New Orleans, LA, 2001.

[2] DAML. The Darpa Agent Markup Language. Available from
URL: http://www.daml.org/

[3] Guttman, E., Perkins, C.E., Veizades, J., Day, M. RFC
2608 : Service location protocol, version 2. Internet
Engineering Task Force, june 1999. Available from URL :
http://www.rfc-editor.org/rfc/rfc2608.txt

[4] Gustavo, A., Casati, F., Kuno H., Machiraju, V. Web
Services: concepts, archictectures and applications. Springer-
Verlag publications, Berlin 2004.

[5] I-mode. NTTDoCoMo. http://www.nttdocomo.com
[6] Jini Network Technology. http://www.sun.com/software/jini/
[7] Patil A., Oundhakar S., and Verna K. METEOR-S Web

Service Annotation Framework, In Proceedings
International WWW Conference, New York, USA, 2004.

[8] The Salutation Consortium, Salutation Architecture
Specification, http://www.salutation.org, October 1997.

[9] UDDI. Universal Description, Discovery, and Integration.
http://www.uddi.org/

[10] UPnP. Universal plug and play. Available from URL:
http://www.upnp.org/

[11] Vinoski, S,. Web Services Interactions Models, Part 1:
Current Practice. In IEEE Internet Computing, Vol 6, Nº 3,
pp. 89-91, 2002.

[12] Waldo., J. The Jini architecture for network-centric
computing. Communications ACM 42 (7), 79-821 1999.

[13] W3C: World Wide Web Consortium. Simple Object Access
Protocol. (SOAP). http://www.w3.org/TR/soap/

[14] W3C: World Wide Web Consortium. 2003. Web Services
Description Language (WSDL). http://www.w3.org/TR/wsdl

[15] Katherine S. Willis. Gap: Mobile Applications and
Wayfinding. In Workshop for User Experience Design for
Pervasive Computing. Pervasive 2005, Munich, Germany.

[16] A. Gugliotta, L. Cabral, J. Domingue, V. Roberto, M.
Rowlatt, and R. Davies (2005). A Semantic Web Service-
based Architecture for the Interoperability of E-government
Services. In Proceeding of Web Information Systems
Modeling Workshop (WISM 2005) in conjunction with The
5th International Conference on Web Engineering (ICWE
2005) Sydney, Australia, 25-29 July, 2005.

[17] OGSI Service Platform. http://www.osgi.org/
[18] Humberto Cervantes, Richard S. Hall. Autonomous

adaptation to dynamic availability using a service oriented-
component model. In 26th International Conference on
Software Engineering (ICSE 2004), 23-28 May 2004,
Edinburgh, United Kingdom.

�

128

