
Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007   1

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

ABSTRACT

This article proposes a cooperative data caching and prefetching scheme for Mobile Ad Hoc 
Networks (MANETs). In this scheme, multiple hosts cooperate in both prefetching and caching 
commonly used data. To reduce communication and computational overhead, we use a clustering 
architecture for the network organization. A weak consistency based on time to live value was 
used to maintain data consistency. A hybrid cache replacement policy that uses frequency of 
access and the reference time was employed. The effects of cache size, mobility, and prefetching 
threshold on the network performance were investigated in a discrete event simulation environment. 
The contribution of intra-cluster and inter-cluster information to overall data accessibility ratio 
was also investigated. The simulation results indicate that the proposed scheme improves both 
data accessibility and query delay at relatively lower prefetch thresholds, larger cache sizes, 
and moderate mobility.  

Keywords: ad hoc networks; cooperative caching; data management; mobile networks; 
prefetching; wireless networks 

Cooperative	Data	Caching	and	
Prefetching	in	Wireless	Ad	Hoc	

Networks
Mieso K. Denko, University of Guelph, Canada

INTRODUCTION
In the past few years, most of the 

research devoted to MANETs has focused 
on the development of routing protocols to 
increase connectivity among mobile hosts 
in a constantly varying topology (Johnson 
& Maltz, 1996; Perkins & Bhagwat, 1994). 
Although development of routing protocols 
is one of the main challenges that must 
be addressed, improved data accessibil-
ity is the ultimate goal of such networks. 

In order to enable quick deployment of 
MANETs, development of reliable and ef-
ficient data management schemes suitable 
for this network environment is crucial. 
Data caching and prefetching techniques 
used in traditional wireless networks can 
be extended to be used in MANETs. In this 
article, we investigate the use of caching 
and prefetching techniques for improving 
data accessibility and reducing latency in 
MANET environments.

IDEA GROUP PUBLISHING

This paper appears in the publication, International Journal of Business Data Communications and Networking, Volume 3, Issue 1
edited by Jairo Gutierrez © 2007, Idea Group Inc.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITJ3478



2   Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. 
is prohibited.

Caching has been utilized extensively 
in wired networks, such as the Internet, to 
increase the performance of Web services 
(Fan et al., 1998; Rousskov & Wessels, 
1999; Wang, 1999; Wessels & Claffy, 2005). 
However, existing cooperative caching 
schemes cannot be implemented directly in 
MANETs due to host mobility and resource 
constraints that characterize these networks. 
Consequently, new approaches have been 
proposed to tackle these challenges (Cao, 
Yin, & Das, 2004; Hara, 2002; Lim, Lee, 
Cao, & Das, 2003; Papadopoui & Schulz-
rinnr, 2001; Wang, 2005; Yin & Cao, 2006). 
These approaches have been introduced to 
increase data accessibility and reduce query 
delay in MANETs. A cooperative cache-
based data access scheme is subsequently 
proposed for ad hoc networks (Cao et al., 
2004; Yin & Cao, 2006). Three caching 
techniques, namely CacheData, CachePath, 
and HybridCache, are utilized as caching 
approaches. In CacheData, the intermedi-
ate hosts, which are located along the path 
between the source host and the destination 
host, cache frequently accessed data items. 
In CachePath, the intermediate hosts record 
the routing path information of passing 
data. CachePath only records the data path 
when it is closer to the caching host than 
the data source. The HybridCache technique 
represents a combination of CacheData and 
CachePath. This technique performs better 
than either the CachePath or CacheData 
approach. The cache replacement algorithm 
in HybridCache is based upon the access 
frequency of a data item and the distance to 
the same cached copy or to the data source. 
However, due to the inherent mobility of the 
host, such distances can change frequently. 
Moreover, the authors did not consider 
prefetching and multiple data sources in 
their study. In Lim et al. (2003), a similar 
approach is proposed for data caching in 

a network that integrates ad hoc networks 
with the Internet.

In Hara (2002), a replica allocation 
scheme with periodic data item updates is 
proposed. This scheme focused on improv-
ing data accessibility with the main goal 
of decreasing the data access failure in 
response to network division. The schemes 
presented in Sailhan and Issarny (2003) 
and Wang, (2005) are based on a specific 
routing protocol. The scheme in Sailhan 
and Issarny (2003) used popularity, access 
cost, and coherency as criteria to replace 
cached data items when a mobile host’s 
cache space is full. In Wang (2005), a 
transparent cache-based mechanism based 
on a new on-demand routing protocol called 
dynamic backup routes routing protocol 
(DBR2P) is proposed. The routing protocol 
and the cache mechanism allow the caching 
of data. In order to guarantee data access, 
this scheme allowed the cached data to be 
moved to a backup host in response to a 
link failure. Another study proposed the 
implementation of an architecture similar 
to cooperative caching, which defines two 
protocols to share and disseminate data 
among mobile hosts (Rousskov & Wessels, 
1999). However, the scheme focused on 
data dissemination in a single-hop rather 
than cooperative caching in a multi-hop 
environment. Another study utilized a novel 
architecture for database caching based on 
the separation of queries and responses (Ar-
tail, Safa, & Pierre, 2005). The experimental 
results indicated that the scheme improved 
data accessibility by reducing response time 
in the presence of host mobility. 

Cooperative caching is an effective 
mechanism for increasing data accessibil-
ity in both wired and wireless networks. 
However, caching alone is not sufficient to 
guarantee high data accessibility and low 
communication latency in dynamic systems 



Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007   3

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

with limited network resources. In this 
article, we propose an integrated coopera-
tive caching and prefetching mechanism 
for MANETs. 

This article provides the following 
contributions to increasing the efficiency 
of data management in MANETs. First, 
we use a clustering architecture that al-
lows localized and adaptive data caching 
and prefetching mechanisms to increase 
data accessibility and reduce latency in the 
presence of host mobility. Second, we use 
a cache replacement policy that combines 
both frequency of access and latency of 
access to the cached data. Thus, eviction of 
data in the cache depends on a metric that 
combines the optimal combination of ac-
cess frequency and time of reference with a 
configurable parameter. Third, the proposed 
cooperative caching and prefetching archi-
tecture is flexible and does not rely on any 
specific routing protocol. Fourth, the article 
provides an analysis of the contribution of 
intra-cluster and inter-cluster information 
to the data accessibility ratio.

The remainder of this article is or-
ganized as follows. Section 2 presents 
the proposed system architecture. Section 
3 presents the cooperative caching and 
prefetching strategies. Section 4 presents 
the cache replacement policy and data 
consistency management. Section 5 pres-
ents the results of performance evaluation 
based on simulation experiments. Finally, 
Section 6 presents conclusions and future 
research work.

THE	 PROPOSED	 SYSTEMS	
ARCHITECTURE	

Network	Model	and	Assumptions
The network consists of mobile hosts 

that form clusters. The network connectiv-

ity is maintained using a periodic Hello 
message that is exchanged among one-hop 
neighbors. Other information such as the 
data stored at a host, host’s role (cluster 
head, data source, or caching agent) are ex-
changed among neighbors. The clustering 
algorithm is used for cluster management. 
These tasks include cluster head election, 
monitoring cluster membership changes, 
and facilitating inter-cluster communica-
tions. We assume that each host has a cache 
of a fixed capacity and cached data can be 
accessed by any other host. Data caching 
and prefetching operations are carried out 
cooperatively to avoid extra communica-
tion overhead.

The	Architecture	
Cooperative caching is particularly 

attractive in environments where the net-
work is constrained in terms of bandwidth, 
power, and storage. Cooperative caching 
offers several benefits since it can enable 
efficient utilization of available resources 
by storing different data items and sharing 
them among themselves. Cooperative cach-
ing additionally improves performance by 
increasing data accessibility and reducing 
communication latency.

In this study, we consider data manage-
ment in a large ad hoc network. The net-
work organization is based on a clustering 
architecture with a cluster head. Hosts that 
allow communication between two clusters 
are called gateways. Figure 1 gives an 
example of the proposed architecture with 
two clusters. We used cooperative clusters 
with cluster heads (CH). Each cluster has 
a CH, data source (DS), caching agents 
(CAs), and mobile hosts (MHs). The DS 
generates data items needed by other MHs 
in the network. Multiple data sources store 
different data items. The hosts that act 
as DSs are known to the CHs and local 



�   Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. 
is prohibited.

CAs. For clustering, we used the lowest 
ID clustering algorithm proposed in Gerla 
and Tsai, 1995. However, any existing dis-
tributed clustering algorithm can be used. 
We used a secondary cluster head to cope 
with cluster head changes and data loses 
(Lu, 2005). 

Cache	Placement	and	Host	
Organization

Each host has its own caching manger 
(CM) and prefetching manager (PM). The 
PM uses information from the CH and 
other hosts to make prefetching decisions. 
The PM maintains a list of data items to 
be fetched based on the implementation of 
the data prefetching algorithm and sends 
request to neighbors or to the CH. The CM 
monitors cache size, cached data lifetime, 
and cache replacement operation. It uses a 
cache replacement algorithm to maintain a 
list of data items to be replaced when other 
data items are fetched.

When a host does not have the required 
data, it forwards the request to its neighbors, 
then to the CA, DS, or CH. Each cluster 
maintains information on a local data source 
(DS). When a MH receives the requested 

data item, it will decide whether the data 
item should be cached.  

A data item is placed at a specific host 
in the cluster. A fixed threshold distance 
metric of k-hop will be used for deciding a 
CA. The number of hops is adjusted based 
on host mobility and link characteristics. 
Larger hop lengths are used for less mobile 
and more stable networks. For example, 
maintaining three-hop neighborhood in-
formation in a dynamic network will cause 
more update overhead than maintaining 
one-hop neighborhood information since 
more transmission is involved. Moreover, 
the link may be changed before it is used 
the next time. In general, cache placement 
at the CA is carried out based on distance 
metric, cache replacement algorithms, and 
capacity constraints.

COOPERATIvE	CACHING	AND	
PREFETCHING	STRATEGIES

Cooperative caching involves cache 
placement, cache replacement, data re-
quest-reply operations, and cache consis-
tency. The data request-reply operation also 
known as data search can be performed 
proactively or based on demand. Most 

Figure 1. The cluster architecture Figure 2. Data request-reply

Begin
 When a mobile host, N, requests a data item, 
D:
 Call cache_avail;  
 If a copy of D exists in its cache and valid 
then
   Return D;
 Else 
  Requests D from Neighbors/CA/DS
  If D exists and still valid then
   Return D;
  Else // no data in the cluster
  Requests D through CH;
End

CH

CA
DS

MH



Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007   5

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

existing solutions in data management 
for MANETs consider cooperative cach-
ing without prefetching. In this article, 
we consider cooperative caching with 
prefetching. 

Types	of	Cooperative	Caching	
We consider two types of host coopera-

tion. The first type of cooperation involves 
cooperative data access and storage. Neigh-
bor hosts store different data items and serve 
any request made for such data items by any 
host interested in the data. The second form 
of host cooperation involves cooperative 
prefetching and cache placement. When the 
data item is prefetched from a DS or CA, 
the data can be cached at any other CA if 
it is fresh relative to the existing data item. 
In other words, the existing data item can 
be updated by a CA in the cluster, even if 
the request for data was not initiated by it. 
However, such updates are only performed 
locally within a cluster. 

Data query and reply is forwarded on 
a hop-by-hop basis. The data request begins 
at a local cluster. If the request fails, the 
search will continue through other clusters 
until the DS or any CA containing fresh data 
responses to the query. The query reply is 
forwarded on a reverse route in the same 
manner. The request will be unsuccessful 
only when the network is partitioned. The 
solution for this problem involves data rep-
lication. This specific problem was already 
discussed both in the literature and in our 
own earlier work (Feldmann, 1999; Hara, 
2002; Lu, 2005). Although disconnected 
operation is a norm (not an exception) in 
MANETs, permanent failure due to bat-
tery power depletion or network partition 
could result in a complete loss of data if 
no replicated copy is available.   

Prefetching	Strategies
Caching becomes more effective if 

the requested data item is available in the 
cache when needed. Strategies for proac-
tively prefetching the most frequently ac-
cessed data within the cache or prefetching 
frequently needed data upon the expiry 
of Time-To-Live (TTL) can significantly 
improve network performance by reduc-
ing latency. To reduce communication 
overhead, we use the prefetch-on-mis 
scheme when the value of TTL expires for 
a particular data item.

We propose implementation of a 
prefetching strategy that works at two 
levels. The first level of prefetching is per-
formed between hosts and caching agents, 
whereas the second level of prefetching is 
performed between CAs and the CH.

1. Prefetching	 between	 MHs	 and	
CAs:	A	host that frequently needs a 
particular data item will prefetch the 
data from the CA or DS if the data 
has not already been cached in its 
neighbor. Under such a circumstance, 
a host will become a CA. It will notify 
its CH, its neighbors, and the CAs in 
its cluster, of its status change and the 
ID of the data it is storing. 

2.	 Prefetching	between	CAs	and	CHs: 
If a CA has an expired data item, it 
will prefetch the item from other CAs 
or DSs in its cluster. If the CA cannot 
find a fresh data item from within its 
cluster, it will send its request to the 
CH, which will in turn request the data 
from other clusters. The pseudocode 
for Request-Reply is shown in Figure 
2. 

In the Request-Reply process, any host 
that receives a data item request will first 
check its own cache space and its validity 



�   Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. 
is prohibited.

and then decide whether to send data to 
the requester or forward the query to the 
other host or CH. 

The	Prefetching	Algorithm
The performance of prefeching 

depends on the quality of the prediction 
mechanism used. The algorithm should be 
adaptive and it should use distributed infor-
mation gathering mechanisms. We used a 
popularity-based prediction algorithm. The 
PM maintains the required statistics and 
implements the prefetching algorithm.  

By prefetching frequently accessed 
data in the local cache within a cluster, 
latency can be reduced significantly. The 
frequency of access to data is determined 
based on the past access history for a par-
ticular data item. Based on these statistics, 
the data items that are most likely to be 
needed in the near future will be prefetched 
and cached. To achieve this, hosts maintain 
frequency of access request statistics for 
each data item.

Each host maintains a Node Prefetch-
ing Index (NPI) for each data item (Di) as 
follows:

1,)( ≥= i
kN
in

iDNPI
  

(1)

where Nk is the total number of distinct 
access requests at the host k,  ni is the total 
number of distinct requests for the data 
item (Di). The value NPI shows the ratio of 
access to the data. Hence, a higher value of 
the NPI provides evidence of the popularity 
of that data at the host.

Each caching agent fetches the data 
item if the data is popular, which is de-
termined by the cumulative prefetching 
index (CPI) using a predefined threshold. 

For each data item (Di), the value of CPI 
is computed as follows:

( )iDNPI
k

i
iDCPI (

1
)( ∑

=
=

  
(2)

where k is the number of hosts. The fetch 
index is adjusted based on past access his-
tory and an update will be sent to all CAs 
in the cluster. These indexes are updated 
whenever the data item is accessed.

CACHE	 REPLACEMENT	AND	
DATA	CONSISTENCY	

Cache	Replacement	Algorithm
The primary purpose for cooperative 

cache placement is to avoid duplicated 
storage of the same data item at neighbor 
hosts. This reduces data access costs in 
terms of the number of hops required 
for data transmission to obtain the data. 
A clustering architecture is suitable for 
partitioning the network into smaller and 
more manageable groups. 

Cache placement determines whether 
a received data item should be cached. 
However, when a MH’s cache space is 
full and a new data item should be cached, 
cache replacement will determine which 
cached data item should be removed from 
the cache space. 

Cache replacement algorithms play a 
major role in determining the performance 
of a caching scheme. There are two scenari-
os in which cache entries could change. The 
first scenario occurs when the data stored 
in the cache becomes invalid. In this case, 
the invalid data item is replaced. If the data 
is popular, it will be prefetched and placed 
in the cluster for future use. The second 
scenario occurs when a MH’s cache space 



Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007   7

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

is full and a data item has to be cached. 
In this case, the existing data should be 
evicted and replaced by new data. The MH 
has to decide which data item in its cache 
space should be removed to make room 
for the new data item. Thus, our proposal 
involves prefetching the required data item 
and distributing it to hosts for caching in 
designated CAs. The data item would be 
cached in the CAs by replacing expired 
TTLs or by evicting existing data using 
cache replacement algorithms. 

If all data items are valid, a cache 
replacement algorithm is used to evict 
cache content and store new data items. 
Most existing cache replacement schemes 
use policies such as least recently used 
(LRU) and least frequently used (LFU). In 
the LRU policy, the least recently accessed 
cached data is replaced, while in the LFU 
policy, the least frequently accessed data 
is replaced. The LRU may replace data 
that has not been accessed for a long time, 
even if this data may be needed by multiple 
hosts later. This is plausible, since hosts 
can join or leave the network randomly 
and they do so frequently. Furthermore, 
LFU alone may not be useful since the 
frequency of access may not be stable in a 
dynamic network. Consequently, we used 
the combined metric that allows replacing 
the least frequently used data with the least 
recent references.

The	LRFU	Cache	Replacement	Policy	
To avoid removing data that may be 

needed soon, we used a cache replacement 
algorithm that makes use of both frequency 
and latency of access information. This 
hybrid cache replacement policy combines 
LRU and LFU and is known as the least 
recently-least frequently used (LRFU) 
algorithm. LRFU removes data items that 
have the smallest combined values for both 

frequency and latency of access. If multiple 
data items have the same frequency of ac-
cess, then one of them will be evicted based 
on their TTL value.

According to the LRFU policy, each 
host assigns a value called combined 
recency and frequency (CRF) that esti-
mates the probability that the data will be 
accessed in the future. Past references to 
the data contribute to this value based on 
a weighing function, F(x), where x is the 
time span between past references and the 
current time. 

The CRF value of a data item, D, at 
time tc is computed as follows (Lee et al., 
1997):

)()(
1
∑
=

−=
k

i
bictc ttFDCRF

 
(3)

where F(x) is a weighing function and {tbi}, 
i, 1… k, are the reference times of data 
items D and tb1<tb2< tb3 <…≤ tc.

The LRFU policy differs from LRU in 
that it takes other references into account. 
Furthermore, LRFU differs from LFU in 
that the contribution of each reference 
depends on its latency. As the weighting 
function, we used the function:

x
xF 






=

5
1)(

   
(4)

where x is the difference between the current 
time and reference time and δ is a control 
parameter.

It is evident from the above weighing 
function that F(x) approaches the LFU as 
δ approaches zero, and it approaches LRU 
as δ goes to one. By varying the control 
parameter δ, the performance of the LRFU 
policy can be improved.



�   Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. 
is prohibited.

Cache	Consistency	Management
Data items stored in the DS are clas-

sified as either dynamic data or static data. 
The value of a dynamic data item changes 
frequently, while the value of a static data 
item does not. The cache consistency check 
ensures that the cached data is consistent 
with the original data at the DS. Because 
static data items seldom change, the network 
traffic caused by an update broadcast is 
minimal. By dividing data items into static 
data and dynamic data, the overhead caused 
by maintaining cache consistency will be 
greatly reduced.

For dynamic data, a simple weak 
consistency (Alex, 1992; Wessels & Claffy, 
1998; Yin & Cao, 2005) model based on the 
TTL mechanism is used. The DS assigns 
a TTL value to all dispatched data items. 
The TTL value of a data item is computed 
at the DS as follows:

{ }),(min createdcurrentTTL −=

    (5)

where λ and ρ are predefined constants. 
The parameters, Current and created refer 
to the current time and the creation time of 
the data item respectively. The parameter 
ρ   represents a predefined threshold. To 
determine whether the TTL value of a data 
item is valid, a host computes the Current 
TTL (CTTL) as follows:

( ))( initialcurrentTTLCTTL −−=

    (6)

where current is the time when this data item 
was found in cache space, and initial is the 
time when this data item was dispatched 
from the DS. If the value of CTTL is less 
than or equal to zero, this data item expires. 
Otherwise, it is considered valid. When the 

TTL expires, the data is removed from the 
cache and the entry is marked with a flag 
to indicate the invalid status. This informa-
tion will be sent to neighbors to avoid any 
request to this data later.

PERFORMANCE	EvALUATION	
The implementation was run in the 

Network Simulator (2005) environment in 
order to evaluate the proposed architecture. 
Using the hybrid cache replacement policy, 
we evaluated the performance of integrated 
cooperative caching and prefetching with 
cooperative caching. We used the AODV 
protocol (Perkins, Belding-Royer, & Chak-
eres, 2005) as the ad hoc routing protocol. 
Host mobility was modeled using the 
Random Waypoint model (Broch, Maltz, 
Johnson, Hu, & Jetcheva, 1998). 

Performance	Metrics
The performance metrics used in our 

simulation study were average data acces-
sibility ratio (DAR), average query delay 
(AQD), and average network traffic over-
head (NTO). We investigated the effects of 
cache size, pause time, number of clusters, 
and prefetching overhead on these perfor-
mance metrics. The simulation parameters 
with their default values are summarized 
in Table 1. In the simulation, co-operative 
caching with prefetching, cooperative cach-
ing with no prefetching (CCNP), and simple 
caching schemes (NCC) were investigated 
at various parameter settings.

1.	 Data	accessibility	ratio	(DAR):	The 
data accessibility ratio is defined as the 
ratio between the total number of data 
item requests and the total number of 
successfully received data items. 

2.	 Average		 query	delay	(AQD):	The 
average query delay is the average 



Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007   �

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

time interval between the generation 
of a query and the receipt of the query 
reply.

3.	 The	 percentage	 network	 traffic	
overhead	 (NTO):	 The percentage 
network traffic overhead is defined 
as the ratio of the increase in the total 
number of data transmitted with in-
tegrated caching and prefetching and 
the total number of data transmitted 
without prefetching. This metric can 
be used to measure the efficiency of 
prefetching. 

There is a trade-off between hit ratio 
and traffic increase. Since each cached data 
item has an expiry time, the overhead is 
lower than a mechanism that stores all data 
for the entire duration until it is replaced. 
When fetched data can be used by multiple 
hosts, the increase in data prefetching de-
creases since data will not be prefetched 
multiple times. Hence, the hit ratio increases 
without an increase in network traffic. A 
good prefetching scheme should result in 
a high hit ratio without causing much ad-
ditional traffic. 

 
Discussion	of	Simulation	Results

Figures 3-9 show the results of a 
performance evaluation from the experi-
ments. The results are summarized in four 
categories. 

1.	 Simulation	 experiments	 on	 data	
accessibility: The effects of cache 
size, pause time (PT) and the control 
parameter (δ) on data accessibility 
were investigated. 

Figure 3 shows that the data acces-
sibility ratio increases with an increase in 
cache size for all caching schemes. Coop-
erative caching with prefetching (CCPF) 

performs better at larger cache sizes due 
to the increased number of spaces avail-
able for caching after data fetching. The 
DAR includes within cluster data hits 
(local cache hit, neighbor cache hit, and 
remote cache hit). The results indicate 
improvements made by prefetching over 
cooperative caching (CCNP) and simple 
caching schemes (NCC). 

Figure 4 shows that DAR increases 
proportionally to pause time. This occurs 
because the higher pause times indicate 
lower mobility. Thus, the CA will be 
relatively static, resulting in better data 
accessibility. On the other hand, the re-
sults show that cooperative caching with 
prefetching (CCPF) generally outperforms 
(by an approximate 20% increase in DAR) 
the scheme with only cooperative caching 
(CCNP). At higher pause times, data miss 
is only caused by a lack of the required data 
in the CA and not by mobility.  

Figure 5 shows the effect of the com-
bined frequency and latency control param-
eter (δ) for the LRFU cache replacement 
algorithm. The purpose of this experiment 
was to find a more suitable value for δ that 
would increase the performance of the cache 
replacement policy. The smaller value of 

Parameter Default	value/range

Network Area(m) 1500 × 1500

Network Size 200

Transmission Range(m) 250

Number of DS/cluster 3

Number of CA/cluster 3-5

Host Speed (m/s) 0-20

Pause Time (s) 200-2000

Cache Size(KB) in MHs 100 – 1800

Simulation Time(s) 2000

Table 1. Simulation parameters



10   Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. 
is prohibited.

Figure 3. Data accessibility ratio cache size

Figure 4. Data accessibility ratio as a function of pause time

Figure 5. Data accessibility ratio as a function of cache size for different values of δ

Figure 6. Average query delay as a function of cache size

0
0.1
0.2
0.3
0.�
0.5
0.�
0.7
0.�
0.�

1

10
0

20
0

�0
0

�0
0

�0
0

10
00

12
00

1�
00

1�
00

1�
00

Cache size (KB)

D
AR

CCPF
NCC
CCNP

0.00
0.10
0.20
0.30
0.�0
0.50
0.�0
0.70
0.�0
0.�0
1.00

200 �00 �00 �00 1000 1200 1�00 1�00 1�00 2000

Pause time 

D
A

R CCNP
CCPF

0
0.1
0.2
0.3
0.�
0.5
0.�
0.7
0.�
0.�

1

10
0

20
0

�0
0

�0
0

�0
0

10
00

12
00

1�
00

1�
00

1�
00

Cache size 

DA
R

DAR ( =0.002)
DAR ( =0.00002)
DAR( =0.0002)

0
0.01
0.02
0.03
0.0�
0.05
0.0�
0.07
0.0�
0.0�
0.1

0.11
0.12
0.13
0.1�
0.15

10
0

20
0

�0
0

�0
0

�0
0

10
00

12
00

1�
00

1�
00

1�
00

Cache size (KB)

D
el

ay
 (s

ec
)

NCC
CCNP
CCPF



Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007   11

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

δ (0.00002) was closer to LFU policy, 
whereas the larger value of δ (0.002) was 
closer to the LRU policy. The results in 
Figure 5 show that when the value of δ is 
0.0002, the LRFU policy performs better 
than the other two cases at all cache sizes. 
The results also show that at a higher cache 
size, the rate of increase is low since there 
is sufficient space for caching and the cache 
replacement policy has less effect. This oc-
curs because of a decreased cache miss due 
to the lack of prefetched data. As the value of 
δ increases, the data accessibility increases 
until it reaches a maximum level, beyond 
which the level of increase is negligible. 
The maximum value of data accessibility 
depends on both the cache size and the 
value of δ. Hence, the determination of a 
more appropriate value for δ depends on 
the cache size and weighing function.

 
2.	 Simulation	experiments	on	average	

query	delay: The effects of cache size 
and pause time on the average query 
delay were investigated.

Figure 6 shows that the CCPF con-
sistently outperforms other schemes at all 
cache sizes. However, the difference in the 
delay is small at both ends of the cache size 
spectrum (lowest and highest). At lower 
cache sizes, both policies result in an equally 
sharp reduction of delay, while at higher 
cache sizes, the cache replacement policy 
has little effect since the available space can 
accommodate the existing or fetched data 
items. The difference between the query 
delays is relatively higher at larger cache 
sizes. This is because more data can be 
prefetched and cached when the cache size 
is large than when it is small. The results 
indicate improvements made by prefetch-
ing over cooperative caching and simple 
caching schemes. 

Figure 7 shows that there is a de-
crease in average query delay associ-
ated with increased pause time for both 
schemes. However, cooperative caching 
with prefetching performed better than 
cooperative caching without prefetching. 
The schemes differ little at higher pause 
times (lower mobility) and indicate that 
the delay remains constant. In MANETs, 
the number of hops is closely related to the 
communication latency. Therefore, if more 
requests are fielded by a mobile host’s own 
cache or by its immediate neighbors, then 
the query delay will be much shorter than 
if the request is fielded by a remote DS.

3.	 Simulation	experiments	on	network	
traffic: Although prefetching increas-
es data accessibility, it also introduces 
network traffic. The effects of prefetch 
thresholds on network traffic and data 
accessibility were investigated. The 
prefetch threshold shows the length of 
time required to perform prefetching. 
A threshold value of zero indicates no 
prefetching, while a threshold value 
of 1.0 indicates perfect prefetching. 
Prefetching was performed on the 
expiry of the TTL value, mobility of 
immediate neighbor holding the data, 
and on cache miss. The decision of 
which data item to fetch also depends 
on the prefetch index maintained at 
each host. Figures 8 and 9 show the 
NTO and DAR for various numbers 
of clusters (NC), respectively. In all 
experiments, the NTO was higher for 
larger numbers of clusters and lower 
for smaller numbers of clusters at 
all prefetch threshold levels. This is 
because data prefetching may involve 
transmission across multiple clusters, 
which are located a number of hops 
away. On the other hand, results in 



12   Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. 
is prohibited.

Figure 7. Average query delay as a function of pause time

0

0.1

0.2

0.3

0.�

0.5

0.�

0.1 0.2 0.3 0.� 0.5 0.� 0.7 0.� 0.�

Prefetch threshold

NT
O

DAR (NC=10)
DAR(NC=15)
DAR (NC=20)

0.1
0.2
0.3
0.�
0.5
0.�
0.7
0.�
0.�

1

0.1 0.2 0.3 0.� 0.5 0.� 0.7 0.� 0.� 1

Prefetch threshold

D
AR

DAR (NC=10)
DAR(NC=20)
DAR (NC=15)

Figure 8. Average network traffic overhead as a function of prefetch threshold

Figure 9. Average data accessibility ratio as a function of prefetch threshold

0

0.01

0.02

0.03

0.0�

0.05

0.0�

20
0

�0
0

�0
0

�0
0

10
00

12
00

1�
00

1�
00

1�
00

20
00

Pause time 

D
el

ay
 (s

)

CCNP
CCPF



Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007   13

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Figure 9 show that DAR decreased 
with an increase in the prefetch thresh-
old. However, the rate of decrease 
was similar at all clusters after the 
threshold of about 0.6-0.7. Thresh-
old values above 0.7 do not exhibit 
any significant differences. The fact 
that higher DAR was observed at 
relatively lower numbers of clusters 
indicates that communication delay 
in inter-cluster communication was 
reduced, and that more caching agents 
can be located within the same cluster. 
These results imply that short prefetch 
threshold values result in higher data 
accessibility, but this occurs at the 
expense of higher network traffic. 
However, by choosing a suitable 
threshold value, a balance between 
both can be achieved. Our experi-
ments indicate that a threshold value 
below 0.7 and above 0.1 was able to 
achieve an optimal balance between 
the data accessibility and the network 
traffic increase for various numbers 
of clusters. 

4.	 Simulation	experiments	on	hit	ratio	
by	source: To see the percentage of 
queries satisfied from local cluster 
and external clusters, we compiled 
separate statistics for intra-cluster 
and inter-cluster query responses.

We considered both cooperative cach-
ing with prefetching and without prefetch-
ing. The results are shown in Table 2. In 
this table, Local Hit Ratio (LHR) refers 
to the ratio of successful requests replied 
from local cache. Global Hit Ratio (GHR) 
refers to the number of requests satisfied 
from other clusters. This experiment was 
carried out using PT = 1400KB, PT = 
1800KB and MH speed = 18 m/s. The 
last column of the table gives the average 
(AVG) data accessibility from both local 
and global sources. 

The results show that with cooperative 
caching and prefetching (CCPF) schemes, 
less data items are fetched from external 
clusters to satisfy queries. The results 
also show that cooperative caching with 
prefetching ensures a greater data acces-
sibility ratio than the scheme that uses only 
cooperative caching. In these simulation 
experiments, an approximate 25% gain 
(with PT=1400) and 23% gain (with PT = 
1800) was achieved from intra-cluster in-
formation (local hit). Also about a 7% gain 
was observed when the PT value increases 
from 1400 to 1800. However, due to host 
mobility and wireless link characteristics, 
it is difficult to achieve 100% data acces-
sibility in MANETs.

CONCLUSION
In this article, we proposed and evalu-

ated a cooperative caching and prefetching 
scheme for MANETs. The architecture for 
enabling cooperative data caching and a 
prefetching algorithm were both presented. 
Additionally, a cache replacement policy 
based on combined metrics for data access 
frequency and reference time was also 
presented. A simulation based experimen-
tal study was carried out to evaluate the 
performance of the proposed scheme using 

Scheme PT=1400 PT=1800 DAR 

LHR GHR LHR GHR AVG

CCNP 56% 14% 65% 12% 73.5%

CCPF 81% 9% 88% 7% 92.5%

Table 2. DAR by source (internal and 
external clusters) of successful query and 
AVG for each caching scheme	



1�   Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. 
is prohibited.

average data accessibility, average query 
delay, and network traffic overhead. The 
results confirm that caching coupled with 
prefetching increases the data accessibil-
ity ratio and reduces query delay. In future 
work, we intend to enhance the proposed 
scheme by adapting it to the integrated ad 
hoc network and the Internet environment 
and evaluate performance in an implemen-
tation testbed.    

ACKNOWLEDGMENTS	
This research was supported in part 

by the Natural Sciences and Engineering 
Research Council of Canada (NSERC) 
Discovery Grant No. 046940.

The authors are grateful to the anony-
mous referees for their valuable sugges-
tions, which improved the quality of the 
article.

REFERENCES
Alex, V. (1992). A good file system. In 

Proceedings of USENIX File System 
Workshop (pp. 1-12).

Artail, H., Safa, H., & Pierre, S. (2005). Da-
tabase caching in MANETs based on 
separation of queries and responses. In 
Proceedings of the IEEE International 
Conference on Wireless and Mobile 
Computing, Networking, and Com-
munications (pp. 237-244).

Broch, J., Maltz, D. A., Johnson, D. B., 
Hu, Y. C., & Jetcheva, J. (1998). A 
performance comparison of multi-
hop wireless ad hoc network routing 
protocols. In Proceedings of ACM 
MobiCom (pp. 85-97).

Cao, G., Yin, L., & Das, C. R.(2004). Co-
operative cache-based data access 
in ad hoc networks. IEEE Computer 
Society, 37(2), 32-39.

Das, S., Perkins, C., & Royer, E. (2000). 

Performance comparison of two on-
demand routing protocols for ad hoc 
networks. In Proceedings of IEEE 
INFOCOM (pp. 3-12).

Fan, L., Cao, P., & Almeida, J. (1998). 
Summary cache: A scalable wide 
area web cache sharing protocol. In 
Proceedings of ACM SIGCOMM, 
ACM Press (pp. 254-265).

Feldmann, A., Caceres, R., Douglis, F., 
Glass, G., & Rabinovich, M. (1999). 
Performance of Web proxy caching 
in heterogeneous bandwidth envi-
ronments. In Proceedings of the 18th 
Conference of the IEEE Computer 
and Communications Society (pp. 
107-116).

Gerla, M., & Tsai, J. T. C. (1995). Mul-
ticluster, mobile, multimedia radio 
network. Wireless Networks, 1(3), 
255-265.

Hara, T. (2002). Replica allocation in ad hoc 
networks with periodic data update. In  
Proceedings of the 3rd International 
Conference on Mobile Data Manage-
ment (pp. 79-86).

Johnson, D., & Malta, D. (1996). Dynamic 
source routing in ad hoc wireless net-
work. In Mobile Computing, edited 
by T. Imielinski & H. Korth, Kluwer 
Academic Publishers, Chapter 5, (pp. 
153-181).

Lee, D., Choi, J., Choe, H., Noh, S. H., Min, 
S. L., & Cho, Y. (1997). Implemen-
tation and performance evaluation 
of the LRFU replacement policy. In 
Proceedings of the 23rd Euromicro 
Conference (pp. 106-111).

Lim, S., Lee, W. C., Cao, G., & Das, C. 
R. (2003). A novel caching scheme 
for internet based mobile ad hoc 
networks. In Proceedings of the IEEE 
International Conference on Com-
puter Communications and Networks 



Int’l J. of Business Data Communications and Networking, 3(1), 1-15, January-March 2007   15

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Mieso K. Denko (denko@cis.uoguelph.ca) is an assistant professor in the Department of Computing 
and Information Science at the University of Guelph, Canada. He received his PhD and MSc 
in Computer Science from the University Natal, South Africa and the University of Wales, UK 
respectively.  Dr. Denko has published in the areas of mobile ad hoc networking, integrated wired 
& wireless networks and wireless network security. His research interests include the design and 
evaluation of protocols for mobile ad hoc networks, mobile computing, hybrid wired and wireless 
networks, wireless ad hoc sensor networks and wireless mesh networks. Dr. Denko is a member 
of ACM, ACM SIGMOBILE and IEEE Communications Society and IFIP WG 6.9.

(ICCCN), (pp. 38-43). 
Lu, H., & Denko, M. K. (2004). Reliable 

data storage and dissemination in 
mobile ad hoc network. In Proceed-
ings of the International Workshop on 
Theoretical and Algorithmic Aspects 
of Wireless Ad Hoc, Sensor and Peer-
to-Peer Networks (pp. 81-86).

Lu, H., & Denko, M. K. (2005). Replica 
update strategies in mobile ad hoc 
networks. In Proceedings of the 2nd 
IEEE/IFIP International Conference 
on Wireless and Optical Communica-
tions Networks (WOCN 2005).

Network Simulator. (2005). Retrieved from 
http://www.isi.edu/nsnam/ns/

Papadopoui, M., & Schulzrinne, H. (2001). 
Effects of power conservation, wire-
less coverage and cooperation on data 
dissemination among mobile devices. 
In Proceedings of ACM MobiHoc (pp. 
117-127).

Perkins, C., & Bhagwat, P. (1994). Highly 
Dynamic Destination-Sequenced 
Distance-Vector routing (DSDV) for 
mobile computers. In Proceedings of 
ACM SIGCOMM (pp. 234-244).

Perkins, C. E., Belding-Royer, E. M., & 
Chakeres, I. (2003). Ad Hoc On 
Demand Distance Vector (AODV) 

routing. IETF Internet draft, draft-
perkins-manet-aodvbis-00.txt, (Work 
in Progress).

Rousskov, A., & Wessels, D. (1999). 
Cache digests. Computer Networks 
and ISDN Systems, 30(22-23), 2155-
2168.

Sailhan, F., & Issarny, V. (2003). Coopera-
tive caching in ad hoc networks. In 
Proceedings of the 4th International 
Conference on Mobile Data Manage-
ment (pp. 13-28).

Wang, J. (1999). A survey of Web caching 
schemes for the Internet. ACM SIG-
COMM, Computer Communication 
Review, 25(9), 36-46.

Wang, Y. et al. (2005). A transparent cache 
based mechanism for mobile ad hoc 
networks. In Proceedings of the 3rd 
International Conference on Inform 
Tech and Applications (ICITA’05) 
(Vol. 2, pp. 305-310).

Wessels, D., & Claffy, K. (1998). ICP and 
the squid Web cache. IEEE JSAC, 
16(1998), 345-357. 

Yin, L., & Cao, G. (2006). Supporting 
cooperative caching in ad hoc net-
works. IEEE Transactions on Mobile 
Computing, 5(1), 77- 89.




