
Orchestrating Composite Web Services Under Data Flow Constraints

Girish Chafle Sunil Chandra Vijay Mann Mangala Gowri Nanda

IBM India Research Laboratory
New Delhi, India�

cgirish,csunil,vijamann,mgowri � @in.ibm.com

Abstract

A composite service is typically specified using a language
such as BPEL4WS and orchestrated by a single coordinator
node in a centralized manner. The coordinator receives the
client request, makes the required data transformations and
invokes the component web services as per the specifica-
tion. However, in certain scenarios businesses might want
to impose restrictions on access to the data they provide or
the source from which they can accept data. Centralized
orchestration can lead to violation of these data flow con-
straints as the central coordinator has access to the input
and output data of all the component web services. In many
cases existing methods of data encryption and authentica-
tion are not sufficient to handle such constraints. These data
flow constraints, thus, present obstacles for composite web
service orchestration.

In this paper we propose a solution for orchestrating
composite web services under data flow constraints. The
solution is based on decentralized orchestration, in which
a composite web service is broken into a set of partitions,
one partition per component web service. To overcome data
flow constraints, each partition is executed within the same
domain as the corresponding component web service and
hence, has the same access rights. However, there are, in
general, many ways to decentralize a composite web ser-
vice. We apply a rule based filtering mechanism to choose a
set of partitions that does not violate the specified data flow
constraints.

1 Introduction

As web services become ubiquitous, new and complex
applications can be created by aggregating the functionality
of existing web services (which act as component web ser-
vices). This is referred to as service composition and the ag-
gregated web service is known as a composite web service.
Web service composition enables businesses to interact with
each other and accomplish complex business processes.

Composite web services may be developed using a spec-
ification language such as BPEL4WS [11], WSCI [2] etc.,
and executed by an engine such as WebSphere Process
Choreographer [1]. Typically, a composite web service
specification is executed by a single coordinator node. It
receives the client requests, invokes the component web ser-
vices, makes the required data transformations and executes
the composite web service according to its specification.
We refer to this mode of execution as centralized orchestra-
tion. In centralized orchestration, all data is routed through
the central coordinator, and it has access to the input and
output data of all the component web services. However,
in certain scenarios web services may apply restrictions on
the source and/or destination of the data received or sent, as
part of a policy. We term these restrictions as “business de-
fined data flow constraints”1. These data flow constraints,
thus, present obstacles in the orchestration of composite
web services by a central coordinator. Several mechanisms
for handling security issues exist in the distributed comput-
ing world. These include various methods of authentication
and encryption. However, in many cases, as we show later
in the paper, these existing methods fail to solve the prob-
lem of composite web service orchestration.

In this paper we propose a solution for orchestrating
composite web services in presence of business defined data
flow constraints. Our solution is based on decentralized or-
chestration [6]. In decentralized orchestration, a composite
web service is broken into a set of partitions, one partition
per component web service. The partitions are colocated
with the web service. Each partition acts like a proxy that
processes, transforms and manages all incoming and out-
going data at the component web service as per the require-
ments of the composite service. The partitions execute inde-
pendently and interact with each other directly using asyn-
chronous messaging without any centralized control. Since
a partition is colocated with a component web service, it has
the same access rights as the web service. Thus it is possi-
ble to overcome data flow constraints by ensuring that all

1We use the terms “business defined data flow constraints”, “data flow
constraints” and “constraints” interchangeably in the rest of this paper

constrained data reads and writes are performed within the
permitted domains. This is done by automatically decen-
tralizing a composite web service [13]. However, the de-
centralization algorithm generates all possible partitionings
(referred to as a topology) which may or may not adhere to
data flow constraints. In this paper, we attempt to solve the
problem of finding decentralized topologies that do not vio-
late data flow constraints. We propose a rule based filtering
mechanism that is capable of selecting topologies that do
not violate the specified data flow constraints. Our solu-
tion consists of a Decentralizer tool to generate all possible
topologies, a language to specify data flow constraints, a
filtering mechanism to select a topology, and a deployment
mechanism to ensure that a partition hosted by a compo-
nent web service does not violate any constraints specified
by that service. We explain our solution in the context of
BPEL4WS language. However, our solution is applicable
to any composite service specification language.

The organization of the rest of the paper is as follows.
We begin by providing the motivation for the problem in
Section 2. In Section 3 we give an outline of the solution
along with the details of the main components. An overview
of the system architecture and a prototype run of the system
are given in Section 4. We summarize related work in Sec-
tion 5 and finally conclude in Section 6 with an outline of
future work.

2 Motivation

In this section we introduce a motivating example that
is used as a running example throughout the paper. Fur-
ther, we show that existing security mechanisms do not pro-
vide sufficient flexibility to handle orchestration of compos-
ite web services in a centralized manner in presence of data
flow constraints.

2.1 A Motivating Example

Consider a third party administrator (TPA) that provides
an accident insurance claim service as shown in Figure 1a.
In this case the client submits a request to the TPA with
the patient, insurance, and accident details. The TPA settles
the claim by interacting with the web services hosted by the
hospital - HospitalX, the city police department - PoliceZ
and the insurance company - InsuranceY. In the absence of
any data flow constraints, the TPA can create a composite
web service specification and execute it using centralized
orchestration. Thus, on receiving a client request, it gets the
medical records from the hospital, the police report from
the police department, and passes them on to the insurance
company to settle the claim. However, in a real world sce-
nario, the hospital might want to maintain the confidential-
ity of the medical records and reveal them only to the pa-

client

PoliceZPP

IP

HP HospitalX

(b) Decentralized Orchestration with no data flow constraint violation

InsuranceYTP

BPEL partition

data flow violating
 constraints

client

HospitalX

InsuranceY

TPA PoliceZ

client

PoliceZPP

IP InsuranceY

HP HospitalX

TP

(c) Decentralized Orchestration with data flow constraint violation

(a) Centralized Orchestration with data flow constraint violation

web service

domain

data flow

Figure 1. Centralized and Decentralized Or-
chestration Under Data Flow Constraints

tient himself or to the insurance company. Similarly, the
police department might not be willing to share the police
report with the TPA and reveal it only to the insurance com-
pany. Furthermore, the insurance company might not want
to accept the medical records or the police report from any
intermediary and only directly from the hospital or the po-
lice department respectively. These data flow constraints
present obstacles in centralized orchestration of this com-
posite web service.

2.2 Security Mechanisms in Centralized Orches-
tration

Data flow constraints are typically handled through en-
cryption and related security mechanisms in distributed sys-
tems. The web services security (WS-Security) [17] spec-
ification deals mainly with aspects of security, privacy and
trust between the client and the web services or between
two web services. Composition of autonomous web ser-
vices by a third party may require a rich set of data transfor-
mations to be applied in between the sequential invocations
of component web services. However, the existing security
mechanisms have limited support for this type of data ac-
cess and manipulation. Consider the example in Figure 1
(a). Given a patient id, the HospitalX web service returns

the corresponding medical record which includes patholog-
ical tests, x-rays, dental records, physician’s report, billing
and a summary. The HospitalX web service encrypts its
output for security and this can be decrypted only by the
InsuranceY web service. Further, we note that the insur-
ance company is interested only in the billing details and
the summary portion of the medical record. Therefore, the
TPA, needs to extract the billing details and the summary
from the medical record before forwarding it to the Insur-
anceY web service. This implies that the TPA needs to be
able to decrypt the medical record, which for security rea-
sons is not permissible. Alternatively, if different portions
of the medical record are encrypted separately, then it may
still be possible for the TPA to extract the relevant portions
(billing details and summary in this case) from the medi-
cal record. Note that, in this case, even though the TPA is
unable to decrypt any portion of the medical records, it is
still able to forward the relevant portions (in their encrypted
form) to the InsuranceY web service. Thus, in the presence
of encryption, a composite web service can be orchestrated
in a centralized fashion only if

� no data transformation is required in between different
web service invocations, or

� each part in the output message of a component web
service is encrypted separately and these parts map di-
rectly onto the input parts of the next component web
service involved in composition.

Even in the latter case, the coordinator node (i.e., the TPA)
might want to extract finer details from a part in order to
provide a more useful and efficient service. This could in-
clude employing some business logic based on the data in
the part to decide on the control flow.

Thus, existing methods of data encryption and authenti-
cation [17] suffer from severe limitations in centralized or-
chestration in the presence of data confidentiality and pri-
vacy requirements. Further, use of centralized orchestration
can lead to performance degradation (in terms of through-
put, response time, scalability, availability) [6, 7].

3 Decentralization and Topology Filtering

Figure 2 gives an outline of the proposed solution. It
consists of three main components - the Decentralizer, the
Topology Filtering Mechanism, and the Deployment mech-
anism. The Decentralizer takes a composite service spec-
ification as input and generates different topologies, some
of which may violate constraints. The Topology Filtering
Mechanism filters out topologies based on data flow con-
straints. It includes an XML based language to specify data
flow constraints as rules and a Rule based Topology Filter.
Since there may be more than one topology which adheres

Decentralizer

Input BPEL4WS

Set of Topologies

Topology Filtering Mechanism

A set of topologies
that adhere to data

flow constraints

Deployment Mechanism

BPEL4WS BPEL4WS BPEL4WS

BPEL4WS Engine at
Component Service 1

BPEL4WS Engine at
Component Service 2

BPEL4WS Engine at
Component Service n

BPEL4WSBPEL4WSBPEL4WS

BPEL4WSBPEL4WSBPEL4WS

Figure 2. Solution outline

to all the constraints, the Topology Filter can output multi-
ple valid topologies, out of which the first one is chosen and
and its partitions are deployed. The deployment mechanism
inside the component web service domain reinsures that a
partition hosted by a given component web service domain
does not violate any constraints specified by the web ser-
vice. The details of each of these components are explained
in the sections below.

3.1 Decentralizer

In decentralized orchestration, a composite web service
is broken into a set of partitions, one partition per compo-
nent web service. The partitions execute independently and
interact with each other directly using asynchronous mes-
saging without any centralized control. Together, the decen-
tralized partitions perform the same task that the centralized
coordinator would have done. However, decentralized or-
chestration offers performance advantages over centralized
orchestration [6]. In an earlier paper we have given an
algorithm and heuristics to automatically partition a com-
posite web service specified in BPEL4WS [13]. The issues
of concurrency and synchronization arising out of decen-
tralization were discussed in [14].

The Decentralizer is a tool that implements the partition-
ing algorithm. It takes the BPEL4WS specification as input
and generates a subset of all the possible topologies based
on a chosen heuristic. Two of the topologies generated by
the tool for the TPA example are explained below.

Example: In Figure 1(a), TPA is a composite web service
written in BPEL4WS. It is “decentralized” into partitions
TP, HP, IP and PP (refer Figure 1(b) and Figure 1(c)), each

a complete BPEL4WS program in itself, that together per-
form the same set of operations that TPA does, albeit in a
distributed manner. The HP, PP and IP composite service
partitions are colocated with the HospitalX, PoliceZ and In-
suranceY web services in their respective domains. There-
fore, they have not only the same access privileges as the
corresponding component web service, but are also subject
to the same data flow constraints. In Figure 1(b), TP re-
ceives the client request, sends the patient and insurance
details to HP and the accident details to PP. HP contacts
the HospitalX web service, gets the medical record, extracts
the relevant portions from it (billing details and summary in
this case) and forwards it along with the insurance details
to IP. Similarly PP gets the police report from the PoliceZ
web service, and forwards it to IP. IP, in turn, invokes the
InsuranceY web service to settle the claim and returns the
response to TP. This topology does not violate any of the
data flow constraints and can be used for orchestrating the
composite web service. However, this is not always the case
and some of the topologies can violate data flow constraints
(e.g., the topology in Figure 1(c)).

In Figure 1(c), TP receives the client request, sends the
accident and insurance details to PP, and patient details to
HP. HP extracts the relevant data from the HospitalX web
service, and forwards it to PP. PP gets the police report
from the PoliceZ web service, and forwards it along with
the medical records and insurance details to IP. IP contacts
InsuranceY web service to settle the claim and sends the
response back to TP. In this topology, medical records are
passed from HP to PP, thereby violating HospitalX’s data
flow constraint. Similarly, the medical record is passed to
IP by PP which violates InsuranceY’s data flow constraint.
This topology would be rejected by the Topology Filter.

3.2 Topology Filtering Mechanism

The Topology Filtering Mechanism is used to reject
topologies violating data flow constraints. It consists of a
language to specify data flow constraints as rules, the Rule
based Topology Filter and the Constraint Reinforcer.

3.2.1 Data Flow Rules Specification

Each web service specifies a set of rules based on the se-
curity policies of the organization. These may be encoded
using the WSDL extensibility mechanism. Rules are ex-
pressed as a 3-tuple of � source, destination, Message � .
Both the source and the destination are domain names.
Message is the input message type that a particular WSDL
portType expects or output message type that it sends
back. Rules fall under the “Allowed” and “Not Allowed”
categories. “Allowed” rules are those where either a source
can send data to a given destination, or where a destina-
tion can accept data from a given source. “Not allowed”

procedure filter (ConstraintList � , TopologySet �)
foreach topology � in � do�	� “valid”

foreach partition
 in � do
�� “valid”
// search for incoming and outgoing message end-points
foreach incoming and outgoing end-point � do��
 ������� getSourceDomainName(WSDL List)��
 ��������� getDestinationDomainName(WSDL List)��
 ������� getMessageType(WSDL List)

create 3-tuple !�#"$��
 ������%&��
 �������'%&�!
 �����)(
if ��
 �����+*�,��
 ������� then

if match(, �) �-� “not allowed” then
.� “discarded”
break

endif
endif

done
if
.�-� “discarded” then� =“discarded”

break
endif

done
done

function match(Tuple , ConstraintList �)
returns: “allowed” / “not allowed”
foreach Constraint 0 in � do

if !�-�.0 and 02143 Allowed Constraints 5 then
return “allowed”

elseif !�-��0 and 0#163 Not Allowed Constraints 5 then
return “not allowed”

endif
done
return “allowed”

Figure 3. Topology Filtering Algorithm

rules are those where either a source cannot send data to a
given destination or where a destination cannot receive data
from a given source. The source and destinations can also
be expressed in terms of domain name sets e.g., *.co.in for
all the companies in India, ?Police.org for all police depart-
ments. For the TPA example in Figure 1(b) and 1(c), data
flow constraints provided by HospitalX web service will
consist of “Allowed” rules such as � xHospital.com, yInsur-
ance.com, MedicalRecords � and “NotAllowed” rules such
as � xHospital.com, *, MedicalRecords � . In this case the
more specific (i.e., catering to a narrower set of sources or
destinations) rule (i.e., the “Allowed” rule) will appear first
followed by the less specific rule (i.e., the “NotAllowed”
rule). These rules can be specified using policy languages
such as XACML [9].

3.2.2 Rule Based Topology Filter

As mentioned earlier, the Decentralizer may generate sev-
eral topologies. It is the task of the Rule Based Topol-
ogy Filter to reject those topologies that do not adhere to

data flow constraints. The topology filtering algorithm is
given in Figure 3. It takes as input the set of constraints
and all the topologies generated by the Decentralizer. For
each topology, it parses all the partitions and searches for
incoming and outgoing message end-points within the par-
tition. In BPEL4WS, these end-points are represented by
receive or pick for an incoming message, invoke for
both an outgoing message (either a request in synchronous
request/response message, or an asynchronous request mes-
sage) and an incoming message (a response in synchronous
request/response message) or reply for an outgoing mes-
sage.

For each invoke, the filter extracts the fully qualified
name of the corresponding WSDL message and port-
Types. For each portType, the filter parses the corre-
sponding WSDL descriptors and extracts the domain name
(to which that portType is bound). This domain be-
comes the destination domain for the request portion of
invoke. The current partition’s domain name (inferred
from the deployment information) becomes the source do-
main. This combination of source domain, destination do-
main and message is used to create a 3-tuple for both the
the current partition and the invoked partition. Similarly,
for the response portion of invoke, the current partition’s
domain becomes the destination and the domain to which
the portType is bound becomes the source domain and
a 3-tuple for both the partitions is generated. The func-
tions getSourceDomainName (WSDL List), getDestination-
DomainName (WSDL List), and getMessageType (WSDL
List) listed in the algorithm refer to this process. In this
way, the Topology Filter generates a list of 3-tuples for each
partition consisting of the domain of the source of the mes-
sage, the domain of the destination and the message type.
All the 3-tuples where the source and destination domain
names are the same are removed from this list (as a com-
munication between different entities within a domain does
not violate any data flow constraint by design).

For each such 3-tuple for a partition, the Topology Filter
applies a constraint matching function which takes as input
the 3-tuple and a list of rules (in the form of 3-tuples) for
a particular partition. The constraint matching function is
also given in Figure 3.

3.2.3 Constraint Reinforcer

The task of the Constraint Reinforcer is to ensure that the
original data flow constraints are strictly adhered to. There
are two reasons that a Constraint Reinforcer is required.

7 The web service generates data flow constraints based
on the incoming and outgoing messages at the web
service. However, during composite service creation
and its subsequent decentralization, parts of these mes-
sages may get copied into other messages within the

composite service partitions.
7 A malicious program may copy the contents of a mes-

sage, that has data flow rules associated with it, into
another message in order to access data without autho-
rization.

In both these cases, the modified messages need to be de-
tected and additional set of data flow rules for these mes-
sages need to be generated automatically. The Constraint
Reinforcer generates these rules which are in addition to the
given set of constraints specified by a web service. These
are passed on to the Topology Filter to add to its rules set.
The Constraint Reinforcer is first executed during the topol-
ogy filtering process. It is again invoked by the component
service runtime infrastructure at the time of deployment at
the component web service’s domain to ensure that a de-
ployed partition does not violate the constraints stipulated
by that component web service.

Example: In the TPA example, if the data transformations
generate a new message type ModifiedMedicalRecords that
consists of only a portion (billing details and summary) of
the original message type MedicalRecords, then a new set
of rules for ModifiedMedicalRecords should be generated
and passed on to the Topology Filter.

The Constraint Reinforcer takes all the rules specified by
the web service for a given message type (MedicalRecords
in this case) and creates a new set of rules in which the
name of the message type (i.e., MedicalRecords) is replaced
by the newly generated message type (i.e., ModifiedMed-
icalRecords). For example, for the “Allowed” data flow
rule - 8 xHospital.com, yInsurance.com, MedicalRecords 9 ,
the Constraint Reinforcer generates a new additional “Al-
lowed” rule of the form - 8 xHospital.com, yInsurance.com,
ModifiedMedicalRecords 9 and passes it to the Topology Fil-
ter.

Algorithm The Constraint Reinforcer uses data flow
analysis to detect messages that need additional rules. For
each partition it builds a Data Dependence Graph (DDG).
The DDG is a graph that consists of one node for each ac-
tivity in a partition. There is an edge from a node :+; to
another node :�< , if there is a data dependence [3] from :+;
to :=< . To generate additional data flow rules, the Constraint
Reinforcer applies the following algorithm
7 For each variable, > ; that accepts data at an incoming

end-point, trace the DDG forward along data depen-
dence edges. If we reach a variable, >@? that has a data
flow constraint specified by the web service, then gen-
erate a corresponding rule for >@; .

7 For each variable, >@A that sends data at an outgoing
end-point, trace the DDG backward along data depen-

Component Service ModuleComposite Service Module

BPEL4BPEL4WS

Deployment
Manager

Data Flow
Constraints Decentralizer

Topology Filter

Constraint
Reinforcer

BPEL4BPEL4WS

Web Service Runtime Environment

DB

Partition
Deployer

Constraint
Reinforcer

BPEL4WS
 Engine

Web
Service

Figure 4. System Architecture

dence edges. If we reach a variable, BDC that has a data
flow constraint specified by the web service, then gen-
erate a corresponding rule for B@E .

3.3 Deployment Mechanism

The Deployment Mechanism consists of a Deployment
Manager used by an administrator composing the web ser-
vice, a Partition Deployer and the Constraint Reinforcer (as
shown in Figure 4). The Partition Deployer and the Con-
straint Reinforcer are part of the web services’ runtime en-
vironment.

Deployment Manager The Deployment Manager takes
as input a set of valid topologies for deployment from the
Topology Filter. It selects the first topology for deployment
and sends partitions of that topology to the corresponding
component web service nodes.

Partition Deployer At each component web service node
there is an agent, the Partition Deployer, which is colocated
with the component web service. The Partition Deployer
has two main functions: (1) constraint checking and veri-
fication, and (2) deployment. Constraint checking and ver-
ification is essential because the partition is generated by
an external entity and after deployment the partition exe-
cutes within the domain as a trusted piece of code and has
full access to unencrypted output data of the component
web service even if encryption is being used. The Partition
Deployer accepts the incoming BPEL4WS partitions and
hands them to the Constraint Reinforcer to generate the ad-
ditional set of data flow rules. In cases where encryption is
being used through WS-Security, the Constraint Reinforcer
will be utilized to generate additional security policies so
that any confidential data that is flowing in or out of that
node in the form of newly created message types is also
encrypted. The Partition Deployer then uses the same algo-
rithm as the Topology Filter to verify that the partition sub-

Table 2. Discarded Topologies
Topology Edge Data Constraints

Violated
2 HP-PP Medical Records x.3, y.4
8 PP-HP Police Report y.3, z.2
3 HP-PP Medical Records x.3, y.4

mitted for deployment at this domain satisfies all the data
flow constraints specified for this domain. After constraint
checking and verification, partition is deployed on to the
BPEL4WS engine.

4 Implementation

4.1 Architecture Overview

The system for orchestrating composite web services in
constrained data flow environments has two modules (re-
fer Figure 4). The composite service module is used by an
administrator to create a valid topology(that doesn’t violate
any data flow constraints) from the original input specifica-
tion. It consists of the Decentralizer, the Topology Filter,
the Constraint Reinforcer, and the Deployment Manager.
The component service module, consists of the Constraint
Reinforcer and the Partition Deployer, which reside inside
the same domain as the component web service (preferably
as part of the web service’s runtime environment).

4.2 A Prototype Run

This section describes a sample run of the system for the
TPA example. The Decentralizer tool generated 8 different
topologies. These topologies were given to the Topology
Filter and the rules given in Table 1 were used for filtering.
The XML schema that was used for specifying these rules
is given in Appendix A.

The Topology Filter discarded 3 topologies and validated
5 topologies. Some of the valid and discarded topologies
are shown in Figure 5. The remaining topologies are not
shown due to lack of space. The discarded topologies vio-
late one or more data flow constraints indicated in Table 2
and shown as dashed edge in Figure 5. Among the valid
topologies, 1, and 5 require some explanation as they have
a data flow edge resembling the data flow edges violating
some constraints in discarded topologies. In topology 8 the
data flow edge from PP to HP represents police report be-
ing transferred from PP to IP via HP whereas in topology
1 it represents patient details (to get medical records from
HP) that is routed via PP and hence is not a violation. Sim-
ilarly, in topology 2 the data flow edge from HP to PP rep-
resents medical records being transferred from HP to IP via
PP whereas in topology 5 it represents accident details from

Table 1. Rules for Prototype Run
Web Service Tuple F source, destination, message type G Category Id
HospitalX F xHospital.com,iInsurance.com, MedicalRecords G Allowed x.1F xHospital.com,yInsurance.com, MedicalRecords G Allowed x.2F xHospital.com,*, MedicalRecords G NotAllowed x.3

InsuranceY F ?Hospital.com, yInsurance.com, hospitalRecords G Allowed y.1F ?Police.org, yInsurance.com, policeReport G Allowed y.2F *, yInsurance.com, policeReport G NotAllowed y.3F *, yInsurance.com, hospitalRecords G NotAllowed y.4
PoliceZ F zPolice.org, ?Insurance.com, investigationReport G Allowed z.1F zPolice.org, *, investigationReport G NotAllowed z.2

(a) Topology 1 - Valid (b) Topology 4 - Valid (c) Topology 5 - Valid

InsuranceY Insurance web service

TP TPA partition

HP Hospital partition

PP Police partition
IP Insurance partition

HospitalX Hospital web service

PoliceZ Police web service

 Data flow
Data flow
violating constraints

(d) Topology 2 - Discarded (e) Topology 8 - Discarded

Figure 5. Topologies Generated

TP(to get police report from PP) that is routed via PP and
hence is not a violation.

5 Related Work

There are four primary areas of research that are related
to this work: reinforcement of information-flow policies,
decentralized orchestration of composite web services, rule
driven web service composition and web services and work-
flow security.

Information flow policies [8, 10] are used to specify
confidentiality and integrity requirements and control the
end-to-end use of data in a secure system. Secure program
partitioning [18] is a language based technique for protect-
ing confidential data during computation in distributed sys-
tems containing mutually untrusted hosts. Confidentiality
and integrity policies are expressed by annotating the pro-

grams with confidentiality labels. The program can then
be partitioned automatically to run securely on heteroge-
neously trusted hosts. In our solution, data flow constraints
expressed in terms of source, destination and message type
are similar to confidentiality labels used in secure partition-
ing. Web services provide the added advantage of defining
them as extensibility elements in the WSDL rather than an-
notating the source program with security policies.

Decentralization is a relatively new technique for or-
chestrating web services [13, 6, 14], although it has been
applied in earlier research for enabling distributed work-
flow execution [12]. SELF-SERV [5] is a framework for
dynamic provisioning of web services based on the ideas
of decentralized orchestration and peer to peer execution.
Most of the earlier approaches have studied decentralization
from the angle of performance. To the best of our knowl-
edge no one has used it for overcoming data flow constraints

in orchestrating composite web services.
[15] describes a rule driven approach for flexible and dy-

namic service composition in an automated fashion. Zeng
et al. [19] uses a rule inference framework, where end users
declaratively define their business objectives to dynamically
compose web services. Ponnekanti et al. [16] propose a
rule-based algorithm that permits semi-automation of work-
flow composition. All these systems generate a valid cen-
tralized composite service specification that adheres to all
the given rules. We go one step further and try to solve the
problem where no centralized composite service specifica-
tion can be generated that adheres to the given rules. Atluri
et al. [4] discuss security issues in decentralized workflows.
Their focus is on data security problems created due to ex-
posure of business logic in decentralized workflows. Some
of these security concerns can be expressed in terms of data
flow constraints provided by the coordinator node orches-
trating the composite service and can be then handled by
our proposed solution.

6 Conclusions and Future Work

In this paper we have extended our previous work on de-
centralized orchestration to use it for orchestrating compos-
ite web services under data flow constraints. To the best
of our knowledge, no one has used decentralized orchestra-
tion to solve this problem. Our solution includes an XML
based language for specifying the data flow constraints, a
rule based filtering mechanism to filter topologies generated
by decentralization, and a deployment mechanism to ensure
enforcement of constraints at run time.

The solution described in this paper, raises several inter-
esting issues which need to be addressed. Remote deploy-
ment of BPEL4WS partitions at the location of component
web services requires further investigation.

Similarly, future versions of BPEL or other workflow
languages might allow embedded program code necessitat-
ing a more rigorous verification of the partitions. Decen-
tralization of a composite service can also result in new se-
curity concerns as the business logic is exposed to multiple
parties [4]. We handle some of these concerns (which can
be expressed in terms of data flow constraints) in our current
solution. We are working on enhancing our XML based lan-
guage to include other types of constraints that can capture
these security issues.

References

[1] WebSphere Application Server En-
terprise Proess Choreographer.
http://www7b.software.ibm.com/wsdd/zones/was/wpc.html.

[2] Web Service Choreography Interface (WSCI) 1.0.
http://www.w3.org/TR/wsci, 2002.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

[4] V. Atluri, S. A. Chun, and P. Mazzoleni. A Chinese Wall
Security Model for Decentralized Workflow Systems. In
Proceedings of the Conference on Computer and Commu-
nications Security,Philadelphia, November 2001.

[5] B. Benatallah, M. Dumas, Q. Sheng, and A. Ngu. Declara-
tive Composition and Peer-to-Peer Provisioning of Dynamic
Web Services. In Proceedings of the 18th International Con-
ference on Data Engineering (ICDE), February 2002.

[6] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda. De-
centralized Orchestration of Composite Web Services. In
Proceedings of the 13th International World Wide Web Con-
ference (WWW), New York, USA, May 2004.

[7] Q. Chen and M. Hsu. Inter-Enterprise Collaborative Busi-
ness Process Management. In Proceedings of 17th Interna-
tional Conference on Data Engineering (ICDE), 2001.

[8] D. E. Denning and P. J. Denning. Certification of Programs
for Secure Information Flow. Communications of the ACM,
20(7):504–513, 1977.

[9] eXtensible Access Control Markup Language (XACML).
http://www-106.ibm.com/developerworks/xml/library/x-
xacml/.

[10] J. A. Goguen and J. Meseguer. Unwinding and inference
control. In IEEE Symposium on Security and Privacy, pages
75–86, 1984.

[11] R. Khalaf, N. Mukhi, and S. Weerawarana. Service-Oriented
Composition in BPEL4WS. In Proceedings of the Twelfth
International World Wide Web Conference (WWW), 2003.

[12] P. Muth, D. Wodtke, J. Weissenfels, A. K. Dittrich, and
G. Weikum. From Centralized Workflow Specification to
Distributed Workflow Execution. Journal of Intelligent In-
formation Systems, 10(2), April 1998.

[13] M. G. Nanda, S. Chandra, and V. Sarkar. Decentralizing
Execution of Composite Web Services. In Proceedings of
Conference on Object Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), 2004.

[14] M. G. Nanda and N. Karnik. Synchronization Analysis for
Decentralizing Composite Web Services. In Proceedings of
the ACM Symposium on Applied Computing (SAC), 2003.

[15] B. Orriens, J. Yang, and M. Papazoglou. A Framework For
Business Rule Driven Web Service Composition. 22nd In-
ternational Conference on Conceptual Modeling (ER 2003).

[16] S. R. Ponnekanti and A. Fox. SWORD: A Developer Toolkit
for Building Composite Web Services. In Proceedings of the
11th International World Wide Web Conference, 2002.

[17] Web Services Security (WS-Security).
http://www.ibm.com/developerworks/webservices/library/ws-
secure/.

[18] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Un-
trusted Hosts and Confidentiality: Secure Program Partition-
ing. In Symposium on Operating Systems Principles (SOSP),
2001.

[19] L. Zeng, B. Benatallah, H. Lei, A. Ngu, D. Flaxer, and
H. Chang. Flexible Composition of Enterprise Web Ser-
vices. In Electronic Markets, volume 13, pages 141–152,
2003.

A Schema for Specifying Rules

<schema targetNamespace="http://tempuri.org/dfc"
xmlns:tns="http://tempuri.org/dfc"
xmlns="http://www.w3.org/2000/10/XMLSchema">

<complexType name="dataType">
<attribute name="type" type="QName"

use="required"/>
</complexType>

<complexType name="endpoint">
<attribute name="domainName" type="uriReference"

use="required"/>
</complexType>

<complexType name="ruleType">
<sequence>
<element name="source" type="tns:endpoint"/>
<element name="destination"

type="tns:endpoint"/>
<element name="message" type="tns:dataType"/>

</sequence>
</complexType>

<complexType name="rulesType">
<sequence>
<element name="allowed" type="tns:ruleType"

minOccurs="0" maxOccurs="unlimited"/>
<element name="notAllowed" type="tns:ruleType"

minOccurs="0" maxOccurs="unlimited"/>
</sequence>

</complexType>

<element name="rules" type="tns:rulesType"/>
</schema>

The “Allowed” and “NotAllowed” rules can appear in any
relative order subject to the condition that more specific
constraints (i.e., catering to a narrower set of sources or des-
tinations) appear first followed by less specific ones.

