
A Formal Model for Web Service Choreography
Description Language (WS-CDL)

Yang Hongli1, Zhao Xiangpeng1, Qiu Zongyan1, Pu Geguang2, and Wang Shuling1

1 LMAM and Department of Informatics, School of Math.,
Peking University, Beijing 100871, China

2 Software Engineering Institute
East China Normal University, Shanghai, 200062, China

Abstract The Web Services Choreography Description Language (WS-CDL) is
a specification of W3C developed for the description of peer-to-peer collabora-
tions of participants from a global viewpoint. For the rigorous definition and tools
support for the language, the formal semantics of WS-CDL is worth investigating.
This paper proposes a small language CDL as a formal model of simplified WS-
CDL, which includes many important concepts related to participant roles and
collaborations among them in a choreography. The formal operational semantics
of CDL is given, and static validation and verification of choreographies is stud-
ied as well. A purchase order choreography example is presented, and some prop-
erties of the proposed model are verified using the SPIN model-checker, which
illustrates the potential usages and benefits of the formal model.

Keywords: Choreography, WS-CDL, Formal model, Model-checking, SPIN

1 Introduction

Web services have been becoming more and more important in the recent years, which
promise the interoperability of various applications running on heterogeneous plat-
forms. Web service composition refers to the process of combining several web ser-
vices to provide a value-added service, which has received much interest to support
enterprise application integration. Two levels of view to the composition of web ser-
vices exist, namely orchestration and choreography. The choreography view focuses
on the composition of Web services from a global perspective, and it differs from the
orchestration view which focuses on the interactions among one party and others.

The recently released web service choreography description language (WS-CDL)
is a W3C [1] candidate recommendation for web service composition. WS-CDL is an
XML-based language for the descriptions of peer-to-peer collaborations of participants
by defining, based on a global viewpoint, from their common and complementary ob-
servable behavior [13]. WS-CDL is neither an “executable business process description
language” nor an implementation language. The execution logic of the application are
covered by languages at another level, such as XLANG [17], WSFL [6], BPEL [2],
BPML [4], etc. WS-CDL focuses on describing the business protocol among different
participant roles. All the behaviors are performed by the participants, and WS-CDL
gives a global observation.

1

Some important issues of WS-CDL are discussed in [5]. WS-CDL lacks the sep-
aration between its meta-model and its syntax, and a formal grounding. Due to the
message-passing nature of web services interaction, many subtle errors can occur (e.g.,
message not received, deadlocks, incompatible behaviour, etc.) when a number of par-
ties are composed together. To guarantee the correct interaction of independent, com-
municating web services becomes even more critical in the open-end world of web
services [16]. As a language aimed to become a standard for the web service choreog-
raphy, formal studies may clear the opaque points or inconsistencies in the language
definition, and make the potential for the tools development.

In this paper, we propose a small language called CDL as a formal model of the
simplified WS-CDL. CDL includes many important concepts related to the participant
roles and the collaborations among them in a choreography. The aim of this model is to
focus on the core features of WS-CDL. Based on the formal model, it is possible to rea-
son about the properties that should be satisfied by the specified system automatically,
by using existing tools, such as the model-checking tool SPIN [9], etc. We illustrate this
potential by an example in this paper.

This paper is organized as follows: Section 2 is an overview of WS-CDL. We
present the definition of CDL in Section 3, including its syntax and operational se-
mantics. Section 4 gives a case study of a purchase order choreography. Some related
work is discussed in Section 5, and section 6 concludes.

2 Overview of WS-CDL

This section provides an overview of the elements and structure of WS-CDL, as defined
in WS-CDL specification [13] released on 9th November 2005.

A choreography defines collaborations among interacting participants. It can be
recognized as a container for a collection of activities that may be performed by the
participants. There are three types of activities in WS-CDL, namely control-flow activ-
ities, workunit activities and basic activities.

The control-flow activities include sequence, parallel and choice. A sequence activ-
ity describes one or more activities that are executed sequentially. A parallel activity
describes one or more activities that can be executed in any order or at the same time. A
choice activity describes the execution of one activity chosen among a set of alternative
or competing activities. A workunit describes the conditional and repeated execution of
an activity [5].

Basic activities describe the lowest level actions performed within a choreography,
including:

– An interaction activity, which results in an exchange of information between par-
ticipant roles and possible synchronization of their observable information changes
and the actual values of the exchanged information.

– An assign activity, which assigns, within one role, the value of one variable or an
expression to another variable.

– A skip action, which does not do anything.

2

In the following workunit example, the guard waits for the availability of the vari-
able poAck at role Customer. If available, the activity will take place. Otherwise, the
activity will block.

<workunit name="POProcess"
guard="cdl:isVariableAvailable(’poAck’,’’,’’,’Customer’)"
block="true">
... <!--some activity -->

</workunit>

Interaction is the most important activity in WS-CDL. An interaction activity may
be composed of: (i) the participant roles involved; (ii) the exchanged information and
the corresponding direction(s); (iii) the observable information changes; (iv) the op-
eration performed by the recipient. The information exchange type of interactions is
described by the possible actions on the WS-CDL channel, which falls into three types:
request, respond, or request-respond. According to the exchange type, there are three
kinds of interactions. The operation in an interaction activity is performed after the
request (if there is one) and before the response (if there is one).

The example below shows an interaction between two roles Consumer and Retailer
as a request/response exchange on the channel retailer-channel. The message po is sent
from Consumer to Retailer as a request; and the message poAck is sent back from Re-
tailer to Consumer as a response. After the message exchange, the variable Consumer-
poState is assigned by the value sent at Consumer, and Retailer-poState by received at
Retailer, as specified in the record elements.

<interaction name="createPO"
channelVariable="retailer-channel"
operation="handlePurchaseOrder">

<participate
relationshipType="tn:ConsumerRetailer
fromRoleTypeRef="tn:Consumer"
toRoleTypeRef="tn:Retailer"/>

<exchange name="request"
informationType="tn:POType"
action="request">

<send variable="cdl:getVariable(’tn:po’,’’,’’)"
recordReference="Consumer-poState" />

<receive variable="cdl:getVariable(’tn:po’,’’,’’)"
recordReference="Retailer-poState" />

</exchange>
<exchange name="response"

informationType="POAckType"
action="respond">

<send variable="cdl:getVariable(’tn:poAck’,’’,’’)"/>
<receive variable="cdl:getVariable(’tn:poAck’,’’,’’)"/>

</exchange>
<record name="Consumer-poState" when="after">
<source expression="sent"/>
<target variable="cdl:getVariable(’tn:poState’,’’,’’)"/>

</record>

3

<record name="Retailer-poState" when="after">
<source expression="received"/>
<target variable="cdl:getVariable(’tn:poState’,’’,’’)"/>

</record>
</interaction>

A role type enumerates the potential observable behaviors that a participant can ex-
hibit in order to interact. Variables in WS-CDL are used to represent different types of
information such as the exchanged information or the observable state information of
the role involved. Unlike most programming languages, there is no independent vari-
ables in WS-CDL.

3 CDL: A Formal Model for WS-CDL

In this section we define a small language CDL, which can be viewed as a subset of
WS-CDL. It models choreography with a set of participant roles and the collaboration
among them. We give the syntax and an operational semantics here.

3.1 Syntax

In the definitions below, the meta-variable R ranges over role declarations; A and B
range over activity declarations; r, f and t range over role names; x, y, u and v range
over variable names; e, e1 and e2 ranges over XPath expressions; g, g1, g2 and p range
over XPath boolean expressions; op ranges over the operations offered by the roles. We
will use R as a shorthand for R1, · · · , Rn, for some n. (Similarly, for x, op, e, etc.) We
use r.x to refer to the variable x in role r, and r.x := e for r.x1 := e1, · · · , r.xn := en.

A choreography declaration includes a name C, some participant roles R, and an
activity A, with the form:

C[R , A]

Each participant role R has some local variables x and observable behaviors repre-
sented as a set of operations op. The signature and function of the operations are defined
elsewhere and omitted here. A role with name r is defined as:

R ::= r[x , op]

The basic activities in CDL are the follows:

BA ::= skip (skip)
| r.x := e (assign)
| comm (f.x → t.y, rec, op) (request)
| comm (f.x ← t.y, rec, op) (response)
| comm (f.x → t.y, f.u ← t.v, rec, op) (req-resp)

The skip activity does nothing. The assignment activity r.x := e assigns, within the
role r, the values of expressions e to the variables x. The interaction activity is either:

– a request interaction with the form comm (f.x → t.y, rec, op) in which the mes-
sage is sent from f.x to t.y;

4

– a response interaction with the form comm (f.x ← t.y, rec, op) in which the re-
sponse message is sent from t.y to f.x;

– a request-response interaction comm (f.x → t.y, f.u ← t.v, rec, op) with a re-
quest message from f.x to t.y and a response message from t.v to f.u.

In an interaction, the operation op specifies what the recipient should do when it receives
the message. The rec is the shorthand for the assignments f.x := e1, t.y := e2, where
x and y are two lists of state variables on the roles f and t respectively.

The syntax of the activities is listed here:

A, B ::= BA (basic)
| p?A (condition)
| p ∗A (repeat)
| g :A :p (workunit)
| A; B (sequence)
| A uB (non-deterministic)
| g1 ⇒ A [] g2 ⇒ B (general-choice)
| A ‖ B (parallel)

An activity is either a basic activity BA, a workunit or a control-flow activity. The
workunit introduced in WS-CDLis separately defined as three constructs here. Two of
them are the condition construct p?A and the repeat construct p∗A, that work normally.
The other is the workunit (g : A : p), which will blocked until the guard g evaluates to
“true”. When the guard is trigged, the activity A is performed. If A terminates success-
fully, and if the repetition condition p evaluates to “true”, the workunit will be consid-
ered again; otherwise, the workunit finishes. A control-flow activity is either a sequence
activity A;B, a non-deterministic activity A u B, a general choice g1 ⇒ A [] g2 ⇒ B,
or a parallel activity A ‖ B.

We introduce some well-formedness rules for CDL, which are consistent to the
WS-CDL specification:

1. In a choreography, different roles have different names, and different variables in a
role have different names.

2. In an interaction, each information exchange variable has the same value and same
type on the sender and the receiver.

3. After an interaction, the values of state variables on the sender and the receiver are
complementary to each other.

4. In a request or request-response interaction, the operation op should belong to the
behavior interface of recipient role t; while in a response interaction, op should
belong to role f .

In fact, the WS-CDL specification includes much more well-formedness rules. It
is the responsibility of a static checker to verify the validity of all these rules. In the
semantic definition, we will assume that the CDL program is well-formed.

3.2 Operational Semantics of CDL

In this section, a small-step operational semantics for CDL is presented. We define
the configuration as a tuple 〈A, σ〉, where A is an activity, and σ is the state of the

5

choreography which is a composition of each participant role’s state. A role state, σri
,

i = 1, · · · , n, is a function from the variable names of the role ri to their values. We
suppose that each variable name is decorated with the role name on which it resides,
the values of variables are unknown initially. The state of the choreography

σ
def= 〈σr1 , σr2 , · · · , σrn

〉

is the composition of all the role states in the choreography.
For convenience, we use the form σ[e/r.x] to denote the global state σ with some

variable assignments on given role r. We use σ[r.x := e] to denote the state σ[e/r.x]
which expresses the variable updates on one or more roles. Moreover, we use 〈ε, σ〉 to
denote the terminal configuration.

Basic Activity The semantics of the basic activities are defined as follows:
The execution of skip activity always terminates successfully, leaving everything

unchanged.
〈skip, σ〉 −→ 〈ε, σ〉 (SKIP)

The assign activity is a multiple assignment. The values of the variables r.x do not
change until all the evaluations e are completed.

〈r.x := e, σ〉 −→ 〈ε, σ[e/r.x]〉 (ASS)

In an interaction activity, some information may exchange between two participant
roles. After the interaction, there may be some variable updates on both roles.

〈comm (f.x → t.y, rec, op), σ〉 −→ 〈ε, σ[t.y := f.x, rec]〉 (REQ)

〈comm (f.x ← t.y, rec, op), σ〉 −→ 〈ε, σ[f.x := t.y, rec]〉 (RESP)

〈comm (f.x → t.y, f.u ← t.v, rec, op), σ〉 −→
〈ε, σ[t.y := f.x, f.u := t.v, rec]〉 (REQ-RESP)

Workunit The semantics of workunit are listed as follows.
The behavior of the condition activity (p?A) is the same as A when the boolean expression

p evaluates to true. Otherwise, it does nothing and terminates successfully.

σ(p) = false
〈p?A, σ〉 −→ 〈ε, σ〉 (IF-FALSE)

σ(p) = true
〈p?A, σ〉 −→ 〈A, σ〉 (IF-TRUE)

The repeat activity (p∗A) is executed by first evaluating p. When p is false, the activity terminates
and nothing is changed. When p is true, the sequential composition (A; (p∗A)) will be executed.

σ(p) = false
〈p ∗A, σ〉 −→ 〈ε, σ〉 (REP-FALSE)

6

σ(p) = true
〈p ∗A, σ〉 −→ 〈A; p ∗A, σ〉 (REP-TRUE)

The workunit activity (g :A :p) is blocked when the guard g evaluates to false. When g evaluates
to true, A is executed. After the execution, p is tested. If p evaluates to false, then the activity
terminates; if true, then the workunit restarts.

σ(g) = true
〈g :A :p, σ〉 −→ 〈A; p?(g :A :p), σ〉 (BLOCK)

Control-flow Activity The sequential composition (A; B) first behaves like A; when A ter-
minates successfully, (A; B) continues by behaving like B. If A never terminates successfully,
neither does A; B.

〈A, σ〉 −→ 〈A′, σ′〉
〈A; B, σ〉 −→ 〈A′; B, σ′〉 (SEQ)

〈ε; B, σ〉 −→ 〈B, σ〉 (SEQ-ELIM)

The non-deterministic choice AuB behaves like either A or B, where the selection between them
is non-deterministic, without refering the knowledge or control of the external environment.

〈A, σ〉 −→ 〈A′, σ′〉
〈A uB, σ〉 −→ 〈A′, σ′〉 (NON-DET)

〈B, σ〉 −→ 〈B′, σ′〉
〈A uB, σ〉 −→ 〈B′, σ′〉 (NON-DET)

The general choice (g1 ⇒ A [] g2 ⇒ B) behaves like A if the guard g1 is matched, otherwise
behaves like B if g2 is matched, where each guard is a boolean expression. If both g1 and g2 are
matched, then the first is selected.

σ(g1) = true, σ(g2) = false
〈g1 ⇒ A [] g2 ⇒ B, σ〉 −→ 〈A, σ〉 (CHOICE)

σ(g1) = false, σ(g2) = true
〈g1 ⇒ A [] g2 ⇒ B, σ〉 −→ 〈B, σ〉 (CHOICE)

σ(g1) = true, σ(g2) = true
〈g1 ⇒ A [] g2 ⇒ B, σ〉 −→ 〈A, σ〉 (CHOICE)

We use interleaving semantics for the parallel composition:

〈A, σ〉 −→ 〈A′, σ′〉
〈A ‖ B, σ〉 −→ 〈A′ ‖ B, σ′〉 (PARA)

〈B, σ〉 −→ 〈B′, σ′〉
〈A ‖ B, σ〉 −→ 〈A ‖ B′, σ′〉 (PARA)

〈ε ‖ B, σ〉 −→ 〈B, σ〉 (PARA-ELIM)

〈A ‖ ε, σ〉 −→ 〈A, σ〉 (PARA-ELIM)

7

3.3 Reasoning Based on Semantics

As a simple example to show how CDL and its semantics can help to reason on choreography
issues, We first illustrate the execution of an activity poRequest; creditCheck ‖ invCheck,
which is defined in Section 4.

(1) 〈poRequest, σ〉 →
〈ε, σ[Buyer.po/Seller.po, Seller.poAck/Buyer.poAck,

“sent”/Buyer.poState, “received”/Seller.poState]〉 (REQ-RESP)

(2) 〈creditCheck, σ〉 →
〈ε, σ[Credit.ccReq/Seller.ccReq, Seller.ccResp/Credit.ccResp,

“sent”/Credit.ccState, “received”/Seller.ccState]〉 (REQ-RESP)

(3) 〈invCheck, σ〉 →
〈ε, σ[Inv.icReq/Seller.icReq, Seller.icResp/Inv.ccResp,

“sent”/Inv.icState, “received”/Seller.icState]〉 (REQ-RESP)

(4) 〈ε ‖ invCheck, σ〉 →
〈ε, σ[Inv.icReq/Seller.icReq, Seller.icResp/Inv.ccResp,

“sent”/Inv.icState, “received”/Seller.icState]〉 (3, PARA-ELIM)

(5) 〈creditCheck ‖ invCheck, σ〉 →
〈ε, σ[Credit.ccReq/Seller.ccReq, Seller.ccResp/Credit.ccResp,

Inv.icReq/Seller.icReq, Seller.icResp/Inv.ccResp,

“sent”/Credit.ccState, “received”/Seller.ccState,

“sent”/Inv.icState, “received”/Seller.icState]〉 (2, 4, PARA)

(6) 〈ε; creditCheck ‖ invCheck, σ〉 →
〈ε, σ[· · · , “sent”/Credit.ccState, “received”/Seller.ccState,

“sent”/Inv.icState, “received”/Seller.icState] (5, SEQ-ELIM)

(7) 〈poRequest; creditCheck ‖ invCheck, σ〉 →
〈ε, σ[· · · , “sent”/Buyer.poState, “received”/Seller.poState,

“sent”/Credit.ccState, “received”/Seller.ccState,

“sent”/Inv.icState, “received”/Seller.icState]〉 (1, 6, SEQ)

Then we show the execution of activity poRespond, which selects one activity from poResponse
and poReject based on guard condition.

(1) 〈poResponse, σ〉 →
〈ε, σ[Buyer.poResp/Seller.poResp, “complete”/Buyer.poState,

“complete”/Seller.poState]〉 (RESP)

(2) 〈poReject, σ〉 →
〈ε, σ[Buyer.poRej/Seller.poRej, “complete”/Buyer.poState,

“complete”/Seller.poState]〉 (RESP)

(3) 〈poRespond, σ〉 →
〈ε, σ[· · · , “complete”/Buyer.poState, “complete”/Seller.poState]〉

(1, 2, CHOICE)

8

From step (3), after performing the activity poRespond, the σ will reach the state in which
poState has value “complete” on both roles Buyer and Seller.

Combining the two parts together and applying the rule (SEQ), we have that

〈purchaseOrder, σ〉 →∗

〈ε, σ[· · · , “complete”/Buyer.poState, “complete”/Seller.poState,
“sent”/Credit.ccState, “received”/Seller.ccState,
“sent”/Inv.icState, “received”/Seller.icState]〉

Please note that σ will always reach the above state, no matter which rule we choose during the
parallel execution. This can be viewed as a proof of the fact that “the choreography will always
terminate and, when it terminates, poState will always has value “complete”.

4 Case Study: Purchase Order Service Choreography

In this section, we develop a purchase order service choreography example [14], using CDL.
With the help of the semantics of CDL, we can translate a system specification in CDL rigor-
ously into other notations. Here we show how to translate the example into the notation of SPIN
verifier and then verify the properties automatically using SPIN. An automatic translator is under
development.

4.1 The Example Description

This multi-participants choreography involves four participant roles: Buyer, Seller, Credit Check-
ing Service and Inventory Checking Service. The Buyer initiates an interaction with the Seller by
requesting the Purchase Order. After receiving the request, the Seller acknowledges the receipt
of the Purchase Order with the Buyer, and initiates two interactions:

– Check Buyer’s credit with the Credit Checking Service;
– Check product availability with the Inventory Service

The Seller’s final response to the Buyer is decided by the information it receives from the
two checking services:

– If both interaction results are positive, the order is approved and the Purchase Order Re-
sponse message is sent to the Buyer;

– If any of the two interactions indicates a negative result, a Purchase Order Rejection message
is sent to the Buyer

Figure 1 shows the control flow of the interactions, while Figure 2 illustrates the communications
between the roles as a UML collaboration diagram. The number 1.1.1, 1.1.2, etc. denotes the
sequence of the messages. Figure 2 should be viewed as one of the two possible instances of
the interleaved execution process, where creditCheck is executed first and then invCheck is
executed.

4.2 CDL Specification

The purchase order choreography PurchaseOrderChor includes a set of roles (buyer, seller,
credit, inv) and an activity purchaseOrder:

PurchaseOrderChor[(buyer, seller, credit, inv), purchaseOrder]

9

poRequest

creditCheckInvCheck

poResponse poReject

Figure 1. A Simplified View of the Purchase Order Service

Buyer Seller

1.1.1 poAck

1.1.4 poResp / poRej

1.1 po

Credit1.1.2.1 ccResp

1.1.2 ccReq

Inv

1.1.3 icReq

1.1.3.1 icResp

Figure 2. Communications in Purchase Order Service

The role buyer has name Buyer and a set of observable variables: purchase order po, purchase
order acknowledgement poAck, purchase order response poResp, purchase order rejection poRej
and purchase order state poState. It also has two observable behaviors: PoReqOP and DisplayOP.

buyer = Buyer[(po, poAck, poResp, poRej, poState),
(PoReqOP, DisplayOP)]

The role seller has name Seller and a set of observable variables: purchase order po, purchase
order acknowledgement poAck, purchase order response poResp, purchase order reject poRej,
purchase order state poState, credit check request ccReq, credit check response ccResp, credit
check state ccState, inventory check request icReq, inventory check response icResp, inventory
check state icState; and observable behavior PoHandleOP.

seller = Seller[(po, poAck, poResp, poRej, ccReq, ccResp,
icReq, icResp, poState, ccState, icState), PoHandleOP]

The role credit has name Credit, a set of observable variables: credit check request ccReq, credit
check response ccResp, credit check state ccState; and observable behavior CreditCheckOP.

credit = Credit[(ccReq, ccResp, ccState), CreditCheckOP]

10

The role inv has name Inv, a set of observable variables: inventory check request icReq, inventory
check response icResp, inventory check state icState; and observable behavior InvCheckOP.

inv = Inv[(icReq, icResp, icState), InvCheckOP]

The interaction activity poRequest has two participant roles Buyer and Seller, a purchase order
request exchange po, and a purchase order acknowledgement exchange poAck. After the interac-
tion, the state variable poState in role Buyer is set to “sent”, while in role Seller it is “received”.

poRequest = comm (Buyer.po → Seller.po,
Buyer.poAck ← Seller.poAck,
Buyer.poState := "sent",
Seller.poState := "received", PoHandleOP)

The interaction activity creditCheck has two participant roles Seller and Credit, a credit checking
request exchange ccReq, and a credit check response exchange ccResp. After the interaction, the
state variable ccState in role Seller is “received”, in role Credit is “sent”.

creditCheck = comm (Seller.ccReq → Credit.ccReq,
Seller.ccResp ← Credit.ccResp,
Credit.ccState := "sent",
Seller.ccState :="received", CreditCheckOP)

The interaction activity InvCheck has two participant roles Seller and Inv, a invertory checking
request exchange icReq, and a invertory check response exchange icResp. after the interaction,
the state variable icState in role Seller is “received”, in role Inv is “sent”.

invCheck = comm (Seller.icReq → Inv.icReq,
Seller.icResp ← Inv.icResp,
Inv.icState := "sent",
Seller.icState :="received", InvCheckOP)

The interaction activity poResponse has two participant roles Buyer and Seller. The response
message poResp is sent from role Seller to role Buyer.

poResponse = comm (Buyer.poResp ← Seller.poResp,
Buyer.poState := "complete",
Seller.poState := "complete", DisplayOP)

In the interaction activity poReject, the response message poRej is sent from role Seller to role
Buyer.

poReject = comm (Buyer.poRej ← Seller.poRej,
Buyer.poState := "complete",
Seller.poState := "complete", DisplayOP)

The activity poRespond is defined as: if both variables Seller.icResp and Seller.ccResp are “ok”,
then interaction activity poResponse is happened, otherwise, interaction activity poReject is hap-
pened.

poRespond = (Seller.ccResp="Ok" ∧ Seller.icResp="Ok") ⇒ poResponse
[]
(Seller.ccResp="notOk" ∨ Seller.icResp="notOk") ⇒ poReject

The main activity purchaseOrder performed by choreography PurchaseOrderChor is defined
as:

purchaseOrder = poRequest; (creditCheck ‖ invCheck); poRespond

11

4.3 Verification using SPIN

With the semantics given above, we have modeled the purchase order service example using the
SPIN model-checker. Each role is modeled by a proctype, which is a process running in parallel
with other processes. The interaction is modeled by message channels and global variables. The
following is a code snippet of the translated choreography, which describes the Buyer role:

active proctype buyer() {
buyer_to_seller ! po;
buyer_poState = sent;
seller_to_buyer ? poAck;
if

:: seller_to_buyer ? poRej ->
buyer_poState = complete

:: seller_to_buyer ? poResp ->
buyer_poState = complete

fi
}

To model parallel composition, we use two auxiliary proctypes doIC and doCC, together
with two auxiliary variables finished_doIC and finished_doCC, as shown below in the
Seller role:

active proctype seller() {
...
run doIC(); run doCC();
/*inventory check & credit check */
if

:: para_aux ? finished_doIC ->
para_aux ? finished_doCC

:: para_aux ? finished_doCC ->
para_aux ? finished_doIC

fi; /* wait until both processes are finished */
...

}
proctype doCC() {

seller_to_credit ! ccReq;
credit_to_seller ? ccResp(seller_ccResp);
seller_ ccState = received;
/* indicate that this process has finished */
para_aux ! finished_doCC;

}

The rest parts of the code are omitted here due to space limitation. A full version can be found
in the appendix.

Using LTL (Linear Temporal Logic), we can automatically verify many properties of the
choreography, such as:

– the system will never deadlock (timeout is a reserved word in Promela, which is the
modeling language of SPIN.)

[] (!timeout)

12

– the buyer will eventually reach the “complete” purchase order state (the system will never
livelock)

<> (buyer_poState == complete)

– the purchase order will be either accepted or rejected, but not both accepted and rejected
(functional requirement)

<> (msg==poRej || msg==poResp)

! (<> (msg==poRej) && <> (msg==poResp))

where auxiliary variable msg records the final message sent to the buyer.

According to our test, the verification procedure only costs several seconds on a Pentium IV
machine with 512MB memory. It is possible to implement an automatic translator from CDL
specification to Promela code, which is our on-going work.

5 Related Work

Formal approaches are useful in analyzing and verifying web service properties. There are some
existing work on specifying and verifying web service compositions. H.Foster [8] discussed a
model-based approach to verify web service compositions. G.Salaun et al. developed a process al-
gebra to derive the interactive behavior of a business process out from a BPEL specification [16],
while A.Brogi et al. presented the formalization of Web Service Choreography Interface (WSCI)
using a process algebra approach(CCS), and discussed the benefits of such formalization [3].
There are also work on the formal semantics of web services languages. In the previous work, we
presented an operational semantics to a simplified version of BPEL with some important concepts
related to fault and compensation handling [7,18].

In a recent paper [11], N.Busi et al. proposed a simple choreography language whose main
concepts are based on WS-CDL. Different from our language, this language splited the request
and response message exchange in one interaction, and there was no state record variables. Also,
it didn’t consider the verification of web service properties. Other work includes [10], in which
Misra proposed a new programming model for the orchestration of web services. It was quite far
from practice and need further investigation.

The choreography working group of W3C has also recognized the importance of providing
a formal grounding for WS-CDL language. Although WS-CDL appears to borrow terminologies
from Pi-Calculus, the link to this or any other formalism is not clearly established [12,15].

6 Conclusion and Future Work

The goal of the WS-CDL language is to propose a declarative, XML based language that con-
cerns about global, multi-party, peer-to-peer collaborations in the web services area. One of the
important problems related to WS-CDL is the lack of separation between its meta-model and its
syntax. A formal semantics can provide validation capabilities for WS-CDL.

13

In this paper, we define a simple language CDL which covers the features of WS-CDL related
to the participant roles and the collaborations among roles. A formal operational semantics for
the language is presented. Based on the semantics, we can apply model-checking technique to
verify the correctness of specified systems. Given a system, we might check its consistency, and
various properties (e.g. no deadlock), and the satisfaction with business constraints. We also give
an example of a purchase order choreography to show how to verify properties based on our
model.

Towards the semantics and verification of full WS-CDL, CDL focuses on just a few key issues
related to web service choreography. The goal in the designing of CDL is to make the proof of its
properties as concise as possible, while still capturing the core features of WS-CDL. The features
of WS-CDL that CDL does model include roles, variables, activities(control-flow, workunit, skip,
assignment, interaction) and choreography. CDL omits some advanced features such as some
details of the channel, exception and finalize blocks. Other features missing from CDL include
base types(relationship type, participant type, information type), token, token locator, expressions
and some basic activities such as silent and perform. Extending CDL to include more features of
WS-CDL will be one direction of our further work.

For future work, we want to integrate the exception handling and finalize block mechanisms
into our model, which are important facilities to support long-running interaction in WS-CDL.
This can help us to capture and understand the full control flow of the WS-CDL specification, and
to form a more complete semantics of the language. We are also trying to find more interesting
properties that can be verified under our framework. Moreover, based on our previous work on the
semantics of BPEL [7,18], we are considering to compare these two semantic models, and related
future work includes: (1) to project a global CDL model into several BPEL models on different
roles; (2) to check that whether a given BPEL model conforms to the global CDL model.

Acknowledgements

We would like to thank Dai Xiwu for many helpful comments.

References

1. World wide web consortium. http://www.w3.org/.
2. Business process execution language for web services, version 1.1. May 2003. http://www-

106.ibm.com/developerworks/webservices/library/ws-bpel.
3. A.Brogi, C.Canal, E.Pimentel, and A.Vallecillo. Formalizing web service choreography. In

WS-FM 2004. Electronic Notes in Theoretical Computer Science, 2004.
4. Assf Arkin. Business process modeling language. November 2002. http://www.bpmi.org/.
5. Alistair Barros, Marion Dumas, and Phillipa Oaks. A Critical Overview of the Web Services

Choreography Description Language. 2005. http://www.bptrends.com.
6. F.Leymann. Web services flow language (wsfl 1.0). Technical report, IBM, May 2001.
7. Pu Geguang, Zhao Xiangpeng, Wang Shuling, and Qiu Zongyan. Towards the semantics and

verification of bpel4ws. In International Workshop on Web Languages and Formal Methods,
WLFM2005. to appear in Electronic Notes in Theoretical Computer Science, Elsevier 2006.

8. H.Foster, S.Uchitel, J.Magee, and J.Kramer. Model-based verification of web service com-
positions. In 18th IEEE International Conference on Automated Software Engineering
(ASE’03). IEEE Computer Science, 2003.

9. Gerard J. Holzmann. The SPIN Model Checker:Primer and Reference Manual. Addison-
Wesley, 2003.

14

10. Jayadev Misra. A programming model for the orchestration of web services. In Software
Engineering and Formal Methods(SEFM’04). IEEE Computer Science, 2004.

11. N.Busi, R.Gorrieri, C.Guidi, R.Lucchi, and G.Zavattaro. Towards a formal framework for
choreography. 2005.

12. Nickolaos.Kavantzas. Aggregating web services: Choreography and ws-cdl. Technical re-
port, Oracle Coporation, 2004.

13. N.Kavantzas, D.Burdett, G.Ritzinger, T.Fletcher, Y.Lafon, and C.Barreto. Web
Services Choreography Description Language Version 1.0. November 9,2005.
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/.

14. Guus Ramackers. Web services choreography description language(ws-cdl). Technical re-
port, Oracle Coporation, 2004.

15. Steve Ross-Talbot. Web services choreography and process algebra. 29th April 2004.
16. Gwen Salaun, Lucas Bordeaux, and Marco Schaerf. Describing and reasoning on web ser-

vices using process algebra. In 2nd International Conference on Web Services. IEEE, 2004.
17. S.Thatte. Xlang: Web services for business process design. Technical report, Microsoft,

2001.
18. Qiu Zongyan, Wang Shuling, Pu Geguang, and Zhao Xiangpeng. Semantics of bpel4ws-like

fault and compensation handling. In FM2005,LNCS 3582. Springer, 2005.

Appendix: SPIN Code
/* A case study of purchase order service

* po = purchaseOrder, cc = creditCheck, ic = inventoryCheck

*
* Spin doesn’t support named enum type.

* All of the types are "mtype", but the comment at the end of

* each line specifies the name.

*/

/* types declaration */
mtype = { po, poAck, poReject, poResponse, ccReq, ccResp, icReq, icResp};
/* link variables, here implemented as enum constants */
mtype = { sent, received, complete }; /* state */
mtype = { Ok, notOk }; /* resp */
mtype = { finished_doIC, finished_doCC }; /* para aux */

/* channels declaration */
chan buyer_to_seller = [0] of { mtype };
chan seller_to_buyer = [0] of { mtype };
chan seller_to_credit = [0] of { mtype };
chan seller_to_inventory = [0] of { mtype };
chan credit_to_seller = [0] of { mtype, mtype };
chan inventory_to_seller = [0] of { mtype, mtype };
chan para_aux = [0] of { mtype };

/* variables declaration */
mtype buyer_poState;
mtype seller_ccResp, seller_icResp;
mtype seller_poState, seller_ccState, seller_icState;
mtype credit_ccState;
mtype inventory_icState;

mtype msg;
/* auxiliary variable, recording the last sent message

* through channel seller_to_buyer

*/

/* roles declaration */
active proctype buyer() {
buyer_to_seller ! po;

15

buyer_poState = sent;
seller_to_buyer ? poAck;
if

:: seller_to_buyer ? poRej -> buyer_poState = complete
:: seller_to_buyer ? poResp -> buyer_poState = complete

fi
}

active proctype seller() {
buyer_to_seller ? po;
seller_poState = received;
seller_to_buyer ! poAck;
run doCC(); run doIC(); /*inventory check & credit check */
if

:: para_aux ? finished_doIC -> para_aux ? finished_doCC
:: para_aux ? finished_doCC -> para_aux ? finished_doIC

fi; /* wait until both processes are finished */

if
:: (seller_icResp == Ok && seller_ccResp == Ok) ->

atomic {
seller_to_buyer ! poResp;
msg = poResp;

}
seller_poState = complete;

:: (seller_icResp == notOk || seller_ccResp == notOk) ->
atomic {
seller_to_buyer ! poRej;
msg = poRej;

}
seller_poState = complete;

fi
}

proctype doCC() {
seller_to_credit ! ccReq;
credit_to_seller ? ccResp(seller_ccResp);
seller_ccState = received;
/* indicate process finished */
para_aux ! finished_doCC;

}

proctype doIC() {
seller_to_inventory ! icReq;
inventory_to_seller ? icResp(seller_icResp);
seller_icState = received;
/* indicate process finished */
para_aux ! finished_doIC;

}

active proctype credit() {
seller_to_credit ? ccReq;
if

:: credit_to_seller ! ccResp(Ok)
:: credit_to_seller ! ccResp(notOk)

fi;
credit_ccState = sent;

}

active proctype inventory() {
seller_to_inventory ? icReq;
if

:: inventory_to_seller ! icResp(Ok);
:: inventory_to_seller ! icResp(notOk);

fi;
inventory_icState = sent;

}

16

