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Abstract 
This paper addresses role-based decomposition of a 

business process model (based on a subset of WS-BPEL, 
using explicit data link)s. A mechanism is presented for 
partitioning a business process so that each partition can 
be enacted by a different participant. An important goal is 
to disconnect the partitioning itself from the design of the 
business process, simplifying the reassignment of activities 
to different entities. The result is several (compliant) BPEL 
processes, one for each participant, as well as the 
information needed to wire them together at deployment 
time and ensuring correct instance-level connections at 
runtime. We present details of partitioning and successfully 
running a sample process with three participants.  
 
1. Introduction 
 

Business process reengineering (BPR) and continuous 
process improvement (CPI) is a well-established practice in 
many enterprises today: Execution histories of collections 
of process instances are periodically analyzed to detect 
potential deviations from business measures and to derive 
corresponding improvements by modifying the underlying 
process model. In case appropriate improvements cannot be 
achieved by model modifications more dramatic changes 
are done: Non-competitive parts of the process model are 
“cut out” and delegated to a third-party that commits to 
perform these parts within the given business measures 
(“business process outsourcing” BPO).  

BPO sometimes is as drastic as delegating a complete 
process to a third party, or less drastic by outsourcing only 
fragments of the process. When outsourcing a fragment the 
third-party may have the liberty to substitute the cut-out 
fragment by some other process model as long as the 
overall business functionality is achieved. Effectively, the 
cut-out fragment becomes a traditional subprocess  [14], i.e. 
it is used as an encapsulated function. But often, the cut-out 
fragment interacts with the “rest” of the process model: For 
example, there may be ordering dependencies or 
participation in the same unit of work between cut-out 
activities and activities left behind. In such cases, the 
fragment cannot be considered a simple subprocess but the 
fragment and the remaining process model are interwoven 
by message exchanges and coordination requirement.  

Specifying these dependencies is a non-trivial endeavor. 
To keep the corresponding modeling task simple, the swim-
lane approach is a useful abstraction: A swim-lane 
represents a “partner”, i.e. either the original (i.e. 

outsourcing) enterprise or a third-party to which a fragment 
is outsourced. Then, each activity of a process model is  
simply placed into a corresponding swim-lane without any 
other impact on the process model (figure 1 (a)). Based on 
this assignment of activities to swim-lanes both, the 
corresponding fragments can be derived automatically as 
well as the interdependencies and corresponding model 
changes (figure 1 (b)).  

As a consequence, process fragmentation can be 
specified by providing partner partitioning on a given 
process from the outset, or the activities of an existing 
process may be partitioned based on choosing 
responsibility partners later. After deciding which partner 
must execute which subset of activities, the algorithms in 
this paper are used to create a separate processes model for 
each partner such that local control and data dependencies 
between activities in the original process are translated into 
(application or control) message flows between the derived 
process models.  
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Figure 1. a) Process P with swim-lanes (b) Cutting off 
local process from P, and reconnecting them using 
message flows (dashed lines). 

 
For example, in process P in figure 1a, A1 may be the 

submission of an order by an actor in organization N2 
(customer) while A3 may be the processing of the order by 
an actor in organization N1 (travel agent), etc. In the spirit 
of process agility, parts of a process may be outsourced to 
an external partner due to corporate outsourcing, re-orgs, 
mergers, or acquisitions. Consequently, swim-lanes may 
correspond to elements of an organizational structure of 
another enterprise, making it natural to use the swim-lane 
notation to model the various partners. 

Figure 1b shows local processes P1, P2, and P3 running 
at N1, N2, and N3 resulting from P. This paper is concerned 
with defining how these local processes can be derived 
automatically, leveraging the Web services platform in 
particular the Web Services Definition Language (WSDL) 
 [22] and the Business Process Execution Language for 
Web Services (WS-BPEL, BPEL, BPEL4WS)  [2]. We use 



the term ‘participant’ for an agent assigned to a subset of 
the process’s activities, and ‘swim-lane’ for the graphical 
representation of a participant. 

Another emerging area that motivates enabling different 
partitions of a business process is that of the mobile 
workforce, where workers go out in the field or work 
remotely (excavation, traveling service and support 
personnel, remote employees, etc.). Early work  [5]  focuses 
on device mobility of an already partitioned process model 
where simple, single-interaction workflows are allowed on 
the client. We have seen a desire with our industry and 
university partners to enable a worker to be able to ‘check 
out’ the part of the work that she needs to do while away 
(possibly with intermittent connectivity), or a server may 
send parts of a workflow for enactment to mobile clients. 
This is a complex, evolving problem of many dimensions 
that are not the focus of this paper, but to which 
understanding arbitrary, work-item based, process 
partitioning is important.  

 
1.1. Approach Overview 

 
Architecturally, the approach presented follows the steps in 
figure 2. The ‘Transform’ block represents the mechanisms 
presented in this paper. The transformation takes as input 
the initial process model, in a modified version of BPEL 
that we call BPEL-D (described in section 3), its 
corresponding WSDLs, and a specification N of which 
activities are to be carried out by which participant. Using 
the mechanisms presented in this paper, the result is the 
creation of one spec-compliant BPEL (not BPEL-D) 
process and one WSDL file per participant, as well as a 
simple global wiring definition. The processes, being in 
vanilla BPEL, can therefore be handled using widely 
available BPEL tools.  

 

Transform
N={(s,M)|M A}

{BPEL 1,…,BPELn}

Wiring

Data 
analysis

BPEL BPEL-D

{WSDL 1,…,WSDL k}

⊆
{WSDL 1,…,WSDLk,…,WSDLk+n}

 
Figure 2. Approach. Shaded region is future work. 

 
The observation that guides the partitioning mechanism 

is that the creation of the participant processes reduces to a 
strategy of defining precisely how to ‘break’ existing links 
that cross swim-lane boundaries, and then wiring together 
the now isolated components. The breaking of the links, 
detailed in section 4, is done by changing control and data 
dependencies into Web services message exchanges. 
Section 5 provides the necessary information for the wiring 
the processes together at runtime.  

We currently manually perform the transformation, 
describing results of executing a partitioned process in 
section 6. The shaded block presents future work described 
in section 3. 

 
2. BACKGROUND: BPEL  
 

BPEL is an XML workflow language for Web services. 
Instances of typed connectors (“partnerLinks'') provide 
either one or both of a role that the process implements 
(myRole) and one that it expects from a partner 
(partnerRole). The roles refer to defined WSDL portTypes.  

Primitive activities include invoking a Web 
service(invoke), receiving and replying to invocations to 
operations offered on the process’s WSDL(receive/reply). 
The <flow> activity is a structured activity used for 
parallelism. It can have control links that impose ordering 
on its enclosed activities.  An activity that is the target of 
links can only start once the status of all incoming links is 
known, it has control from its enclosing structured activity, 
and its Boolean ‘joinCondition’ evaluates to true (default is 
the disjunction of the status of incoming links). Once it 
completes, it fires its outgoing links with the value of 
evaluating its  ‘transitionCondition’.  

Data is written to and read from scoped variables. A 
correlation mechanism is used to route messages to correct 
instances of a running process. A correlation set refers to a 
set of properties; each property is aliased to fields in one or 
more WSDL messages. Incoming messages are checked for 
the set, which is matched against existing  values mapped 
to running process instances.  

If a match is not found, the process definition is checked 
for the ability to create one based on the message and 
‘receive’ activities in the process with the “createInstance” 
attribute set to “yes”.  Once an instance is created and the 
message reaches its designated ‘receive’ activity, all other 
‘receive’ activities in that instance that also have 
“createInstance” set to “yes” loose their creation ability. 

 
2.1. Scopes, Faults and Dead-Path Elimination 
 

The structured ‘scope’ activity groups related activities. 
Among other things, it provides them with fault handlers.  
A ‘scope’ can be the source/ target of  links, and links can 
cross scope boundaries. If a fault is thrown, all activities in 
its scope stop executing, and a fault handler is looked up by 
going up the scope hierarchy. Once an appropriate handler 
is found, the activities of the handler are executed and all 
links whose sources but not targets belong inside the scope 
on which the handler is defined fire negatively. If the 
handler completes successfully and does not rethrow the 
fault, its scope completes and the links that have the scope 
itself as their source fire with the value of the evaluating 
their transition condition. If the handler itself faults, then 
the fault is again propagated up the hierarchy. 

The “Dead Path Elimination” technique (DPE) is used in 
Graph oriented workflow languages (e.g. [12]) to 
automatically disable activities along a path that is 
determined to be no longer reachable. In BPEL, it is 
achieved using fault handling: An activity’s false 
‘joinCondition’ causes a ‘joinFailure’ fault to be thrown. If 



an activity has the “suppressJoinFailure” attribute set to 
true, the behavior is equivalent to surrounding the activity 
with a scope having an empty fault handler for joinFailures. 
Process-wide DPE semantics are achieved by setting this 
attribute to true on the whole process. [6] details advanced 
issues on joinFailure. 

 
3. Defining the Main Process 
 

The process model used as input to our transformation is 
simply a subset of BPEL, but replaces the programming 
style (scoped variable) data handling in BPEL with data 
links defined in section 3.1. For easy reference, we call this 
BPEL-D. There is no fundamentally new concept there: 
The data dependencies already exist in vanilla BPEL. In 
BPEL-D we simply make them explicit. 

Clearly, there is a need to accept spec-compliant 
(subset) BPEL as the main input, making BPEL-D an 
intermediate representation. We are working on a BPEL to 
BPEL-D transform using  ideas from [9], which claims a 
mechanism to derive data dependencies from BPEL using 
techniques from compiler theory. As we would still go 
through BPEL-D before fragment creation, the mechanisms 
in this paper would not be affected once this is introduced.  

However, BPEL-D is usable directly since explicit data 
links are old and common in workflow design ( WSFL [13], 
FDL [14]), supported by commercial products in use for 
many years such as IBM MQ Workflow.   

The subset of BPEL used to define a main process 
model is: 
• Process, with suppressJoinFailure set to ‘yes’ (DPE 

on) 
• Exactly one correlation set. 
• PartnerLinks 
• A single top level ‘flow’ activity, and its links. 
• All simple activities, except ‘terminate’, ‘throw’, 

‘compensate’, and the form of ‘copy’ in an ‘assign’ 
activity that copies into a process’s endpoint 
references(EPR).   

• A ‘receive’ and its corresponding ‘reply’ are 
disallowed from being placed in different participants.  

The navigation semantics, from a control point of view, of 
these processes is well understood and clearly defined both 
in the BPEL specification and in mathematical mappings of 
BPEL to lower level formalisms such as  [6], [18]. Since we 
are using only BPEL flow, with suppressJoinFailure, then 
navigation semantics are very similar to those of FDL.      
 
3.1. Data Links 
 

Multiple mechanisms were considered for dealing with 
the issue of sharing data, with trade-offs presented in 
section 7. As in  [13], [14], each activity here gets optional 
input and output data containers. Consider the output 
container, o(A1), of activity A1 and the input container 
i(A2) of activity A2. The contents of a container are one 
tree of data items, whose definition is either an XML 

Schema Element, an XML Schema Simple Type, or a 
WSDL Message. XPath’s data model  [23] explicitly 
defines the representation of XML data as a tree. In 
practice, we use XPath to select a data item from a 
container.  A transitionCondition on a link has access to the 
containers of the link’s source activity. 

An activity’s input container is populated by data link(s) 
from parts of the output containers of other activities; its 
output container is populated by the activity itself. A data 
link d(A1, A2) specifies a map that assigns parts of the 
output container of A1 to parts of the input container of A2. 
A control flow dependency must be present between any 
two activities, A1 and A2 joined by a data link d.   

Consider o’(A1), the ordered depth-first set of the tree in 
o(A1). Consider i’(A1), the ordered depth-first set of the tree 
in i(A1).  Note that the depth-first set of a tree is the set of 
nodes, in order, visited in a depth-first traversal of the tree. 
We define a data connector map, adapted from  [14], where 
A is the set of activities in the process, and ℘(X) denotes 
the powerset of  X:  

∪
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×℘→×Δ
21 ,

21 ))(')('(:
 

with the following two conditions summarizing the 
restrictions above: 

(i) ))(')('(),( 2121 AiAoAA ×∈℘Δ  
(ii) 221 ),( AAA ⇒≠Δ φ  is reachable from A1
Basic fault handling at the global level can ensure that 

instances don’t hang if a local process fails. Similar to  [11], 
a fault handler can be defined on each local process to 
catch any fault from that process and notify the other 
created partners. The latter would have event handlers that 
terminate the instance upon receipt of such a fault message. 
We are investigating breaking up fault handling scopes.  
 
4. Partitioning the Process 
 

This section describes the mechanics of the partitioning 
algorithm. Each of the following sections defines part of 
the approach. In order to illustrate the mechanics involved 
in a concrete manner, we provide concrete BPEL snippets 
from the loan approval process in figure 3, derived from 
 [2], [3]. While small, this sample is a good candidate for 
illustration because it presents some of the edge cases of 
the approach. 
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Figure 3. Loan Approval. Shading denotes partition. 
    



      This process receives a loan application. If the amount 
is below a threshold, it sends the application to a risk 
assessor (RA), otherwise it sends it to a loan approver (LA) 
whose output is the result. If the assessment was performed 
and the risk was low, then it sets the loan result (assign); 
otherwise, it invokes the approver (LA). Then, the result is 
sent back to the applicant (reply). 

 
4.1. Defining the Participants  
 

The decomposition is created by defining a partition of 
the set A of all activities in the process. Every participant, 
n, belonging to the set of participants, N, consists of a 
name, s, and a set of one or more activities, M, such that  

 Using }|),{(}{ AMMsnN ⊆== )( fiπ  to represent the i-
th projection map, the restrictions on N are the following: 

i 2 i

i j i j

2
n N

n N, (n )
n , n N, i j n n

(n) A
∈

∀ ∈ π ≠ φ
∀ ∈ ≠ → ∩ =

π =∪
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In other words, a participant must have at least one 

activity, no two participants share an activity or a name, 
and every activity of the process is assigned to a 
participant.  

For the loan approval example, three participants were 
chosen, shown by the different shadings in figure 3:  

 
n1=(“loanApprovalParticipant”, (receive, reply)) 
n2=(“approverParticipant”, (invoke-RA, assign)) 
n3=(“assessorParticipant”, (invoke-LA)). 

 
4.2. Preparation: WSDL and Process Skeletons  
 

The WSDL of each participant gets new portTypes for 
the operations created, and new partnerLinkTypes referring 
to these portTypes. An operation, with a unique name 
within each local process, will be added for every link in 
the main process where the source and target activities are 
assigned to different partners. These WSDLs only reflect 
communications between the newly created processes; they 
do not affect operations exposed to or exposed by outside 
parties.  

Each participant gets one BPEL process named the 
same as the participant. PartnerLinks in the main process 
model used in a fragment (local process) must be copied 
into the latter’s definition. Then, the following are added to 
each local process:  
 New partnerLink(s) linking it to each of the other 

participants so they may communicate with each other. 
 New variables to handle the data, as in section 4.4.  
 A correlation set as in section 5.  
 For example, the following partnerLink and correlation 

set were created for the loan approver participant (n2).  
 

<partnerLink name="n1n2"   partnerLinkType="ns1:n1n2LinkType" 
                     myRole="approver" partnerRole="requestor"/> 

<correlationSet name="name" properties="loandef:name"/> 
 

4.3. Passing Control via Messages  
 

The control from a control link broken across 
participants is flowed via explicitly exchanged messages: 
sending and receiving activities linked by corresponding 
partnerLinkTypes.  

Consider the control link, l(A,B,q)  in figure 4 between 
A and B of transition condition ‘q’, within the main process 
model. Partition such that A is in N1 and B is in N2. For 
l(A,B,q), the operation is added to the definition of the 
portType used by N2’s role in the partnerLink L between 
N1 and N2. The portType of N1 is not affected (BPEL 
‘invokes’ refer to portTypes of invoked services).  

The transformation for sending control, conceptually, is 
shown in figure 4a: The link is transformed by adding a 
sending activity A' and a control link l(A,A’,q) at partner 
N1 and a receiving activity B' and control link 
l(B’,B,inVarB) at partner N2. In order to propagate the the 
status of the original link from A in N1 to B in N2, the 
value sent from A’ to B’ must be the status of the link 
l(A,A’,q): either the value of evaluating ‘q’ or simply ‘false’ 
due to a fault or DPE.  Therefore, A' is used to signal the 
link status to N2. This signal is received by B', and used as 
the value of the transition condition of the link between B’ 
and B.  
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Figure 4. Splitting a control link across local 
processes (a)Conceptually, (b) BPEL; dark square is 
a fault handler 
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Figure 5. joinCondition x, link sources separated. 

 
  Next, we consider the specific issues of mapping 

directly to BPEL. The relevant BPEL activities are created 
(Figure 4b), to ensure that that the link status is properly 
propagated.  Clearly, A’ is an invoke and B’ is a receive. 
The only place in BPEL where one can read the status of a 
link is in the ‘joinCondition’ of the link’s target activity. To 
propagate the link’s status, a scope S is used instead of A’ 
in N1. S contains an invoke activity L0

T which is now the 
target of the link from A, l(A, L0

T,q). L0
T has 

suppressJoinFailure=’false’, and its input variable has 
value ‘true’. S has a fault handler f(‘joinFailure’, L0

F), 
where ‘joinFailure’ is the name of the fault caught by f, and 
L0

F is an invoke activity whose input variable has value 



‘false’.  Both invokes call the same operation on N2. In N2, 
the signal is received by the ‘receive’ activity  L0., with link 
l(Lo,B,true). The join condition of B is untouched. 

Consider what happens. If A fails the status(l(A, L0
T,q)) 

will be negative and the join condition of L0
T will fail. 

Therefore, the status of our original link is just whether or 
not there was a join failure at activity L0

T. Now this 
information must be passed to N2, which is done by setting 
‘suppressJoinFailure’ attribute on L0

T  to false, and using 
the fault handler on S. At runtime, if the join fails L0

F 
propagates a false signal to L0 ; otherwise,  L0

T propagates a 
‘true’ signal L0. The corresponding behavior reaches B, due 
to the condition of the control link l(L0, B, inVar L0).  

If an activity B is the target of multiple links, each from 
a different partner (Figure 5) the join condition is not 
affected in this approach, as long as the links between the 
‘receives’ (L0 and L1) and B have the same name as the link 
in the main model. 

The following snippets show the result of breaking up 
the control link in the loan approval example between 
receive in n1 and invokeLA in n2: 

Sending control (in loanApprovalParticipant.bpel): 
<scope name="n1n2control-scope"> 
 <faultHandlers> 
  <catch faultName="jfns:joinFailure"> 
     <invoke partnerLink="n1n2"     portType="apnsf:approverPT"                                                  
                   operation="n1n2Link" inputVariable="falseAndCorrel" /> 
  </catch> 
 </faultHandlers> 
 <invoke name="n1n2control"   suppressJoinFailure="no" partnerLink="n1n2"  
         portType="apnsf:loanApprovalPT" operation="n1n2Link"    
         inputVariable="trueAndCorrel"> 
  <target linkName="receive-to-approval"/> 
 </invoke> 
</scope> 

Receiving control (in approverParticipant.bpel) 
<receive name="receive1" partnerLink="n1n2"  portType="apnsf:loanApprovalPT"    
             operation="n1n2Link" variable="statusn1n2"   createInstance="yes"> 
 <correlations> <correlation set="name" initiate="yes"/> </correlations> 
 <source linkName="receive-to-approval"             
   transitionCondition=   "bpws:getVariableData('statusn1n2', 'status')"/> 
</receive> 
 
4.4. Sharing Data: Passing Data via Messages. 
 
Using data links reduces the problem of data sharing 
between partitions to properly breaking up data links that 
cross swim-lane boundaries. Sharing context data, such as 
correlation value updates, is circumvented through: (1) the 
restriction of one correlation set on the main process 
(reused in all interactions between partners), and (2) 
deployment-time binding of EPRs. 
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Figure 6. Necessary use cases for data links 

 

The first idea considered is to simply send data using an 
‘invoke’ and ‘receive’. However, consider the following 
case where the source is in a branch of the flow that is not 
taken (DPE): the data link from invokeLA to reply in the 
loan approval example if a<10000. invokeLA is killed, 
along with the ‘invoke’ we suggest adding to send 
invokeLA’s data.  The suggested ‘receive’ at the partner 
would hang forever, and the reply would never run. Part of 
our solution is to also send the source’s completion status. 
If successful, ‘true’ is sent with the data. Otherwise, ‘false’ 
and ‘null’ are sent (left side figure 7a). 

The data at the receiving partner should be passed to the 
target activity’s input container just before the target 
executes. In case of a conflict with writes to the same 
location, the winner is chosen at random. The motivation, 
also in  [14],  for allowing such conflicts is to support the 
very common situation where two paths merge at an 
activity but only one of them will ever run in any instance 
(figure 6, top). Consider the loan approval process, which 
has two such branches joining at the final reply and each 
writing the application result to the response variable. The 
above approach without provisions for either source being 
killed by DPE could result in the process overwriting the 
successful branch’s result with  ‘null’.  

The solution is in ensuring that the data link from a 
source activity that doesn’t complete never writes to a 
value seen by the target of that data link.  In practice, this 
corresponds to adding a new activity after the “receive” and 
before the actual target activity (B’’ in Figure 7a, ‘assign’ 
in 7b).  If the original source activity fails, the new activity 
would be skipped. However, whether or not the target 
activity will run is a function of its control, not data, links. 
The join condition of the target activity is therefore 
modified to be agnostic to the status of the new link from 
the added activity. This creates the proper behavior 
supporting all the cases in figure 6.  
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Figure 7. Splitting up a data link across local 
processes (a) Conceptual (b)BPEL, jc’(B) refers to 
status of lx. 

 
When using BPEL (figure 7b), we use in N1 a scope S, 

containing an invoke activity  d0
T connected to A with l(A, 

d0
T, ‘true’). d0

T has suppressJoinFailure=’false’, and its 
input variable of two parts with values ‘true’ and the data 
needed by B. S has a fault handler f(‘joinFailure’, d0

F), 
where d0

F is an invoke activity whose input variable has 
‘false and ‘null’.  Both invokes call the same operation on 
N2. In N2, the message is received by ‘receive’ activity  d0.  
An ‘assign’ copies the data needed by B into the 
appropriate parts of its input variable as specified by the 



data map on d(A,B). Links l(d0., assign, inVard0/status) and 
lx=l(assign,B,true) are added. The join condition of B is 
changed  such that jc’(B)=jc(B).(status(lx)-~status(lx)). 

 
Here, the fault handling is used to propagate whether 

‘A’ was successful or not instead of control link status. The 
differences are that additional data is sent in the positive 
case, an activity buffers the ‘receive’ from the original 
target, and the join condition of the target is modified.  

Data links that stay within one process are replaced with 
an ‘assign’ linked between the data source activity and the 
data target activity. The join condition of the target is 
amended as for ‘B’ above.  Variables are added for each 
activity container and the activities modified to refer to 
them.   

A possible optimization is shown in figure 8 if a control 
link and data link have the same source and target. 
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Figure 8. Possible optimization 
 
The following snippets show breaking up the data link 

in loan approval between assign in n3 and reply in n1.  
Sending data (from assessorParticipant.bpel) 

<scope> 
 <faultHandlers> 
   <catch faultName="jfns:joinFailure"> 
     <invoke partnerLink="n1n3" portType="lns:loanApprovalPT"  
                   operation="n3n1Data" inputVariable="falseAndCorrel" /> 
   </catch> 
 </faultHandlers> 
 <sequence suppressJoinFailure="no"> 
  <target linkName="data-assign-to-main"/>         
    <assign>         
      <copy> <from><status  xmlns="" xsi:type="xsd:boolean">true</status></from>  
                  <to variable="statusAndApprovalInfo" part="status"/> </copy> 
       <copy>  <from variable="trueAndCorrel" part="name"/>  
                    <to variable="statusAndApprovalInfo" part="name"/> </copy>  
       <copy>  <from variable="approvalInfo" part="accept"/>  
                     <to variable="statusAndApprovalInfo" part="accept"/></copy> 
    </assign> 
    <invoke partnerLink="n1n3" portType="lns:loanApprovalPT" 
operation="n3n1Data" inputVariable="statusAndApprovalInfo" /> 
    </sequence> 
</scope> 

Receiving data (from loanApprovalParticipant.bpel) 
<receive name="n3n1data" partnerLink="n1n3"   
 portType="lns:loanApprovalPT" operation="n3n1Data"   
 variable="statusAndApprovalInfoN3" createInstance="yes"> 
 <correlations> <correlation set="name" initiate="yes"/> </correlations> 
 <source linkName="data-assign-to-reply" transitionCondition= 
"bpws:getVariableData('statusAndApprovalInfoN3','status')"/> 
</receive> 
<assign>  
  <copy><from variable="statusAndApprovalInfoN3" part="accept"/><to 
variable="approvalInfo" part="accept"/></copy> 
  <target linkName="data-assign-to-reply"/>  <source linkName="n3data-to-reply"/>   
</assign> 
<reply name="mainreply" partnerLink="customer"  
       portType="apns:loanApprovalPT"   operation="approve" 
variable="approvalInfo"              
       joinCondition=   

"(bpws:getLinkStatus('setMessage-to-reply') or bpws:getLinkStatus('approval-to-
reply'))  and  (bpws:getLinkStatus('n3data-to-reply') or 
not(bpws:getLinkStatus('n3data-to-reply'))) and (bpws:getLinkStatus('n2data-to-
reply') or   not(bpws:getLinkStatus('n2data-to-reply')))">       
   <target linkName="setMessage-to-reply"/><target linkName="approval-to-
reply"/> 
   <target linkName="n3data-to-reply"/> <target linkName="n2data-to-reply"/> 
</reply> 
 
5. Wiring the Processes Together 
 

For the local processes to successfully work together 
one must address: (1) the ‘receive’ activities that can create 
instances, (2) correlation sets for the newly created 
‘receive’ activities, and (3) connecting the processes 
together at deployment time through a wiring model (a la 
WSFL Global Model [13]).  

A greedy approach is used:  ‘createInstance’ is set to 
‘yes’ on all ‘receive’ activities that have no incoming links 
and that were newly introduced. This is a harmless 
overestimate: in BPEL only the first createInstance receive 
to get a message can actually create an instance; second, 
the direct mirroring of control from the main process means 
that introduced receive activities that were downstream in 
the main process but have ended up at the top of a single 
partner’s process will never create an instance. For 
example, in figure 1b, ‘A3’ will never happen before ‘A9’ 
even though P1, in isolation, seems to allow it. Analysis to 
reduce the number of receives that can create an instance  is 
possible but has no large effect on performance or 
execution behavior.  

A single correlation set for the entire process is used for 
instance routing, and reused for inter-partner 
communication by copying it into the messages. Once split 
apart, any interactions with outside parties will be routed 
properly because BPEL correlation tokens are part of the 
application data that the partner already knows about. The 
value is set by any of the starting receive activities, and 
maintained for the lifecycle of each instance. For the loan 
approval example, the correlation was on the name of the 
applicant. 
        Next, the processes need to be wired together. The 
processes alone cannot be used to relate their partnerLinks 
to each other’s (ie: N3 and N1 talk to the same N2), or 
deterministically pick a connection for a process that 
offers/requires the same portType over multiple  
partnerLinks. Global wiring models can get quite complex. 
The basic requirements are partnerLink aliasing and 
locators to set up initial connections. A locator directly 
provides or resolves to the address of a service ( wsdl:port, 
WS-Addressing EPR, etc.). We provide the following 
minimal wiring: a set of pair-wise connectors where at least 
one party is a BPEL process. Each connector, c, consists of: 
 

c =(([process-definition]?, [locator]?, [local-name]?), 
     ([process-definition]?, [locator]?, [local-name]?)) 

 
At least one of the three values must be present for each 

party in c: The process-definition if a party is implemented 
by a BPEL process; the locator if it is invoked by the other 



party in the connector; the local-name if the party has a 
local name for the connector (ie: a partnerLink). The model 
must include the connectors to any partners invoked in the 
main process model as well as those created by the 
partitions. BPEL has no generic deployment descriptor, 
making deployment implementation dependent. 

 
6. Executing the Loan Approval Sample 

 
The loan approval process in Figure 3 is a good 

candidate to use because it exhibits the salient features of 
partitioning, (see Figures 5 and 6): forks, joins where the 
link sources are in another participant than the common 
target, (‘reply’ and ‘invoke-LA’), data writing to the same 
location from two possibly exclusive paths. Additionally, it 
invokes other partner Web services (LA and RA) that are 
not part of the partition. In the chosen partitioning, the 
invokes to LA and RA are split among two different 
participants.  
     The transforms were manually performed yielding three 
BPEL processes, the corresponding WSDLs, and the global 
wiring. Actual snippets of relevant pieces were shown 
through-out the paper. Static locators were used in the 
wiring: (WSDL port). These processes were deployed into 
and executed by BPWS4J  [3]. All three processes created 
instances and ran to completion. Two separate inputs were 
tried to follow different paths: (1)“name: rania khalaf, 
amount: 10”: runs invokeRA, kills invokeLA, and approves 
the loan. (2)“name: john doe, amount:1000000”: runs 
invokeRA and invokeLA and denies the loan. BPWS4J 
does not lock resources to prevent a race on initialization 
from incorrectly create several instances with the same 
correlation set, so an artificial delay was introduced 
between sending the first two starter messages to n2 and n3.  
 
7. On Data Sharing 
 

Several options were considered before using data links  
• Shared database, with engine level data replication to 

synchronize and retrieve data on-demand. Requires a 
separate DB, shared by all partners, which is especially a 
trust concern and possible bottleneck. Variables get 
written out of band, resulting in invalid BPEL.    

• Data sent with the next control link: Seems to be the 
natural approach. Static analysis could determine which 
variables to send. However, it is not clear what to send if 
the source of the control link is killed by DPE, and the 
writer of the data was upstream (A6 needs data written by 
A3 but A4’s join is false).  

• Data links, and broken using a data service at each 
partner. Participants invoke the data service to 
send/retrieve data. This hides the interactions, and causes 
data overwriting problems when two different activities 
that write to the same location are on exclusive paths to 
the same target. Some communities use ‘third party 
copy’, sending one’s partners the data service’s EPR. A 

variation is (invalid) BPEL with a ‘replicate’ attribute on 
activities as a data-retrieval hint to the engine.   

• Data links, broken using WS message exchanges. The 
chosen  option. The main benefits are a natural model for 
defining data in simple way that naturally translates into 
message exchanges, and avoiding the problems above. 
Drawbacks were: creating extra assign activities, and 
requiring explicit data link modeling. However, data links 
are common in workflow languages and can be derived 
by analyzing data process dependencies.  

 
8. Related Work 

 
Two main trends stand out on interacting processes from 

a global point of view: Work using conversation languages 
explicitly modeling interactions as black/grey-boxed 
message exchanges; and, work on breaking up a single 
process model into smaller independent processes. In both 
cases, one will ultimately want to create or derive local 
processes related to the larger, initial process model.  

The most relevant are Muth et al.’s  [15], and van der 
Aalst’s and Weske’s work in  [21].  [15] proposes an 
approach in which a process model, defined using state and 
activity charts, is split up so that different partners can 
enact different subsets of it. They offer several 
synchronization schemes, starting with one where a TP 
monitor communicates with all the workflows after every 
step. Then they optimize this to only synchronize when 
there is a control dependency between two participants. 
However, they always use a communication (TP) manager 
(centralized) which synchronizes the distributed processes, 
whereas we do not. In our work, all interactions (including 
state propagation) are directly between the participants. 
Additionally, our work takes advantage of advances in 
capabilities for distribution and heterogeneous system 
support by being natively service-oriented whereas the 
model in Mentor uses state and activity charts and was 
created pre-SOA.  [21] creates a ‘public workflow’ that 
encodes both the logic at each party as well as the message 
exchanges between the parties. The public workflow is 
defined as a Workflow Net (based on Petri Nets), in which 
interactions between the parties are created using a place 
between two transitions (one from each). From there, the 
flow is divided into one public part per party. Each public 
part may be expanded into a private flow for that party, 
with conformance to the global flow guaranteed if given  
transformation rules are followed. The work in this paper is 
different in that the public flow in  [21] explicitly models 
the boundaries between the organizations. In earlier work 
 [20], they provided Message Sequence Charts  [17] for 
defining the interaction protocol in the public flow. Both 
papers have a heavy focus on checking the correctness of 
the flows. In our case, we deal with arbitrary partitioning of 
already defined behavior, and not with specializing private 
flows. Therefore, the behavior in the resulting local 
processes will mirror the behavior in the main process 
model (and inherit any inconsistencies). Another difference 



here is our main model encodes the complete behavior and 
different parties are not allowed to change it. In  [1], Casati 
and Discenza define and implement a framework for 
coordination and interaction between workflows, based on 
a pub/sub mechanism to wire together processes that can 
send/receive events.  This provides a mechanism for 
connecting workflows together. That work does not focus 
on the decomposition of global processes.  BPEL already 
has event handlers and interacts with other processes by 
sending/receiving messages (but without pub/sub). 

In  [10], [11], a BPEL process is broken down into 
several BPEL processes using program analysis and 
possibly reordering nodes, with each process deployed and 
executed on a separate machine, in order to maximize the 
throughput in cases where multiple instances of a process 
are running concurrently. It is not clear how they  deal with 
propagating DPE across the process fragments. It is unclear 
what subset of BPEL they support. In  [19], a single process 
model undergoes distributed execution using smart 
fragmentation and replication techniques. In these works, 
the partitions are computed by the system, and cannot be 
chosen at arbitrary points by the designer. In the latter case, 
the decision of where to execute each activity is dynamic 
and calculated at runtime based on available resources and 
actual load. All instance data is sent to each executing unit. 

Approaches using conversation languages such as  [9] 
and WS-CDL  [12] define a “neutral” view of interactions, 
not going into the behavior of the implementations at each 
party or local process derivation rules. Work has been done 
to create local processes from such languages.  [8] provides 
a top-down approach for observer verification using the 
state-machine-based conversation model in  [9].  [16] 
provides a semi-automated approach, requiring designer 
input, for creating BPEL processes from WS-CDL. These 
are well–suited when one can assume little about the inner 
workings of each party (blackbox). This is not better or 
worse than the approach in this paper. The two approaches 
address different needs: Their first class citizen is the 
definition and order of messages exchanged between 
partners; our first class citizen is the order and role-based 
assignment of action items in a business process. For 
example, a reassignment of tasks in those approaches 
would require a redefinition of the main business process. 

A semantically rich representation of a ‘neutral’ view 
protocol based on roles and commitments is presented in 
 [6]. Message exchanges are represented in the commitment 
rules. The focus is on protocol refinement and protocol 
aggregation, enabled by reasoning about the semantics. 
They provide a way to derive compliant local processes, as 
nearly complete BPEL processes. Again, we see the same 
conflict in the purpose of the two works.  In their work, 
interactions are first class. The commitments of a role are 
the baseline and must be preserved, and it is the work items 
at the local participants that may change. On the other 
hand, our baseline is the set of work items, and it is the 
interactions (and even business commitments) that change 
based on how a process is partitioned.   

In our mechanism, distribution transparency, which has 
been around for a long time, is used only as far as it is 
provided through the underlying Web services stack (ie: 
implementation, (re)location, etc).  

What is particularly interesting about this paper is:  (1) 
the model’s fragmentation is independent of its design: 
Instead of designing separate interacting parties and their 
message exchanges, we define the whole process and 
fragment it as needed: partner distinction is an add-on. (2) 
the creation of participant processes is simply the exercise 
of (automatically/algorithmically) breaking existing links. 
The behavior of each participant is a reflection of the 
designer’s decisions. With such an intuitive modeling 
framework, one can understand what is going on without 
resorting to complex underlying mappings.   

 
9. Conclusion and Future Work 
 

Global process views have often focused on the 
messages exchanged. Instead, we look at a process as a 
definition of work items. Distributing it agilely among 
partners consists of assigning different steps to different 
partners for execution. The result is several BPEL 
processes that will run locally at each partner, and use Web 
services messages to propagate control and data presented 
in the original model while still maintaining any 
communications with initial outside entities defined in it.  

The paper highlights the challenges in splitting such a 
process model, while trying to be as close to the original 
representation as possible, and provides solutions for them. 
These challenges are: propagating both control and data, 
propagating DPE and its repercussions, reconciling data 
conflicts, and wiring the resulting processes together in a 
consistent manner.  

There are several items in our future work agenda. A 
number of restrictions are placed on the input process 
model, (‘BPEL-D’). Of these, our main focus is on lifting 
the restrictions on loops, fault handlers, and transactional 
scopes. Specifically, we are investigating using 
coordination protocols for handling split scopes and loops. 
We are also interested in enabling one to start with a vanilla 
BPEL process, and are investigating data analysis 
techniques on BPEL to create the BPEL-D representation. 
Then, the latter can be used either directly or as an 
intermediary format.  
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