
Role-based Decomposition of Business Processes using BPEL
Rania Khalaf

IBM T.J. Watson Research Center
1 Rogers Street, Cambridge, MA 02142, USA

rkhalaf@watson.ibm.com

Frank Leymann
University of Stuttgart, Stuttgart;

IBM Software Group, Boeblingen, Germany
 Leymann@iaas.uni-stuttgart.de

Abstract
This paper addresses role-based decomposition of a

business process model (based on a subset of WS-BPEL,
using explicit data link)s. A mechanism is presented for
partitioning a business process so that each partition can
be enacted by a different participant. An important goal is
to disconnect the partitioning itself from the design of the
business process, simplifying the reassignment of activities
to different entities. The result is several (compliant) BPEL
processes, one for each participant, as well as the
information needed to wire them together at deployment
time and ensuring correct instance-level connections at
runtime. We present details of partitioning and successfully
running a sample process with three participants.

1. Introduction

Business process reengineering (BPR) and continuous
process improvement (CPI) is a well-established practice in
many enterprises today: Execution histories of collections
of process instances are periodically analyzed to detect
potential deviations from business measures and to derive
corresponding improvements by modifying the underlying
process model. In case appropriate improvements cannot be
achieved by model modifications more dramatic changes
are done: Non-competitive parts of the process model are
“cut out” and delegated to a third-party that commits to
perform these parts within the given business measures
(“business process outsourcing” BPO).

BPO sometimes is as drastic as delegating a complete
process to a third party, or less drastic by outsourcing only
fragments of the process. When outsourcing a fragment the
third-party may have the liberty to substitute the cut-out
fragment by some other process model as long as the
overall business functionality is achieved. Effectively, the
cut-out fragment becomes a traditional subprocess [14], i.e.
it is used as an encapsulated function. But often, the cut-out
fragment interacts with the “rest” of the process model: For
example, there may be ordering dependencies or
participation in the same unit of work between cut-out
activities and activities left behind. In such cases, the
fragment cannot be considered a simple subprocess but the
fragment and the remaining process model are interwoven
by message exchanges and coordination requirement.

Specifying these dependencies is a non-trivial endeavor.
To keep the corresponding modeling task simple, the swim-
lane approach is a useful abstraction: A swim-lane
represents a “partner”, i.e. either the original (i.e.

outsourcing) enterprise or a third-party to which a fragment
is outsourced. Then, each activity of a process model is
simply placed into a corresponding swim-lane without any
other impact on the process model (figure 1 (a)). Based on
this assignment of activities to swim-lanes both, the
corresponding fragments can be derived automatically as
well as the interdependencies and corresponding model
changes (figure 1 (b)).

As a consequence, process fragmentation can be
specified by providing partner partitioning on a given
process from the outset, or the activities of an existing
process may be partitioned based on choosing
responsibility partners later. After deciding which partner
must execute which subset of activities, the algorithms in
this paper are used to create a separate processes model for
each partner such that local control and data dependencies
between activities in the original process are translated into
(application or control) message flows between the derived
process models.

P

A1 A2A3

A4 A5
A6

A7A8

A9 A11

A10

N1 N2 N3

N1 N2 N3

P1

P2

P3

A3

A4

A9

A1

A6

A8

A10

A2

A5

A7

A11
 (a) (b)

Figure 1. a) Process P with swim-lanes (b) Cutting off
local process from P, and reconnecting them using
message flows (dashed lines).

For example, in process P in figure 1a, A1 may be the

submission of an order by an actor in organization N2
(customer) while A3 may be the processing of the order by
an actor in organization N1 (travel agent), etc. In the spirit
of process agility, parts of a process may be outsourced to
an external partner due to corporate outsourcing, re-orgs,
mergers, or acquisitions. Consequently, swim-lanes may
correspond to elements of an organizational structure of
another enterprise, making it natural to use the swim-lane
notation to model the various partners.

Figure 1b shows local processes P1, P2, and P3 running
at N1, N2, and N3 resulting from P. This paper is concerned
with defining how these local processes can be derived
automatically, leveraging the Web services platform in
particular the Web Services Definition Language (WSDL)
 [22] and the Business Process Execution Language for
Web Services (WS-BPEL, BPEL, BPEL4WS) [2]. We use

the term ‘participant’ for an agent assigned to a subset of
the process’s activities, and ‘swim-lane’ for the graphical
representation of a participant.

Another emerging area that motivates enabling different
partitions of a business process is that of the mobile
workforce, where workers go out in the field or work
remotely (excavation, traveling service and support
personnel, remote employees, etc.). Early work [5] focuses
on device mobility of an already partitioned process model
where simple, single-interaction workflows are allowed on
the client. We have seen a desire with our industry and
university partners to enable a worker to be able to ‘check
out’ the part of the work that she needs to do while away
(possibly with intermittent connectivity), or a server may
send parts of a workflow for enactment to mobile clients.
This is a complex, evolving problem of many dimensions
that are not the focus of this paper, but to which
understanding arbitrary, work-item based, process
partitioning is important.

1.1. Approach Overview

Architecturally, the approach presented follows the steps in
figure 2. The ‘Transform’ block represents the mechanisms
presented in this paper. The transformation takes as input
the initial process model, in a modified version of BPEL
that we call BPEL-D (described in section 3), its
corresponding WSDLs, and a specification N of which
activities are to be carried out by which participant. Using
the mechanisms presented in this paper, the result is the
creation of one spec-compliant BPEL (not BPEL-D)
process and one WSDL file per participant, as well as a
simple global wiring definition. The processes, being in
vanilla BPEL, can therefore be handled using widely
available BPEL tools.

Transform
N={(s,M)|M A}

{BPEL 1,…,BPELn}

Wiring

Data
analysis

BPEL BPEL-D

{WSDL 1,…,WSDL k}

⊆
{WSDL 1,…,WSDLk,…,WSDLk+n}

Figure 2. Approach. Shaded region is future work.

The observation that guides the partitioning mechanism

is that the creation of the participant processes reduces to a
strategy of defining precisely how to ‘break’ existing links
that cross swim-lane boundaries, and then wiring together
the now isolated components. The breaking of the links,
detailed in section 4, is done by changing control and data
dependencies into Web services message exchanges.
Section 5 provides the necessary information for the wiring
the processes together at runtime.

We currently manually perform the transformation,
describing results of executing a partitioned process in
section 6. The shaded block presents future work described
in section 3.

2. BACKGROUND: BPEL

BPEL is an XML workflow language for Web services.
Instances of typed connectors (“partnerLinks'') provide
either one or both of a role that the process implements
(myRole) and one that it expects from a partner
(partnerRole). The roles refer to defined WSDL portTypes.

Primitive activities include invoking a Web
service(invoke), receiving and replying to invocations to
operations offered on the process’s WSDL(receive/reply).
The <flow> activity is a structured activity used for
parallelism. It can have control links that impose ordering
on its enclosed activities. An activity that is the target of
links can only start once the status of all incoming links is
known, it has control from its enclosing structured activity,
and its Boolean ‘joinCondition’ evaluates to true (default is
the disjunction of the status of incoming links). Once it
completes, it fires its outgoing links with the value of
evaluating its ‘transitionCondition’.

Data is written to and read from scoped variables. A
correlation mechanism is used to route messages to correct
instances of a running process. A correlation set refers to a
set of properties; each property is aliased to fields in one or
more WSDL messages. Incoming messages are checked for
the set, which is matched against existing values mapped
to running process instances.

If a match is not found, the process definition is checked
for the ability to create one based on the message and
‘receive’ activities in the process with the “createInstance”
attribute set to “yes”. Once an instance is created and the
message reaches its designated ‘receive’ activity, all other
‘receive’ activities in that instance that also have
“createInstance” set to “yes” loose their creation ability.

2.1. Scopes, Faults and Dead-Path Elimination

The structured ‘scope’ activity groups related activities.
Among other things, it provides them with fault handlers.
A ‘scope’ can be the source/ target of links, and links can
cross scope boundaries. If a fault is thrown, all activities in
its scope stop executing, and a fault handler is looked up by
going up the scope hierarchy. Once an appropriate handler
is found, the activities of the handler are executed and all
links whose sources but not targets belong inside the scope
on which the handler is defined fire negatively. If the
handler completes successfully and does not rethrow the
fault, its scope completes and the links that have the scope
itself as their source fire with the value of the evaluating
their transition condition. If the handler itself faults, then
the fault is again propagated up the hierarchy.

The “Dead Path Elimination” technique (DPE) is used in
Graph oriented workflow languages (e.g. [12]) to
automatically disable activities along a path that is
determined to be no longer reachable. In BPEL, it is
achieved using fault handling: An activity’s false
‘joinCondition’ causes a ‘joinFailure’ fault to be thrown. If

an activity has the “suppressJoinFailure” attribute set to
true, the behavior is equivalent to surrounding the activity
with a scope having an empty fault handler for joinFailures.
Process-wide DPE semantics are achieved by setting this
attribute to true on the whole process. [6] details advanced
issues on joinFailure.

3. Defining the Main Process

The process model used as input to our transformation is
simply a subset of BPEL, but replaces the programming
style (scoped variable) data handling in BPEL with data
links defined in section 3.1. For easy reference, we call this
BPEL-D. There is no fundamentally new concept there:
The data dependencies already exist in vanilla BPEL. In
BPEL-D we simply make them explicit.

Clearly, there is a need to accept spec-compliant
(subset) BPEL as the main input, making BPEL-D an
intermediate representation. We are working on a BPEL to
BPEL-D transform using ideas from [9], which claims a
mechanism to derive data dependencies from BPEL using
techniques from compiler theory. As we would still go
through BPEL-D before fragment creation, the mechanisms
in this paper would not be affected once this is introduced.

However, BPEL-D is usable directly since explicit data
links are old and common in workflow design (WSFL [13],
FDL [14]), supported by commercial products in use for
many years such as IBM MQ Workflow.

The subset of BPEL used to define a main process
model is:
• Process, with suppressJoinFailure set to ‘yes’ (DPE

on)
• Exactly one correlation set.
• PartnerLinks
• A single top level ‘flow’ activity, and its links.
• All simple activities, except ‘terminate’, ‘throw’,

‘compensate’, and the form of ‘copy’ in an ‘assign’
activity that copies into a process’s endpoint
references(EPR).

• A ‘receive’ and its corresponding ‘reply’ are
disallowed from being placed in different participants.

The navigation semantics, from a control point of view, of
these processes is well understood and clearly defined both
in the BPEL specification and in mathematical mappings of
BPEL to lower level formalisms such as [6], [18]. Since we
are using only BPEL flow, with suppressJoinFailure, then
navigation semantics are very similar to those of FDL.

3.1. Data Links

Multiple mechanisms were considered for dealing with
the issue of sharing data, with trade-offs presented in
section 7. As in [13], [14], each activity here gets optional
input and output data containers. Consider the output
container, o(A1), of activity A1 and the input container
i(A2) of activity A2. The contents of a container are one
tree of data items, whose definition is either an XML

Schema Element, an XML Schema Simple Type, or a
WSDL Message. XPath’s data model [23] explicitly
defines the representation of XML data as a tree. In
practice, we use XPath to select a data item from a
container. A transitionCondition on a link has access to the
containers of the link’s source activity.

An activity’s input container is populated by data link(s)
from parts of the output containers of other activities; its
output container is populated by the activity itself. A data
link d(A1, A2) specifies a map that assigns parts of the
output container of A1 to parts of the input container of A2.
A control flow dependency must be present between any
two activities, A1 and A2 joined by a data link d.

Consider o’(A1), the ordered depth-first set of the tree in
o(A1). Consider i’(A1), the ordered depth-first set of the tree
in i(A1). Note that the depth-first set of a tree is the set of
nodes, in order, visited in a depth-first traversal of the tree.
We define a data connector map, adapted from [14], where
A is the set of activities in the process, and ℘(X) denotes
the powerset of X:

∪
AAAA

AiAoAA
∈∈

×℘→×Δ
21 ,

21))(')('(:

with the following two conditions summarizing the
restrictions above:

(i)))(')('(),(2121 AiAoAA ×∈℘Δ
(ii) 221),(AAA ⇒≠Δ φ is reachable from A1
Basic fault handling at the global level can ensure that

instances don’t hang if a local process fails. Similar to [11],
a fault handler can be defined on each local process to
catch any fault from that process and notify the other
created partners. The latter would have event handlers that
terminate the instance upon receipt of such a fault message.
We are investigating breaking up fault handling scopes.

4. Partitioning the Process

This section describes the mechanics of the partitioning
algorithm. Each of the following sections defines part of
the approach. In order to illustrate the mechanics involved
in a concrete manner, we provide concrete BPEL snippets
from the loan approval process in figure 3, derived from
 [2], [3]. While small, this sample is a good candidate for
illustration because it presents some of the edge cases of
the approach.

assign

a<10000 a>=10000

risk=“high”

risk=“low”

invoke
LA

invoke
RA

receive

reply

Key:
Control link
Data link

assign

a<10000 a>=10000

risk=“high”

risk=“low”

invoke
LA

invoke
RA

receive

reply

Key:
Control link
Data link

Key:
Control link
Data link

Figure 3. Loan Approval. Shading denotes partition.

 This process receives a loan application. If the amount
is below a threshold, it sends the application to a risk
assessor (RA), otherwise it sends it to a loan approver (LA)
whose output is the result. If the assessment was performed
and the risk was low, then it sets the loan result (assign);
otherwise, it invokes the approver (LA). Then, the result is
sent back to the applicant (reply).

4.1. Defining the Participants

The decomposition is created by defining a partition of
the set A of all activities in the process. Every participant,
n, belonging to the set of participants, N, consists of a
name, s, and a set of one or more activities, M, such that

 Using }|),{(}{ AMMsnN ⊆==)(fiπ to represent the i-
th projection map, the restrictions on N are the following:

i 2 i

i j i j

2
n N

n N, (n)
n , n N, i j n n

(n) A
∈

∀ ∈ π ≠ φ
∀ ∈ ≠ → ∩ =

π =∪
φ

In other words, a participant must have at least one

activity, no two participants share an activity or a name,
and every activity of the process is assigned to a
participant.

For the loan approval example, three participants were
chosen, shown by the different shadings in figure 3:

n1=(“loanApprovalParticipant”, (receive, reply))
n2=(“approverParticipant”, (invoke-RA, assign))
n3=(“assessorParticipant”, (invoke-LA)).

4.2. Preparation: WSDL and Process Skeletons

The WSDL of each participant gets new portTypes for
the operations created, and new partnerLinkTypes referring
to these portTypes. An operation, with a unique name
within each local process, will be added for every link in
the main process where the source and target activities are
assigned to different partners. These WSDLs only reflect
communications between the newly created processes; they
do not affect operations exposed to or exposed by outside
parties.

Each participant gets one BPEL process named the
same as the participant. PartnerLinks in the main process
model used in a fragment (local process) must be copied
into the latter’s definition. Then, the following are added to
each local process:
 New partnerLink(s) linking it to each of the other

participants so they may communicate with each other.
 New variables to handle the data, as in section 4.4.
 A correlation set as in section 5.
 For example, the following partnerLink and correlation

set were created for the loan approver participant (n2).

<partnerLink name="n1n2" partnerLinkType="ns1:n1n2LinkType"
 myRole="approver" partnerRole="requestor"/>

<correlationSet name="name" properties="loandef:name"/>

4.3. Passing Control via Messages

The control from a control link broken across
participants is flowed via explicitly exchanged messages:
sending and receiving activities linked by corresponding
partnerLinkTypes.

Consider the control link, l(A,B,q) in figure 4 between
A and B of transition condition ‘q’, within the main process
model. Partition such that A is in N1 and B is in N2. For
l(A,B,q), the operation is added to the definition of the
portType used by N2’s role in the partnerLink L between
N1 and N2. The portType of N1 is not affected (BPEL
‘invokes’ refer to portTypes of invoked services).

The transformation for sending control, conceptually, is
shown in figure 4a: The link is transformed by adding a
sending activity A' and a control link l(A,A’,q) at partner
N1 and a receiving activity B' and control link
l(B’,B,inVarB) at partner N2. In order to propagate the the
status of the original link from A in N1 to B in N2, the
value sent from A’ to B’ must be the status of the link
l(A,A’,q): either the value of evaluating ‘q’ or simply ‘false’
due to a fault or DPE. Therefore, A' is used to signal the
link status to N2. This signal is received by B', and used as
the value of the transition condition of the link between B’
and B.

BA
q

A’A
q

BB’ inVarB’

L

T

N1 N2

BA
q

A’A
q

BB’ inVarB’

L

T

N1 N2

BA
q

A
q

BL 0
in V a r L 0

L

T

N 1 N 2

L 0
T

L 0
F

F

T

BA
q

A
q

BL 0
in V a r L 0

L

T

N 1 N 2

L 0
T

L 0
F

FF

TT

(a) (b)

Figure 4. Splitting a control link across local
processes (a)Conceptually, (b) BPEL; dark square is
a fault handler

BC
p

BL0
inVarL0

T

N2

A q
x

L1 inVarL1

x
A q

N 1

L0
t

L0
f

C p

N 3

L1
t

L1
f F

F
T

T

BC
p

BL0
inVarL0

T

N2

A q
x

L1 inVarL1

x
A q

N 1

L0
t

L0
f

C p

N 3

L1
t

L1
f FF

FF
TT

TT

Figure 5. joinCondition x, link sources separated.

 Next, we consider the specific issues of mapping

directly to BPEL. The relevant BPEL activities are created
(Figure 4b), to ensure that that the link status is properly
propagated. Clearly, A’ is an invoke and B’ is a receive.
The only place in BPEL where one can read the status of a
link is in the ‘joinCondition’ of the link’s target activity. To
propagate the link’s status, a scope S is used instead of A’
in N1. S contains an invoke activity L0

T which is now the
target of the link from A, l(A, L0

T,q). L0
T has

suppressJoinFailure=’false’, and its input variable has
value ‘true’. S has a fault handler f(‘joinFailure’, L0

F),
where ‘joinFailure’ is the name of the fault caught by f, and
L0

F is an invoke activity whose input variable has value

‘false’. Both invokes call the same operation on N2. In N2,
the signal is received by the ‘receive’ activity L0., with link
l(Lo,B,true). The join condition of B is untouched.

Consider what happens. If A fails the status(l(A, L0
T,q))

will be negative and the join condition of L0
T will fail.

Therefore, the status of our original link is just whether or
not there was a join failure at activity L0

T. Now this
information must be passed to N2, which is done by setting
‘suppressJoinFailure’ attribute on L0

T to false, and using
the fault handler on S. At runtime, if the join fails L0

F
propagates a false signal to L0 ; otherwise, L0

T propagates a
‘true’ signal L0. The corresponding behavior reaches B, due
to the condition of the control link l(L0, B, inVar L0).

If an activity B is the target of multiple links, each from
a different partner (Figure 5) the join condition is not
affected in this approach, as long as the links between the
‘receives’ (L0 and L1) and B have the same name as the link
in the main model.

The following snippets show the result of breaking up
the control link in the loan approval example between
receive in n1 and invokeLA in n2:

Sending control (in loanApprovalParticipant.bpel):
<scope name="n1n2control-scope">
 <faultHandlers>
 <catch faultName="jfns:joinFailure">
 <invoke partnerLink="n1n2" portType="apnsf:approverPT"
 operation="n1n2Link" inputVariable="falseAndCorrel" />
 </catch>
 </faultHandlers>
 <invoke name="n1n2control" suppressJoinFailure="no" partnerLink="n1n2"
 portType="apnsf:loanApprovalPT" operation="n1n2Link"
 inputVariable="trueAndCorrel">
 <target linkName="receive-to-approval"/>
 </invoke>
</scope>

Receiving control (in approverParticipant.bpel)
<receive name="receive1" partnerLink="n1n2" portType="apnsf:loanApprovalPT"
 operation="n1n2Link" variable="statusn1n2" createInstance="yes">
 <correlations> <correlation set="name" initiate="yes"/> </correlations>
 <source linkName="receive-to-approval"
 transitionCondition= "bpws:getVariableData('statusn1n2', 'status')"/>
</receive>

4.4. Sharing Data: Passing Data via Messages.

Using data links reduces the problem of data sharing
between partitions to properly breaking up data links that
cross swim-lane boundaries. Sharing context data, such as
correlation value updates, is circumvented through: (1) the
restriction of one correlation set on the main process
(reused in all interactions between partners), and (2)
deployment-time binding of EPRs.

D
B

C
A

E
B

C
A D

B

C
A D

D
B

C
A

E
B

C
A D

B

C
A D

Figure 6. Necessary use cases for data links

The first idea considered is to simply send data using an
‘invoke’ and ‘receive’. However, consider the following
case where the source is in a branch of the flow that is not
taken (DPE): the data link from invokeLA to reply in the
loan approval example if a<10000. invokeLA is killed,
along with the ‘invoke’ we suggest adding to send
invokeLA’s data. The suggested ‘receive’ at the partner
would hang forever, and the reply would never run. Part of
our solution is to also send the source’s completion status.
If successful, ‘true’ is sent with the data. Otherwise, ‘false’
and ‘null’ are sent (left side figure 7a).

The data at the receiving partner should be passed to the
target activity’s input container just before the target
executes. In case of a conflict with writes to the same
location, the winner is chosen at random. The motivation,
also in [14], for allowing such conflicts is to support the
very common situation where two paths merge at an
activity but only one of them will ever run in any instance
(figure 6, top). Consider the loan approval process, which
has two such branches joining at the final reply and each
writing the application result to the response variable. The
above approach without provisions for either source being
killed by DPE could result in the process overwriting the
successful branch’s result with ‘null’.

The solution is in ensuring that the data link from a
source activity that doesn’t complete never writes to a
value seen by the target of that data link. In practice, this
corresponds to adding a new activity after the “receive” and
before the actual target activity (B’’ in Figure 7a, ‘assign’
in 7b). If the original source activity fails, the new activity
would be skipped. However, whether or not the target
activity will run is a function of its control, not data, links.
The join condition of the target activity is therefore
modified to be agnostic to the status of the new link from
the added activity. This creates the proper behavior
supporting all the cases in figure 6.

BA

A’A’A BBB’B’

T

N1 N2

la lb

la lb

B’’stat

jc’(B)=jc(B).(lx-~lx)

lx

BA

A B

T

N1

N2

la lb

la
lb

d0

stat
d0

T

d0
F

F

T,o(A)
assign

jc’(B)=jc(B).(lx-~lx)

lx

‘true’ ‘true’

BA

A B

T

N1

N2

la lb

la
lb

d0

stat
d0

T

d0
F

FF

T,o(A)T,o(A)
assign

jc’(B)=jc(B).(lx-~lx)

lx

‘true’ ‘true’

(a) (b)

Figure 7. Splitting up a data link across local
processes (a) Conceptual (b)BPEL, jc’(B) refers to
status of lx.

When using BPEL (figure 7b), we use in N1 a scope S,

containing an invoke activity d0
T connected to A with l(A,

d0
T, ‘true’). d0

T has suppressJoinFailure=’false’, and its
input variable of two parts with values ‘true’ and the data
needed by B. S has a fault handler f(‘joinFailure’, d0

F),
where d0

F is an invoke activity whose input variable has
‘false and ‘null’. Both invokes call the same operation on
N2. In N2, the message is received by ‘receive’ activity d0.
An ‘assign’ copies the data needed by B into the
appropriate parts of its input variable as specified by the

data map on d(A,B). Links l(d0., assign, inVard0/status) and
lx=l(assign,B,true) are added. The join condition of B is
changed such that jc’(B)=jc(B).(status(lx)-~status(lx)).

Here, the fault handling is used to propagate whether

‘A’ was successful or not instead of control link status. The
differences are that additional data is sent in the positive
case, an activity buffers the ‘receive’ from the original
target, and the join condition of the target is modified.

Data links that stay within one process are replaced with
an ‘assign’ linked between the data source activity and the
data target activity. The join condition of the target is
amended as for ‘B’ above. Variables are added for each
activity container and the activities modified to refer to
them.

A possible optimization is shown in figure 8 if a control
link and data link have the same source and target.

A

B

N1

N2

dl
stat

assign

jc’(B)=jc(B).(lx-~lx)

‘true’

‘true’q

inVarL0

invoke

assign
T,o(A)
assign

F

assign
T

assign
F

A

B

N1

N2

dl
stat

assign

jc’(B)=jc(B).(lx-~lx)

‘true’

‘true’q

inVarL0

invoke

assign
T,o(A)
assign

F

assign
T

assign
F

Figure 8. Possible optimization

The following snippets show breaking up the data link

in loan approval between assign in n3 and reply in n1.
Sending data (from assessorParticipant.bpel)

<scope>
 <faultHandlers>
 <catch faultName="jfns:joinFailure">
 <invoke partnerLink="n1n3" portType="lns:loanApprovalPT"
 operation="n3n1Data" inputVariable="falseAndCorrel" />
 </catch>
 </faultHandlers>
 <sequence suppressJoinFailure="no">
 <target linkName="data-assign-to-main"/>
 <assign>
 <copy> <from><status xmlns="" xsi:type="xsd:boolean">true</status></from>
 <to variable="statusAndApprovalInfo" part="status"/> </copy>
 <copy> <from variable="trueAndCorrel" part="name"/>
 <to variable="statusAndApprovalInfo" part="name"/> </copy>
 <copy> <from variable="approvalInfo" part="accept"/>
 <to variable="statusAndApprovalInfo" part="accept"/></copy>
 </assign>
 <invoke partnerLink="n1n3" portType="lns:loanApprovalPT"
operation="n3n1Data" inputVariable="statusAndApprovalInfo" />
 </sequence>
</scope>

Receiving data (from loanApprovalParticipant.bpel)
<receive name="n3n1data" partnerLink="n1n3"
 portType="lns:loanApprovalPT" operation="n3n1Data"
 variable="statusAndApprovalInfoN3" createInstance="yes">
 <correlations> <correlation set="name" initiate="yes"/> </correlations>
 <source linkName="data-assign-to-reply" transitionCondition=
"bpws:getVariableData('statusAndApprovalInfoN3','status')"/>
</receive>
<assign>
 <copy><from variable="statusAndApprovalInfoN3" part="accept"/><to
variable="approvalInfo" part="accept"/></copy>
 <target linkName="data-assign-to-reply"/> <source linkName="n3data-to-reply"/>
</assign>
<reply name="mainreply" partnerLink="customer"
 portType="apns:loanApprovalPT" operation="approve"
variable="approvalInfo"
 joinCondition=

"(bpws:getLinkStatus('setMessage-to-reply') or bpws:getLinkStatus('approval-to-
reply')) and (bpws:getLinkStatus('n3data-to-reply') or
not(bpws:getLinkStatus('n3data-to-reply'))) and (bpws:getLinkStatus('n2data-to-
reply') or not(bpws:getLinkStatus('n2data-to-reply')))">
 <target linkName="setMessage-to-reply"/><target linkName="approval-to-
reply"/>
 <target linkName="n3data-to-reply"/> <target linkName="n2data-to-reply"/>
</reply>

5. Wiring the Processes Together

For the local processes to successfully work together
one must address: (1) the ‘receive’ activities that can create
instances, (2) correlation sets for the newly created
‘receive’ activities, and (3) connecting the processes
together at deployment time through a wiring model (a la
WSFL Global Model [13]).

A greedy approach is used: ‘createInstance’ is set to
‘yes’ on all ‘receive’ activities that have no incoming links
and that were newly introduced. This is a harmless
overestimate: in BPEL only the first createInstance receive
to get a message can actually create an instance; second,
the direct mirroring of control from the main process means
that introduced receive activities that were downstream in
the main process but have ended up at the top of a single
partner’s process will never create an instance. For
example, in figure 1b, ‘A3’ will never happen before ‘A9’
even though P1, in isolation, seems to allow it. Analysis to
reduce the number of receives that can create an instance is
possible but has no large effect on performance or
execution behavior.

A single correlation set for the entire process is used for
instance routing, and reused for inter-partner
communication by copying it into the messages. Once split
apart, any interactions with outside parties will be routed
properly because BPEL correlation tokens are part of the
application data that the partner already knows about. The
value is set by any of the starting receive activities, and
maintained for the lifecycle of each instance. For the loan
approval example, the correlation was on the name of the
applicant.
 Next, the processes need to be wired together. The
processes alone cannot be used to relate their partnerLinks
to each other’s (ie: N3 and N1 talk to the same N2), or
deterministically pick a connection for a process that
offers/requires the same portType over multiple
partnerLinks. Global wiring models can get quite complex.
The basic requirements are partnerLink aliasing and
locators to set up initial connections. A locator directly
provides or resolves to the address of a service (wsdl:port,
WS-Addressing EPR, etc.). We provide the following
minimal wiring: a set of pair-wise connectors where at least
one party is a BPEL process. Each connector, c, consists of:

c =(([process-definition]?, [locator]?, [local-name]?),
 ([process-definition]?, [locator]?, [local-name]?))

At least one of the three values must be present for each

party in c: The process-definition if a party is implemented
by a BPEL process; the locator if it is invoked by the other

party in the connector; the local-name if the party has a
local name for the connector (ie: a partnerLink). The model
must include the connectors to any partners invoked in the
main process model as well as those created by the
partitions. BPEL has no generic deployment descriptor,
making deployment implementation dependent.

6. Executing the Loan Approval Sample

The loan approval process in Figure 3 is a good

candidate to use because it exhibits the salient features of
partitioning, (see Figures 5 and 6): forks, joins where the
link sources are in another participant than the common
target, (‘reply’ and ‘invoke-LA’), data writing to the same
location from two possibly exclusive paths. Additionally, it
invokes other partner Web services (LA and RA) that are
not part of the partition. In the chosen partitioning, the
invokes to LA and RA are split among two different
participants.
 The transforms were manually performed yielding three
BPEL processes, the corresponding WSDLs, and the global
wiring. Actual snippets of relevant pieces were shown
through-out the paper. Static locators were used in the
wiring: (WSDL port). These processes were deployed into
and executed by BPWS4J [3]. All three processes created
instances and ran to completion. Two separate inputs were
tried to follow different paths: (1)“name: rania khalaf,
amount: 10”: runs invokeRA, kills invokeLA, and approves
the loan. (2)“name: john doe, amount:1000000”: runs
invokeRA and invokeLA and denies the loan. BPWS4J
does not lock resources to prevent a race on initialization
from incorrectly create several instances with the same
correlation set, so an artificial delay was introduced
between sending the first two starter messages to n2 and n3.

7. On Data Sharing

Several options were considered before using data links
• Shared database, with engine level data replication to

synchronize and retrieve data on-demand. Requires a
separate DB, shared by all partners, which is especially a
trust concern and possible bottleneck. Variables get
written out of band, resulting in invalid BPEL.

• Data sent with the next control link: Seems to be the
natural approach. Static analysis could determine which
variables to send. However, it is not clear what to send if
the source of the control link is killed by DPE, and the
writer of the data was upstream (A6 needs data written by
A3 but A4’s join is false).

• Data links, and broken using a data service at each
partner. Participants invoke the data service to
send/retrieve data. This hides the interactions, and causes
data overwriting problems when two different activities
that write to the same location are on exclusive paths to
the same target. Some communities use ‘third party
copy’, sending one’s partners the data service’s EPR. A

variation is (invalid) BPEL with a ‘replicate’ attribute on
activities as a data-retrieval hint to the engine.

• Data links, broken using WS message exchanges. The
chosen option. The main benefits are a natural model for
defining data in simple way that naturally translates into
message exchanges, and avoiding the problems above.
Drawbacks were: creating extra assign activities, and
requiring explicit data link modeling. However, data links
are common in workflow languages and can be derived
by analyzing data process dependencies.

8. Related Work

Two main trends stand out on interacting processes from

a global point of view: Work using conversation languages
explicitly modeling interactions as black/grey-boxed
message exchanges; and, work on breaking up a single
process model into smaller independent processes. In both
cases, one will ultimately want to create or derive local
processes related to the larger, initial process model.

The most relevant are Muth et al.’s [15], and van der
Aalst’s and Weske’s work in [21]. [15] proposes an
approach in which a process model, defined using state and
activity charts, is split up so that different partners can
enact different subsets of it. They offer several
synchronization schemes, starting with one where a TP
monitor communicates with all the workflows after every
step. Then they optimize this to only synchronize when
there is a control dependency between two participants.
However, they always use a communication (TP) manager
(centralized) which synchronizes the distributed processes,
whereas we do not. In our work, all interactions (including
state propagation) are directly between the participants.
Additionally, our work takes advantage of advances in
capabilities for distribution and heterogeneous system
support by being natively service-oriented whereas the
model in Mentor uses state and activity charts and was
created pre-SOA. [21] creates a ‘public workflow’ that
encodes both the logic at each party as well as the message
exchanges between the parties. The public workflow is
defined as a Workflow Net (based on Petri Nets), in which
interactions between the parties are created using a place
between two transitions (one from each). From there, the
flow is divided into one public part per party. Each public
part may be expanded into a private flow for that party,
with conformance to the global flow guaranteed if given
transformation rules are followed. The work in this paper is
different in that the public flow in [21] explicitly models
the boundaries between the organizations. In earlier work
 [20], they provided Message Sequence Charts [17] for
defining the interaction protocol in the public flow. Both
papers have a heavy focus on checking the correctness of
the flows. In our case, we deal with arbitrary partitioning of
already defined behavior, and not with specializing private
flows. Therefore, the behavior in the resulting local
processes will mirror the behavior in the main process
model (and inherit any inconsistencies). Another difference

here is our main model encodes the complete behavior and
different parties are not allowed to change it. In [1], Casati
and Discenza define and implement a framework for
coordination and interaction between workflows, based on
a pub/sub mechanism to wire together processes that can
send/receive events. This provides a mechanism for
connecting workflows together. That work does not focus
on the decomposition of global processes. BPEL already
has event handlers and interacts with other processes by
sending/receiving messages (but without pub/sub).

In [10], [11], a BPEL process is broken down into
several BPEL processes using program analysis and
possibly reordering nodes, with each process deployed and
executed on a separate machine, in order to maximize the
throughput in cases where multiple instances of a process
are running concurrently. It is not clear how they deal with
propagating DPE across the process fragments. It is unclear
what subset of BPEL they support. In [19], a single process
model undergoes distributed execution using smart
fragmentation and replication techniques. In these works,
the partitions are computed by the system, and cannot be
chosen at arbitrary points by the designer. In the latter case,
the decision of where to execute each activity is dynamic
and calculated at runtime based on available resources and
actual load. All instance data is sent to each executing unit.

Approaches using conversation languages such as [9]
and WS-CDL [12] define a “neutral” view of interactions,
not going into the behavior of the implementations at each
party or local process derivation rules. Work has been done
to create local processes from such languages. [8] provides
a top-down approach for observer verification using the
state-machine-based conversation model in [9]. [16]
provides a semi-automated approach, requiring designer
input, for creating BPEL processes from WS-CDL. These
are well–suited when one can assume little about the inner
workings of each party (blackbox). This is not better or
worse than the approach in this paper. The two approaches
address different needs: Their first class citizen is the
definition and order of messages exchanged between
partners; our first class citizen is the order and role-based
assignment of action items in a business process. For
example, a reassignment of tasks in those approaches
would require a redefinition of the main business process.

A semantically rich representation of a ‘neutral’ view
protocol based on roles and commitments is presented in
 [6]. Message exchanges are represented in the commitment
rules. The focus is on protocol refinement and protocol
aggregation, enabled by reasoning about the semantics.
They provide a way to derive compliant local processes, as
nearly complete BPEL processes. Again, we see the same
conflict in the purpose of the two works. In their work,
interactions are first class. The commitments of a role are
the baseline and must be preserved, and it is the work items
at the local participants that may change. On the other
hand, our baseline is the set of work items, and it is the
interactions (and even business commitments) that change
based on how a process is partitioned.

In our mechanism, distribution transparency, which has
been around for a long time, is used only as far as it is
provided through the underlying Web services stack (ie:
implementation, (re)location, etc).

What is particularly interesting about this paper is: (1)
the model’s fragmentation is independent of its design:
Instead of designing separate interacting parties and their
message exchanges, we define the whole process and
fragment it as needed: partner distinction is an add-on. (2)
the creation of participant processes is simply the exercise
of (automatically/algorithmically) breaking existing links.
The behavior of each participant is a reflection of the
designer’s decisions. With such an intuitive modeling
framework, one can understand what is going on without
resorting to complex underlying mappings.

9. Conclusion and Future Work

Global process views have often focused on the
messages exchanged. Instead, we look at a process as a
definition of work items. Distributing it agilely among
partners consists of assigning different steps to different
partners for execution. The result is several BPEL
processes that will run locally at each partner, and use Web
services messages to propagate control and data presented
in the original model while still maintaining any
communications with initial outside entities defined in it.

The paper highlights the challenges in splitting such a
process model, while trying to be as close to the original
representation as possible, and provides solutions for them.
These challenges are: propagating both control and data,
propagating DPE and its repercussions, reconciling data
conflicts, and wiring the resulting processes together in a
consistent manner.

There are several items in our future work agenda. A
number of restrictions are placed on the input process
model, (‘BPEL-D’). Of these, our main focus is on lifting
the restrictions on loops, fault handlers, and transactional
scopes. Specifically, we are investigating using
coordination protocols for handling split scopes and loops.
We are also interested in enabling one to start with a vanilla
BPEL process, and are investigating data analysis
techniques on BPEL to create the BPEL-D representation.
Then, the latter can be used either directly or as an
intermediary format.

10. References

[1] F. Casati, A. Discenza. Supporting Workflow Cooperation

Within and Across Organizations, SAC 2000, March 2000,
ACM, Como, Italy.

[2] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S.
Thatte, S. Weerawarana. Business Process Execution
Language for Web Services. May 2003. Online at
http://www.ibm.com/developerworks/library/ws-bpel

http://www.ibm.com/developerworks/library/ws-bpel

[3] F. Curbera, M. Duftler, R. Khalaf, N. Mukhi, W. Nagy, ands.
Weerawarana. BPWS4J Online at
http://www.alphaworks.ibm.com/tech/bpws4j.

[4] F. Curbera, R. Khalaf, F. Leymann, S. Weerawarana.
Exception handling in the BPEL4WS language. BPM 2003,
LNCS 2678, Eindhoven, the Netherlands, June 2003.
Springer.

[5] J. Davis, D. Sow, D. Bourges-Waldegg, C. Jie Gou, C.
Hoertnagl, M. Stolze, B. White Eagle, Y. Yin. Supporting
Mobile Business Workflow with Commune, Workshop on
Mobile Computing Systems and Applications, Washington,
USA, April 2007.

[6] N. Desai, A. Mallya, A. K. Chopra, M. P. Singh, Interaction
Protocols as Design Abstractions for Business Processes.
IEEE Transactions on Software Engineering, Dec. 2005.

[7] R. Farahbod, U. Glässer, M. Vajihollahi, A Formal
Semantics for the Business Process Execution Language for
Web Services. Proc. of the Workshop on Web Services:
Modeling, Architecture and Infrastructure ICEIS05, Miami,
FL, May 2005, INSTICC Press

[8] X. Fu, T. Bultan, J. Su. A top-down approach to modeling
global behaviors of web services. Requirements Engineering
for Open Systems Workshop (REOS 2003), Monterey,
California, Sep 2003.

[9] X. Fu, T. Bultan, J. Su. Conversation specification: A new
approach to design and analysis of e-service composition.
WWW2003, Budapest, Hungary, May 2003.

[10] M. Gowri, N. Karnik. Synchronization Analysis For
Decentralizing Composite Web Services. Int. J. Cooperative
Inf. Syst. 13(1): 91-119

[11] M. Gowri, S. Chandra, V. Sarkar, Decentralizing execution
of composite Web services. OOPSLA 2004: 170-187

[12] N. Kavantzas, D. Burdett, G. Ritzinger (ed), Web Services
Choreography Language (WS-CDL1.0), online at
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427

[13] F. Leymann et. al. Web Services Flow Language (WSFL)
1.0. May 2001. Online at http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[14] F. Leymann, D. Roller, Production Workflow, Prentice Hall,
2000.

[15] P. Muth, D. Wodkte, J. Wiessenfels, D.A. Kotz, G. Weikum,
From Centralized Workflow Specification to Distributed
Workflow Execution, Journal of Intelligent Information
Systems, 10(2), 1998

[16] J. Mendling, M. Hafner, From Inter-Organizational
Workflows to Process Execution: Generating BPEL from
WS-CDL, Proc. of OTM 2005 Workshops. Srpringer LNCS
3762, Agia Napa, Cyprus, November 2005.

[17] E. Rudolph, J. Grabowski, P. Graubmann, Tutorial on
Message Sequence Charts (MSC'96), Tutorials of the
FORTE/PSTV 1996

[18] K. Schmidt, C. Stahl, A petri net semantic for BPEL4WS -
validation and application. Proc. of 11th Workshop on
Algorithms and Tools for Petri Nets. (2004)

[19] C. Schuler, R. Weber, H. Schuldt, H.J. Scheck, Peer-to-Peer
Process Execution with OSIRIS, ICSOC 2003, Springer
LNCS, Trento, Italy, Dec 2003.

[20] W.M.P van der Aalst, Interorganizational workflows: An
approach based on message sequence charts and petri nets.
Systems Analysis-Modelling-Simulation, 34(3), 1999.

[21] W.M.P. van der Aalst, M. Weske, The P2P Approach to
Interorganizational Workflow, Proc. of CAiSE 2001, LNCS
volume 2068, Springer, Berlin 2001

[22] W3C, Web Services Description Language (WSDL). Online
at http://www.w3.org/2002/ws/desc/

[23] W3C, XPath Language (XPath), Version 1.0, Nov. 1999,
Online at http://www.w3.org/TR/xpath

http://www.alphaworks.ibm.com/tech/bpws4j

