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Abstract

The probabilistic nearest neighbour (PNN) method for pattern recognition was introduced to overcome a number of perceived short-
comings of the nearest neighbour (NN) classifiers namely the lack of any probabilistic semantics when making predictions of class mem-
bership. In addition the NN method possesses no inherent principled framework for inferring the number of neighbours, K, nor indeed
associated parameters related to the chosen metric. Whilst the Bayesian inferential methodology underlying the PNN classifier undoubt-
edly overcomes these shortcomings there has been to date no extensive systematic study of the performance of the PNN method nor any
comparison with the standard non-probabilistic approach. We address this issue by undertaking an extensive empirical study which high-
lights the essential characteristics of PNN when compared to a cross-validated K-NN.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The K-nearest neighbour (KNN) method for classifica-
tion is one of the most straightforward approaches to clas-
sifying objects which are represented as points defined in
some feature space. Despite the simplicity of KNN the per-
formance it achieves on a number of pattern recognition
tasks indicates that it remains competitive as a classifica-
tion method (Ripley, 1996). Indeed asymptotic analysis
of the nearest neighbour rule shows that the error rate will
be no greater than twice the Bayes error rate (see Chapter 6
of Ripley, 1996 for a review of such results). However,
from a methodological perspective there are a number of
shortcomings with the KNN rule which make further
development and enhancements of the method difficult
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without resorting to ad hoc solutions. The main short-
coming of KNN is the lack of any probabilistic semantics
which would allow posterior predictive probabilities to be
employed in, for example, assigning variable losses in a
consistent manner. In addition the selection of the value
of K, the number of nearest neighbours, is not straight-
forward without resorting to cross-validation (CV). How-
ever, whilst one can employ CV to select a single value of
K inferring the metric of similarity, or parameters associ-
ated with the metric require additional approaches some
of which have been proposed in (Hastie and Tibshirani,
1996; Pardes and Vidal, 2000, 2006a; Shakhnarovish
et al., 2005).

If a probabilistic model can be defined for KNN then
issues surrounding obtaining properly calibrated continu-
ous predictive probabilities and obtaining parameters
related to the model (i.e. K and possible metric parameters)
are resolved consistently and naturally within the Bayesian
inferential framework. In a landmark paper (Holmes and
Adams, 2002) a probabilistic KNN method for pattern rec-
ognition was introduced. By defining an approximate joint
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2 The random variable b is a scaling coefficient used in producing the
required pðtnjxn;X�n; t�n;b; k; h;MÞ terms. As there is no comparable
variable in the KNN and given that b is of secondary importance to the
probabilities we will not consider it in any great detail within the paper.

3 We will employ K to denote the optimal number of nearest neighbours
identified using 10CV and k to denote the random integer in the PKNN
method.
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distribution the authors of Holmes and Adams (2002) show
that posterior inference over K can be performed in a rela-
tively straightforward manner employing standard Markov
Chain Monte Carlo (MCMC) methods. The inferential
framework now available for probabilistic KNN (PKNN)
has been exploited in (Everson and Fieldsend, 2004) where
posterior inference over the similarity metric has been dem-
onstrated by further developing the MCMC procedure of
Holmes and Adams (2002). The work of Everson and
Fieldsend (2004) illustrates the natural way in which the
inferential framework for PKNN can be extended to deal
with metric learning without having to resort to introduc-
ing any ancillary criteria or learning objectives.

However, despite the clear methodological benefits of
the PKNN method it is unclear whether these advantages
come at a cost, when compared to standard KNN, in terms
of eventual classification accuracy, computational over-
head, or indeed if increased accuracy of PKNN can be con-
sistently observed over a diverse range of classification
problems and data sets. In this communication we address
the issue by conducting an extensive series of experiments
to compare the performance of PKNN and KNN under
the 0–1 classification loss. This is measured over a diverse
range of classification problems with various dimensions
of feature representation, size of available data sample,
and number of classes. In addition we provide an illustra-
tive study of the differences in the underlying mechanisms
for choosing the number of nearest neighbours employing
CV for KNN and the posterior inference employed by
PKNN.

2. Probabilistic K-nearest neighbours

Consider a finite data sample {(t1,x1), . . . , (tN,xN)}
where each tn 2 {1, . . . ,C} denotes the class label associated
with the D-dimensional feature vector xn 2 RD and the fea-
ture space RD has an associated metric with parameters h

denoted as Mh. To define a probabilistic representation
of the KNN method an approximate conditional joint like-
lihood is defined in (Holmes and Adams, 2002) such that

pðtjX ;b; k; h;MÞ �
Y
n¼1

exp b
k

PMh

j�njkdtntj

n o
PC

c¼1 exp b
k

PMh

j�njkdctn

n o ; ð1Þ

where we define the N · 1 dimensional vector t as
[t1, . . . , tN]T and the N · D dimensional matrix
X = [x1, . . . ,xN]T, M denotes the metric employed in the
feature space and h are the associate parameters. The num-
ber of nearest neighbours is k and b defines a scaling vari-
able. The expression

XMh

j�njk
dtntj

denotes the number of the nearest k neighbours of xn, as
measured under the metric Mh within N � 1 samples from
X remaining when xn is removed which we denote as X�n,
and have the class label value of tn, whilst each of the terms
in the summation of the denominator provides a count of
the number of the k neighbours of xn which have class label
equaling c.

It should be noted that the right-hand side is a product
of terms of the form pðtnjxn;X�n; t�n; b; k; h;MÞ which can
be viewed as a Leave-One-Out (LOO) predictive likelihood,
where t�n denotes the vector t with the nth element
removed, and as such the approximate joint likelihood
above provides an overall measure of the LOO predictive
likelihoods which we would anticipate should exhibit some
resiliance to overfitting due to the LOO nature of the
approximate likelihood.

Full posterior inference will follow by obtaining the
parameter posterior distribution pðb; k; hjt;X ;MÞ and sub-
sequent predictions of the target class label t* of a new
datum x* are made by posterior averaging such that

pðt�jx�; t;X;MÞ

¼
X

k

Z
pðt�jx�; t;X ; b; k; h;MÞpðb; k; hjt;X ;MÞdbdh

as the required posterior takes an intractable form an
MCMC procedure is proposed in (Holmes and Adams,
2002) and extended in (Everson and Fieldsend, 2004) to en-
able metric inference so that the following Monte Carlo
estimate is employed

p̂ðt�jx�; t;X;MÞ ¼
1

Ns

XNs

s¼1

pðt�jx�; t;X ; bðsÞ; kðsÞ; hðsÞ;MÞ;

where each b(s), k(s), h(s) are samples obtained from the full
parameter posterior pðb; k; hjt;X ;MÞ using a Metropolis
style sampler.

As the standard KNN method has no straightforward
way to learn the metric we restrict this study to posterior
inference over k and b2 and fix the metric to the standard
Euclidean metric for both KNN and PKNN. In this way
CV can be employed to select an optimal value K3 for the
number of nearest neighbours in KNN classification.
Whilst metric learning for standard KNN has been devel-
oped in for example (Pardes and Vidal, 2006a) our main
focus is to seek an understanding of the underlying mecha-
nisms of PKNN and KNN employing CV and the added
complexities of metric learning and inference will only
add unnecessary complications to our proposed experimen-
tal analysis. We therefore adopt the Metropolis scheme
detailed in (Holmes and Adams, 2002) and obtain samples
from the posterior pðb; k; jt;X;MÞ and employ Monte
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Carlo estimates p̂ðt�jx�; t;X ;MÞ ¼ 1
Ns

PNs
s¼1pðt�jx�; t;X ;

bðsÞ; kðsÞ;MÞ in the following experimental section.

3. Experiments

As a first example we consider the toy synthetic binary
classification problem devised in (Ripley, 1996) and
employed in (Holmes and Adams, 2002) to demonstrate
the PKNN method. We draw 100,000 samples from the
posterior pðb; kjt;X ;MÞ and employ these samples in
obtaining the required Monte Carlo estimates of the pre-
dictive posteriors for each point in the independent test
set. A hard classification decision is made by thresholding
the posteriors at the value of 0.5 and the percentage predic-
tion error under a 0–1 loss is estimated for PKNN. We
achieve a test error rate of 8.4% which is identical to that
reported in (Holmes and Adams, 2002). In addition we
employ tenfold cross-validation on the training data to
select an optimal value of K which will be employed in
the KNN classifier when making predictions on the test
set. The top bar chart in Fig. 1 shows a histogram of the
marginal posterior for k based on the 100,000 samples
drawn using a bin width of 10. Again it is clear that the
three ‘modes’ for k which are clearly visible reflect the
results of Holmes and Adams (2002). It is interesting to
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Fig. 1. The top graph shows a histogram of the marginal posterior for K

on the synthetic Ripley data set and the bottom shows the 10CV error
against the value of K.
consider the evolution of the overall percentage test error
as the Monte Carlo estimates of the predictive probabilities
improve with MCMC sampling. Fig. 3 shows the percent-
age test error evolution over the first 500 samples drawn
from the Metropolis sampler, it is clear that convergence
to the optimal test error is rapid after of the order of 300
samples.

Consider the case where the available training set varies
in size. Smaller available training sets may make the choice
of an optimal value for K difficult when using cross-valida-
tion, in such a situation the Bayesian formalism of PKNN
may yield improved performance. To assess this we sub-
sample the available training data for the Ripley synthetic
data set at various sizes of sub-sample ranging from 25 to
250 in step of 25. Each sub-sampling was carried out 50
times and the classifier performance for KNN and PKNN
was obtained for each of the 50 training sets at each sub-
sample size. Fig. 2 shows the mean percentage error (and
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Fig. 2. The percentage test error obtained with training sets of varying size
from 25 to 250 data points. For each sub-sample size, 50 random subsets
were sampled and each of these used to obtain a KNN and PKNN
classifier which were then used to make predictions on the 1000
independent test points. The mean percentage performance and associated
standard error obtained for each training set are shown in the above figure
for each classifier.

0 100 200 300 400 500
8

9

10

11

12

13

14

15

Number of MCMC Samples

P
er

ce
nt

ag
e 

T
es

t E
rr

or
 

Fig. 3. The evolution of the total percentage test error on the synthetic
Ripley data set. The predictive posteriors are estimated using all the
samples drawn from the Markov chain from 1 to 500, it is clear that after
around 400 samples the PKNN is operating at close to the peak achievable
performance.



Table 1
Summary table of the data sets employed in the experiments undertaken

Data N C D

Glass 214 6 9
Iris 150 3 4
Crabs 200 4 5
Pima 200 2 7
Soybean 48 4 35
Wine 178 3 13
Balance 625 3 4
Heart 270 2 13
Liver 345 2 6
Diabetes 768 2 8
Vehicle 846 4 18

N, C, D are respectively the total number of data points, the number of
classes and the number of attributes in each data set.
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standard error) for both PKNN and KNN which illus-
trates that the Bayesian averaging of the PKNN makes it
less prone to the loss of performance incurred by the CV
tuned KNN classifier, at least for this data set.

If we now consider the estimated prediction error using
tenfold cross-validation on the training set for a range of
values of K from K = 1 to K = 90, Fig. 1 bottom chart,
we see that the estimated expected 0–1 loss over the range
of values of K considered is somewhat pessimistic with the
estimated error being around twice as high as that obtained
on the test set sample which was also 8.4% when K = 20
was selected. So we see that selecting a single value of K

using tenfold cross-validation (10CV) and employing this
in the standard KNN classifier yields the same 0–1 error
rate as that achieved by PKNN on this particular data
set. Of course this is an incomplete picture as we only con-
sider 0–1 loss (KNN is non-probabilistic) and in addition
an assessment of the differences between the two
approaches should be made on a diverse range of data col-
lections with varying size of samples, dimensionality of fea-
ture space and number of classes.

The following section now presents further experiments
to address this issue.
3.1. Experimental procedure

In this paper, we have tested the classification perfor-
mance of the two methods viz. KNN and PKNN on a
diverse collection of data sets. These have been selected
in such a way that the total number of samples per data
set, the feature dimensionality and the number of classes
cover an appropriate range of values which will provide a
comprehensive comparison of the two classification meth-
ods. The data sets were obtained from the UCI Machine
Learning Repository4 with the exception of Crabs and
Pima5 and the summary table (Table 1) details the number
of samples (N), number of associated classes (C) and the
dimensionality of the feature representations (D).

Each data set was randomly permuted with no normal-
isation of the features, with the exception of Wine, Balance,
Heart and Soybean where we have standardised the feature
vectors i.e. shifting and scaling to zero mean and unit var-
iance. This was primarily due to the mismatch in scale of
certain features within these data sets which affected the
similarity measure induced by the Euclidean metric
employed. Clearly learning the metric by for example infer-
ring appropriate length scales would obviate the require-
ment for such normalisation which is not linked to
optimising the predictive capability of the classifier.

To obtain an estimate of the 0–1 loss classification error
we have employed 10CV on both KNN and PKNN. In
addition, to obtain an optimal value for the number of
nearest neighbours in KNN for each fold we have further
4 http://www.ics.uci.edu/~mlearn/MLSummary.html.
5 http://www.stats.ox.ac.uk/pub/PRNN/.
used 10CV to estimate the predictive error for each value
of K ranging from K = 1 to K = Nf where Nf is the number
of data points in the current fold i.e. if N = 100 then each
Nf = 90. Once the 10CV errors for each K are obtained we
select the smallest value of K which yields the minimum
10CV error within the specific fold. In the case of multiple
minima we select the smallest value of K which yields this
minimum. This means that each fold may have a different
optimal value for the number of nearest neighbours.

For PKNN we also employed 10CV to obtain our esti-
mate of the predictive error (under 0–1 loss). Within each
fold we sampled from the posterior using the MCMC
method outlined in (Holmes and Adams, 2002). The pro-
posal distributions were tuned such that an acceptance rate
of 35–40% for the Metropolis sampler was achieved and
then 100,000 samples were drawn. These were then
employed in the Monte Carlo estimate of the predictive
likelihood for each test point in the fold and a classification
was made based on the maximum of the class posterior.
This sampling and Monte Carlo estimation was run for
each of the tenfolds to obtain the overall estimate of clas-
sification error.

3.2. Analysis of experimental results

Let us consider first the overall classification perfor-
mance of both KNN and PKNN. The results are listed
in Table 2 and are summarised as a percentage mean error
and standard deviation computed over the tenfolds. In the
fourth column the P-value obtained from performing a
Wilcoxon Rank-Sum non-parametric test of difference in
medians is listed6 this gives the probability that there is
no detectable difference in the overall performance of the
two classifiers (KNN and PKNN) for the particular data
set.

Studying the mean errors for each data set and the cor-
responding P-values it is clear that over all data sets KNN
6 A t-test was considered inappropriate in this case as the distribution of
errors over the folds, in many of the data sets, did not conform to a
normal distribution and as such a non-parametric test was selected.

http://www.ics.uci.edu/~mlearn/MLSummary.html
http://www.stats.ox.ac.uk/pub/PRNN/


Table 2
Comparison of Results for KNN and PKNN

Data KNN PKNN P-value

Glass 29.91 ± 9.22 26.67 ± 8.81 0.517
Iris 5.33 ± 5.25 4.00 ± 5.62 0.537
Crabs 15.00 ± 8.82 19.50 ± 6.85 0.240
Pima 27.00 ± 8.88 24.00 ± 14.68 0.645
Soybean 14.50 ± 16.74 4.50 ± 9.56 0.155
Wine 3.922 ± 3.77 3.37 ± 2.89 0.805
Balance 11.52 ± 2.99 10.23 ± 3.02 0.324
Heart 15.18 ± 5.91 15.18 ± 4.43 1.000
Liver 33.60 ± 6.98 36.26 ± 12.93 0.705
Diabetes 25.91 ± 7.15 25.25 ± 8.11 0.970
Vehicle 36.28 ± 5.16 37.22 ± 4.53 0.732

The tenfold cross-validated results for KNN and PKNN reported as mean
and standard deviation. The P-value reported is obtained from a Wilco-
xon rank-based test.
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Fig. 4. The top plot shows the histogram of the marginal posterior for k

and the bottom plot shows the 10CV error versus the value of k for the
third fold of the Pima data set.
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and PKNN perform equally well with no set of results
achieving a significance level of say 5%. There are two cases
where there is weak evidence to suggest superior perfor-
mance of PKNN (Soybean with a P-value of 15%) and
KNN (Crabs with a P-value of 24%). However, these
P-values are insufficient to reject the null-hypothesis that
both PKNN and KNN are of equal performance. For
the remaining data sets the performance for both KNN
and PKNN are indistinguishable.

In summary, over a diverse set of classification problems
there is no evidence to suggest that KNN, where an opti-
mal K value is selected by cross-validation, or PKNN per-
form in terms of classification error any differently from
each other. This in itself is an interesting result as PKNN
does not have to resort to any form of out of sample vali-
dation to avoid any overfitting. However, assessing aver-
aged performance of both methods does not provide us
with an understanding of how both methods differ in oper-
ation and so in the following section we will consider exam-
ples of where the performance of (a) PKNN outperforms
KNN, (b) KNN outperforms PKNN, and (c) where both
KNN and PKNN have similar performance.

3.3. An example of situations where PKNN outperforms

KNN

We have selected the results from a specific fold (number
3) from the Pima data set where the fold error for KNN is
40% whilst for PKNN it is 0%. We now consider how this
difference in performance has occurred. Fig. 4 (top plot)
shows the unnormalised histogram of the marginal poster-
ior pðkjtf ;X f ;MÞ (where subscript f denotes the specific
fold of the data) and the bottom plot shows how the
10CV within-fold error varies with K. The first thing to
note is that as an automated form of selecting an optimal
K is being employed here 10CV selects K = 11, however,
we can see that this is a rather unstable value and any per-
turbation from the selected K value will incur an increase in
classification error of between 2% and 4%. A wiser choice
of K based on 10CV inter-fold error would be in the range
of K = 40 to K = 60. On the other hand if we consider the
marginal posterior shown in the top plot of Fig. 4 it is clear
that there is no posterior mass at the low values of k where
the unstable minimum occurs and indeed the posterior
mass is concentrated at the values of k where the minimum
inter-fold 10CV errors occur i.e. k = 40 to k = 60. Now as
the predictive probabilities pðt�jx�; t;X ;MÞ are averaged
with respect to the posterior we can observe how the pos-
terior smoothing avoids the unstable local minimum and
averages over the stable range of k values. This is a nice
illustration of how the Bayesian averaging operates in this
method and how it can improve on naive selection of a sin-
gle optimal value.

3.4. An example of situations where KNN outperforms

PKNN

From Fig. 5 and graphs of the other folds which exhibit
similar characteristics (which are not presented here) we
observe that when there is a single distinct minimum in
the graph of K versus 10CV error for KNN at K = 1 i.e.
the 10CV error is strictly increasing then the majority of
posterior samples for PKNN are localised at the corre-
spondingly appropriate value of k = 1. However, due to
the posterior sampling there are regions of the posterior
which are explored where the likelihood is quite low, corre-
sponding to a large 10CV error, then we observe that the
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Fig. 5. The top plot shows the histogram of the marginal posterior for k

and the bottom plot shows the 10CV error versus the value of k for the
third fold of the Crabs data set.
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Fig. 6. The top plot shows the histogram of the marginal posterior for k

and the bottom plot shows the 10CV error versus the value of k for the
first fold of the Heart data set.

7 Employing 10CV in each fold to obtain a single fold-specific optimal
value of K.

8 Where MCMC sampling and averaging using 100,000 posterior
samples for each fold is employed. We should note that the tuning of
the proposal distributions to obtain the required acceptance rates has not
been included here.

9 It should be noted that this study has used a standard naive
implementation of KNN which does not take advantage of any fast
search techniques.
10 We should note that in (Holmes and Adams, 2002) the point is made

that quadrature could be employed when estimating the predictive
posteriors.
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0–1 error performance of KNN is better than PKNN.
From the 100,000 samples obtained from the posterior
there are of the order of 2000 samples drawn for k = 50
which yields a high 10CV error and the remaining samples
from the posterior are unable to compensate for this
induced error. Of course if we were to increase the number
of samples drawn from the posterior then this negative
effect would be smoothed out. However, this may require
a much larger number of samples and it is unclear how,
in a practical manner, this number could be selected.

3.5. An example of where PKNN and KNN errors are equal

Fig. 6 shows the posterior and 10CV error versus K for
the first fold of the Heart data set and here the performance
of KNN and PKNN is exactly the same i.e. 18.5% fold
error. This is due to a region of the 10CV error response
which is relatively stable and is insensitive to the values
of K.

On the whole KNN tends to perform better when there
is a unique value at K = 1 and this is due to the finite sam-
pling effects of PKNN. However, when the values of K

yielding lowest 10CV errors are spread over an unstable
region of the error response then in general the Bayesian
averaging of PKNN has a significant beneficial effect.
4. Computational cost of PKNN and KNN

In terms of computational cost it may be suggested that
full MCMC inference has unacceptably high overhead. We
have monitored the raw compute times, on a 1.6 GHz Intel
based Personal Computer with 2 Gb RAM, to obtain the
overall 10CV estimated error for both KNN7 and PKNN8

for each data set and have listed these in Table 3. Inspec-
tion of these times clearly indicates that PKNN takes
between five and ten times as long as KNN9 does in obtain-
ing the 10CV errors.10 The data sets which have a large
number of samples KNN (with no fast search) takes
slightly longer in some cases (Balance, Diabetes, Vehicle)



Table 3
The table showing the running times for different data sets for KNN and
PKNN

Data KNN PKNN

Glass 39.55 243.52
Iris 7.58 91.8
Crabs 21.99 156.30
Pima 24.10 103.60
Soybean 1.16 38.38
Wine 27.9 144.90
Balance 609.86 555.72
Heart 96.11 145.22
Liver 116.71 189.73
Diabetes 1643.09 567.03
Vehicle 4226.69 1063.13

The running times (s) for KNN with no fast search and PKNN (using
Monte Carlo) to compute the tenfold cross-validation errors.
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than PKNN and this is due to the exhaustive computation
of 10CV error for each value of K from 1 to the number of
samples in the nine ‘training’ folds. In our experimental
protocol the maximum value which k could be sampled
from is the same as that for KNN. However, whilst in
KNN each value of K up to the maximum will be tested
only a small number of these possible values end up being
explored in PKNN. In summary, it is clear that there is an
additional computational overhead incurred of PKNN
however, for this particular classification problem this is
not such a significant issue. However, we should note that
when sampling metric specific parameters i.e. (Everson and
Fieldsend, 2004) then computation of all distances have to
be re-computed as does the selection of the k nearest neigh-
bours for each values of k and b sampled and in this case
the time required for PKNN will be significantly greater.

5. Conclusions and discussion

In this contribution, we have undertaken an experimen-
tal analysis of the PKNN classification method as pro-
posed in (Holmes and Adams, 2002) and evaluated its
performance and characteristics with a cross-validated
KNN classifier. Employing the overall miss-classification
rate under a 0–1 loss it is found that there is no significant
statistical evidence to suggest that either method is a more
accurate classifier than the other based on the selected col-
lection of data sets studied. Whilst there is no outright per-
formance advantage of PKNN over KNN the main
advantage of PKNN is methodological. PKNN provides
continuous predictive probabilities in a natural manner
which gives a way of allocating uneven miss-classification
costs and further propagating these levels of predictive
uncertainty as a part of further possible downstream pro-
cessing. In addition the Bayesian inferential framework
allows extension of the levels of inference to for, example,
metric learning as has been demonstrated in (Everson and
Fieldsend, 2004) and can be, in a most straightforward
manner, extended to accommodate class-specific metrics
and indeed combinations of metrics. It is also possible to
consider data-condensation by the introduction of a binary
indicator variable for each data point within the available
training set and obtaining the posterior for each of these
variables. This posterior would indicate which data points
would be retained within the data set and which would be
removed.

The form of the pseudo-likelihood defined for PKNN is
reminiscent of a predictive ‘Leave-One-Out’ likelihood and
the Bayesian posterior averaging in many cases provides a
means of protection from ‘over-fitting’ without the need for
any form of explicit cross-validation to select the number
of nearest neighbours. The analysis of the experimental
results have shown specific cases where both PKNN and
KNN may achieve superior predictive performances and
this has provided insight into the underlying mechanisms
governing the performance of each method.

Whilst it would be of possible value to further consider
evaluations of performance with variable metric PKNN
(Everson and Fieldsend, 2004) and methods such as Hastie
and Tibshirani (1996), Pardes and Vidal (2000, 2006b) the
main contribution of this paper has clarified what can be
reasonably expected in terms of relative performance of
both probabilistic and non-probabilistic approaches as well
as highlighting certain data characteristics which may have
an impact on their levels of performance.
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