
Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005 23

A Methodology for Building
XML Data Warehouses

Laura Irina Rusu, La Trobe University, Australia

J. Wenny Rahayu, La Trobe University, Australia

David Taniar, Monash University, Australia

ABSTRACT

Developing a data warehouse for XML documents involves two major processes: one of creating
it, by processing XML raw documents into a specified data warehouse repository; and the other
of querying it, by applying techniques to better answer users’ queries. This paper focuses on the
first part; that is identifying a systematic approach for building a data warehouse of XML
documents, specifically for transferring data from an underlying XML database into a defined
XML data warehouse. The proposed methodology on building XML data warehouses covers
processes including data cleaning and integration, summarization, intermediate XML
documents, and updating/linking existing documents and creating fact tables. In this paper, we
also present a case study on how to put this methodology into practice. We utilise the XQuery
technology in all of the above processes.

Keywords: data warehouse; star schema; XML; XML schema

INTRODUCTION

In the last few years, building a data
warehouse for XML documents has be-
come a very important issue, when consid-
ering the continual growth of representing
different kinds of data as XML documents
(Widom, 1999; World Wide Web Consor-
tium). This is one of the reasons why re-
searchers became interested in studying
ways to optimise processing of XML docu-
ments and to obtain a better data ware-

house to store optimised information for
future reference.

Many papers have analysed how to
design a better data warehouse for XML
data from different points of view (e.g.,
Widom, 1999; Goffarelli, Maio & Rizzi,
1998; Vrdoljak, Banek & Rizzi, 2003;
Zhang, Ling, Bruckner & Tjoa, 2003) and
many other papers have focused on que-
rying XML data warehouse or XML docu-
ments (e.g., Fernandez, Simeon & Wadler,
1999; Deutch, Fernandez, Florescu, Levy

This paper appears in the journal International Journal of Data Warehousing and Mining edited by David Taniar.
Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

24 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

& Suciu, 1999), but almost all of them have
considered only the design and represen-
tations issues of XML data warehouse or
how to query them and very few have con-
sidered optimisation of data quality in their
research.

In this paper, we propose a practical
methodology for building XML documents
data warehouses. We ensure that the data
warehouse is one where the occurrences
of dirty data, errors, duplications or incon-
sistencies are minimized as much as pos-
sible and a good summarisation exists. The
steps cover two stages: (A) data cleaning
and (B) data summarization, creating fact
documents and linking all documents to cre-
ate data warehouses. We use XQuery in
all of the above processes. The main pur-
pose of this paper is to show systematic
steps to building an XML data warehouse
as opposed to developing a model for de-
signing a data warehouse. However, it is
important to note that our proposed steps
for building an XML data warehouse are
generic enough to be applied to different
XML data warehouse models.

The rest of this paper is organised as
follows: After discussing related work, we
present our proposed methodology for
building XML data warehouses, then a case
study exemplifies our methodology and the
final section gives the conclusions.

RELATED WORK

There is a large amount of work in
the data warehouse field. Many research-
ers have studied how to construct a data
warehouse, first for relational databases
(Goffarelli et al., 1998; Galhardas, Florescu,
Shasha & Simon, 2000; Roddick et al.,
1999; Song, Rowen, Medsker & Ewen,
2001) but in the last few years, for XML
documents (Vrdoljak et al., 2003; Zhang et

al., 2003), considering the spread of use
for this kind of documents in a vast range
of activities. Furthermore, if we think of
steps in our proposed methodology, there
were few attempts to solve the problem of
data cleaning automation, too, but most re-
searchers concentrated on databases field
analysis.

A concrete methodology on how to
construct an XML data warehouse
analysing frequent patterns in user histori-
cal queries is provided in Zhang et al.
(2003). The authors start from determin-
ing which data sources are more frequently
accessed by the users, transform those
queries in Query Path Transactions and,
after applying a rule mining technique, cal-
culate the Frequent Query Paths which
stay at the base of building data warehouse
schema. It was also mentioned that the fi-
nal step in building a data warehouse would
be to acquire clean and consistent data to
feed to the data warehouse. However,
there is not enough detail on how to ensure
this. Although it seems to be a simple thing
to do in the whole process, this is the place
where corrupted or inconsistent data can
slip into the data warehouse.

Another approach is proposed in
Vrdoljak et al. (2003), where an XML data
warehouse is designed from XML
schemas, proposing a semi-automated pro-
cess. After pre-processing an XML
schema, creating and transforming a
schema graph, the designer chooses facts
for the data warehouse and, for each fact,
follows a few steps in order to obtain star-
schema: building the dependency graph
from schema graph, rearranging the depen-
dency graph, defining dimensions and mea-
sures and creating logical schema. In this
approach, XQuery is used to query XML
documents in three different situations: (i)
examination of convergence and shared

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005 25

hierarchies, (ii) searching for many-to-
many relationships between the descen-
dants of the fact in schema-graph and (iii)
searching for one-to-many relationship to-
ward the ancestors of the fact in the
schema-graph. The authors specify that in
the presence of many-to-many relation-
ships, one of the logical design solutions
proposed by Song, Rowen, Medsker and
Ewen (2001) is to be adopted.

The aspect of data correctness is
considered by Galhardas et al. (2000) and
they propose a solution where a data-clean-
ing application is modelled as a directed
acyclic flow of transformations, applied to
the source data. This framework consists
of a platform offering three services: data
transformation, multi-table matching and
duplicate elimination—each service being
supported by a shared kernel of four macro-
operators consisting of high-level SQL-like
commands. The framework proposed by
these authors for data cleaning automa-
tion addresses three main problems: ob-
ject-identity, data entry errors and data in-
consistencies across overlapping autono-
mous databases, but the method covers
only data cleaning in the relational data-
bases aspect.

Roddick, Mohania and Madria (1999)
survey various summarisation procedures
for databases and provide a categorisation
of the mechanisms by which information
can be summarised. They consider infor-
mation capacity, vertical reduction by at-
tribute projection, horizontal reduction by
tuple selection, and horizontal/vertical re-
duction by concept ascension as being a
few very good methods of summarisation,
but as they only analysed implementation
on database projects, future work should
be done for implementing some specific
technique of summarisation for XML docu-
ments. Kim and Park (2005) describe data
reduction and summarisation of data

streams by using a flexible adjustment of
time section size.

Ram and Park (2004) present a hy-
brid of two approaches related to data
cleaning, one considering federated schema
and another one about using domain ontol-
ogy, and their paper is based on using an
ontology that explicitly captures knowledge
about different types of semantic conflicts
and propose ways to resolve them. Their
ontology, named SCROL, presents an effi-
cient way to identify and resolve these con-
flicts among multiple heterogeneous data-
bases, but only in the “conclusions” sec-
tion, do the authors propose a future ex-
tension of SCROL to cover XML docu-
ments.

Our proposed method focuses on
practical aspects of building XML data
warehouses through several practical steps,
including data cleaning and integration, sum-
marization, intermediate XML documents,
and updating/linking existing documents and
creating fact tables. The first part of it, re-
lated to data cleaning and integration, has
clear rules and steps to follow and it is a
very practical approach, useful for most of
those who would like to clean their docu-
ments before starting any processing but
have not identified any systematic tech-
niques to do it comprehensively. What
makes the main difference is that, in our
methodology we have developed generic
methods, whereby the proposed method is
able to be applied to any collection of XML
documents to be stored in an XML data
warehouse.

PROPOSED METHOD ON
BUILDING XML DATA
WAREHOUSES

Our paper proposes a systematic ap-
proach on how to feed data from an un-

26 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

derlying XML database into a XML data
warehouse. We emphasise the fact that the
numerous processes needed to build a data
warehouse are structured and optimised in
our approach. Also, a methodology of build-
ing a data warehouse from an initial XML
document is provided, developing neces-
sary fact and dimensions.

The steps involved by this methodol-
ogy are as follow:

Stage A. Data cleaning;
Stage B. Data summarisation, creating fact

document and linking all together to ob-
tain data warehouse, with the following
steps:

1. Data summarization: creating dimensions
2. Creating intermediate XML documents
3. Updating/linking existing documents and

creating the complete data warehouse

Each of these steps is described in
the next sections of our paper.
Generalisation of the proposed methodol-
ogy is extremely important and the aim is

to be successfully applied to different XML
data warehouses. Therefore for each of
these steps we propose general rules and/
or techniques and provide some examples
on how to apply them. Figure 1 gives a
graphical presentation of the entire process.

Stage A: Data Cleaning

Cleaning data is a very important step,
so it should be analysed very carefully, as
it can save a lot of future workload and
time during the following steps. Two dif-
ferent situations can appear: whether an
XML schema exists for the document or
not. It is understandable that, in the first
case, it would be easier to clean the data if
we already have an XML schema devel-
oped, as we can use it for validation of the
data in the XML documents. But in the
other case, where a schema does not ex-
ist, we can also apply the same rules as
provided below. The main difference is that
without an XML schema, the rules below
will have to be applied iteratively through-
out the XML document.

Figure 1. Building XML data warehouse general process

Raw
XML

documents

Intermediate
document

Elem1
Elem2
……..

Data cleaning and integration

Data summarisation

Dimension1

Dimension2

Clean
data

Linking
documents

Fact
document

Dim1_key
Dim2_key

elem1
elem2

Dim1_key
elem
-------- Dim2_key

elem

DWH Stage A Stage B

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005 27

In their paper, Ram and Park (2004)
identify a large number of possible conflicts
which can appear during an integration pro-
cess. We adopt some of their conflict defi-
nitions here, trying to specifically analyse
in our paper those types of conflicts that
can appear in XML data warehouses. We
will present a methodology for solving those
conflicts which can be semi-automated. In
some cases, user collaboration is vital to
determine which element should be kept
or removed.

Following we will analyse two
major types of conflicts:

1. schema level conflicts (an XML
schema exists but the document is not
fully in accordance with the schema’s
specifications); and

2. data level conflict (regardless of
whether a schema exists or not, wrongly
typed data into the documents can ap-
pear). We will analyse each of these
types of conflicts, establishing rules to
follow and giving examples on tech-
niques which should be used for elimi-
nate them in the next sections.

Schema Level Conflicts

The main purpose of an XML schema
is to provide a structure on how to con-
struct a specific XML document. In an
XML schema, requirements regarding ele-

ments, attributes, hierarchy, data types,
possible values (restrictions), order indica-
tors, occurrence indicators, etc., are clearly
defined. When there are inconsistencies
from these requirements within the XML
documents, we can say that we have
“schema level conflicts”. Table 1 contains
a list of the most significant set of schema
conflicts.

When the documents will be validated
against its schema, an error will be raised
for each inconsistency. But the user may
not be able to correct them one by one as
they are raised, because in the case of very
large documents, a lot of precious time
would be lost. Following we present a few
steps and examples on how this schema
level conflict-solving activity can be auto-
mated.

(a) Schema Conflict S1: Name
Conflict

This type of conflict appears when
names assigned to elements and/or at-
tributes vary during the document and do
not correspond with names established in
the schema. In this section, we present the
description, a rule to follow, procedure steps
and some examples of this type of conflict.

In XML, each element is identified
by a name. Graphically it is represented
quite similar with a tag in HTML (e.g., start
tag <elem>, end tag </elem>), but the dif-

Table 1. Schema level conflicts

Code Conflict Description
S1 Name conflict Names assigned to elements and/or

attributes vary during the document
S2 Data type conflict Elements and/or attributes do not respect

data type established in the schema
S3 Schema restrictions

conflict
Order indicators, number of occurrences
different from specifications

28 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ference is while in HTML a tag specifies
just the element format, in XML, name can
specify the content of that element so it
can be easily understood what it refers to.
Names of elements and attributes in XML
documents are case sensitive. If an XML
schema exists, it will specify these names,
and the document(s) must always observe
them.

Rule: Name of elements and attributes in
the document should match names
specified in the schema.

Steps: The steps are divided into four, as
follows:

Step 1. For each element in the docu-
ment, we verify if its name exists in the list
of elements and attributes in XML schema;
and at the end we create a document that
contains elements that are not found in the
schema;

Step 2. For elements identified at Step
2, we will compare their uppercase-trans-
formed names against the uppercase
names from schema.

Step 3. If we find upper-case-equal
names, there are two possibilities:

1. it was a mistyping lowercase/upper-
case � ask user if he wants to re-
place the wrong name with the cor-
rect one; or

2. there are two different elements � user
should be asked if he wants to extend
the document schema or not;

Step 4. For elements which are not
found after upper-case search (Step 3)
which are possibly new elements � ask
user if he wants to extend the document
schema or not.

(b) Schema Conflict S2: Data Type
Conflict

This conflict appears when the ac-
tual contents of elements and/or attributes
do not respect the data type assigned for
each of them in the schema. Following we
are giving some details, a rule to follow,
procedure steps and some examples.

In an XML schema, an element con-
tent type can be specified. For example, it
can be a string (e.g., a name of a person),
an integer (e.g., street number, number of
children, etc.), a decimal number (e.g., a
price), a date (e.g., date of birth, purchase
date, etc.) so on. There can be situations
where for different reasons (e.g.,
mistyping), an element is wrongly intro-
duced in the document, for example, a
name “John2”, which contains a number,
or a date of birth “15/O5/250O”, which
contains the letter “O” instead of “0” (zero).

Rule: Data types must be the same with
the specified data types in the schema.
Furthermore, natural logic should be re-
spected (for example, a telephone num-
ber will probably have “string” data type
but it can have only digits, not letters, a
name cannot contain digits, but only
characters, etc…).

Steps: The steps are divided into three, as
follows:

Step 1. Identifying types of elements
in an XML schema and what conditions
they should fulfil.

Step 2. Starting from an XML
schema, we will create a document that
will contain elements and their data types.

Step 3. We use the document cre-
ated at Step 2 to check if data type of ele-
ments in our raw XML document are re-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005 29

spected. If not, we return a document, con-
taining all wrong-type elements found in the
initial document, to be corrected.

(c) Schema Conflict S3: Schema
Restrictions Conflict

This type of conflict appears when
the structure of our document does not
entirely respect schema specifications, spe-
cifically: how many apparitions can an ele-
ment have, how elements are embedded
one into another, which is the correct se-
quence for them to appear, and so on. Fol-
lowing we give some details, a rule to fol-
low, procedure steps and few examples.

In a XML document, elements can
be embedded one into another. Container
element is named “parent” and the con-
tained element is named “child”. But the
user can decide, for example, that not all
children elements should appear at a time
or one element should appear at least twice,
and so on. Furthermore, a user can be in-
terested in how children elements appear
in their parent, in a specific order or not.

Rule: Order indicators and number of oc-
currences, if specified in the schema,
should be respected.

Steps: The steps are divided into three, as
follows:

Step 1. Verify if order indicators are
respected. They can be: all, choice, or se-
quence. “All” indicates that child elements
declared in it can appear in any order and
each child element must occur only once.
“Choice” indicates that either one element
or another can occur, and if “sequence”
indicator exists, elements inside it should
appear only in the specified order;

Step 2. In an XML schema, the um-
ber of occurrences of an element can be

specified, for example minOccur=“1” &
maxOccur=“20” means that at least one
apparition of element should occur and no
more than 20 occurrences;

• if minOccur=0 � we don’t look for it; it
may not appear

• if minOccur=1 � search if find at least
1 apparition

• if minOccur=n � search if find at least
n occurrences

• if maxOccur=1 � search if only 1 ap-
parition

• if maxOccur=n � search if number of
occurrences lower than n

Step 3. We verify how schema-speci-
fied hierarchy is observed and analyse the
relationship between elements (child-par-
ent, sibling, etc.).

Data Level Conflicts

Data level conflicts appear when
there are differences on how elements are
entered in our XML documents. In Table 2
we present three types of data level con-
flicts.

These kinds of conflicts can appear
in both situations described at the begin-
ning of our paper (with or without exist-
ence of XML schemas), and they can be
solved in the same way.

First, we show a few examples of
each data level conflict type and we present
steps to follow in removing them and ex-
amples on how to apply those steps.

(a) Data Level Conflict D1: Data
Value

This kind of conflict appears when
the actual content of an element is entered
differently in the document. Sometimes it

30 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

can be due to mistyping but more often it is
just another way to express the same thing.
If the same information is entered in the
document in multiple ways, this can pro-
duce a high level of inconsistency when
building the data warehouse.

Below there are few examples:

• a customer name was entered two or
more times, by different departments in
a store, in a different manner/order
(surname&firstname, firstname&sur-
name, surname&thefather’s initial
&firstname, etc.);

• a country can be entered using different
conventions, as entire name (“Austra-
lia”) or as an acronym (“Au” or “AU”);
this can be the case of suburbs, too;

• “price” can be entered in different ways,
e.g., “10” or “$10” or “AUD10”;

• a date (e.g., “orderDate”) can have dif-
ferent formats (British, Australian,
American or short year — yy, long year
– yyyy, etc.).

(b) Data Level Conflict D2:
Data Unit

In the same way as a data value
conflict, a data unit conflict appears be-
cause of using different measuring units
when talking about some entities (e.g.,
volume, length, temperature). Examples
include:

• “size” can be expressed using different
measuring units (meters, centimetres,
etc.);

• volume can be expressed in litres, cube-
meters, etc.; and

• the temperature can be expressed in
Fahrenheit or Celsius degrees.

(c) Data Level Conflict D3: Data
Representation

There are situations when different
documents can contain different ways to
use XML elements to express the same
specific information. Figure 2a and 2b con-
tain an example of how a date can be rep-
resented: as a single element,
“date_of_birth”, or as a complex element,
with children elements for “day”, “month”
and “year”.

(d) Steps for Solving Conflicts D1,
D2, D3

For all data level conflicts described
above, the procedure steps and examples
of how to implement the code to solve them
are quite similar, so we will discuss them
generally, during this section and the fol-
lowing one.

In solving these kinds of conflicts, our
methodology is little different from solving
schema level conflicts, because at this stage
we don’t know against what we should

Table 2. Data level conflicts

Code Conflict Description
D1 Data value conflict Different ways to instantiate a certain element
D2 Data unit conflict Same element can be instantiate using different

measuring units in the document or in different
documents in XML database

D3 Data representation
conflict

Different structure used for an element
instantiation (e.g., date format)

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005 31

correct our data. A few researchers have
tried to solve this in databases, and they
proposed using a “federated schema” or
“ontology” for verifying their data (Ram &
Park, 2004).

We propose to solve it by using a “dic-
tionary” that is built considering those ele-
ments and attributes that can have differ-
ent representation. For example, our dic-
tionary will contain countries names (e.g.,
“Australia”) and their acronyms/abbrevia-
tions (e.g., “AU”), easy to transform from
one to another. The dictionary will stand as
a new document and the user will decide,
at the beginning of cleaning activity, what
sort of information this document should
include. We say that each possible value
of each element/attribute name appearing
in dictionary is an “instance”. The opera-
tion of finding an instance of a concept in
the dictionary (“source”) and taking its

correspondent instance value (“destina-
tion”) is named “translation”. A transla-
tion can consist of one or more operations.

If we consider Figure 2a as “source”
and Figure 2b as “destination”, the trans-
lation will consist in three similar opera-
tions:

• get-month-from-date (date_of_birth);
• get-day-from-date (date_of_birth);
• get-year-from-date (date_of_birth)

Each of these operations’ result will
be “packed” in some new elements, future
children of “date_of_birth” destination el-
ement.

If we consider Figure 2b as “source”
and Figure 2a as “destination”, the transla-
tion will consist in two operations:

Figure 2a. Date, represented as an element, and code example

Figure 2b. Date, represented as an element with children, and code example

date_of_birth

employee

salary

address

emp_ID
name

 <employee>
 <emp_ID>123</emp_ID>
 <name>John</name>
 <date_of_birth>15/05/1971</date_of_birth>
 <address>12, Swanston St.<address>
 <salary>$1000</salary>
</employee>

date_of_birth

employee

salary

address

<employee>
 <emp_ID>123</emp_ID>
 <name>John</name>
 <date_of_birth>
 <day>15</day>
 <month>05</month>
 <year>1971</year>

</date_of_birth>
 <address>12, Swanston St.<address>
 <salary>$1000</salary>
</employee>

emp_ID
name

day

month

year

32 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Concatenate string values extracted
from <day>, <month> and <year> ele-
ments.

• Use a constructor for building a date
from the result of concatenation, which
will be “date_of_birth” element in the
destination; one example of how con-
structor acts is:

xsd:date (“2000-01-01”) �
date representing 1st of January, 2000.

In the same way, using the dictionary
and translation operation, we obtain the full-
name of a country if we know the acro-
nym and vice versa.

Stage B: Data Summarization,
Fact Document and

Creating Data Warehouse

Data Summarization:
Creating Dimensions

Because not the entire volume of ex-
isting data in the underlying database will
be absorbed into the XML data warehouse,

this step describes how to perform data
summarisation. We must extract only use-
ful and valuable information, so we will cre-
ate another XML document(s) which will
be, at the end, part of the data warehouse.
Following, we will present how to construct
dimensions using summarisation. We’ll give
some examples to show different kinds of
dimensions that can appear and we will
develop general techniques for construct-
ing both “constructed” or “extracted”
dimensions.

Generally, we can separate this step
into two different approaches. Depending
of how many levels of summarisation we
will have for a specific dimension, we will
either (1) create and populate new documents
that contain extraction from initial data; or
(2) create special-constructed values.

For example (Figure 3):

a. If we need to create a “part-of-the-day”
dimension (e.g., query: “What are the
dynamic figures of sales during the day:
morning, afternoon, and evening”) we
will need to create and populate the di-
mension as a new document — a “con-
structed” dimension;

Figure 3. Dimensions created and populated as new XML documents

1

1

1

m

m

Pick distinct values of
the “region”

m

XML
documents

storing sales
details Regions

region_ID
region

country_ID

Parts_of_the_day
time_ID
morning
afternoon
evening

Countries
country_ID

country
region_ID

Create & populate as a new
XML document

Dimension A

Dimension B

Pick distinct values
of the “country”

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005 33

b. If we need “country” or “region” as a
level of summarisation (e.g., query:
“What are the sales of product X by
countries/regions”), we can find this in-
formation by querying directly into the
primary document and searching for distinct
values of “country” and/or “region” element
— thus an “extracted dimension”.

Techniques to Create
“Constructed” Dimensions

If necessary data do not exist in our
document, the first step is to identify which
elements need to be created. Secondly, a
key for linking the dimension with the fact
document in the data warehouse should
exist. This key must be unique as it will
serve to identify a specific requested ele-
ment and for extracting it in future queries.

A general way to construct a dimension with
“n” new elements is as shown in Figure 4.

In Figure 4, <new_element> is a tag
representing a new node in the new cre-
ated dimension, <element_name1>,
<element_name2> etc are names of node’s
children, taking specific values, and
<element_ID> will be the unique identifier
of <new_element>.

To demonstrate the above general
technique with a concrete case, we will
create and populate a “semester” dimen-
sion as shown in Figure 5.

In the “semester” example, when we
will have to link semester dimension with
the fact data, we will only need to deter-
mine which semester each date corre-
sponds, by extracting month-from-date and
comparing it with <start_month> and
<end_month> values.

Figure 4. A general way to construct a dimension with n elements

for $a in (1,2,…n)
document {
 <new_element>
 <element_ID>{$a}</element_ID>
 <element_name1>{value}</element_name1>
 <element_name2>{value}</element_name2>
 …………………..
 </new_element>

Figure 5. Example of creating a dimension

document {
 <semester>
 <semID>1</semID>
 <start_month>1</start_month>
 <end_month>6</end_month>
 </semester>
 <semester>
 <semID>2</semID>
 <start_month>7</start_month>
 <end_month>12</end_month>
 </semester>
},

34 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Techniques to Create
“Extracted” Dimensions

If necessary data already exist in the
document, we may be interested in distinct
values of the element involved and there-
fore we will need to extract them in a newly
created document. At the same time, a key
(e.g., <element_ID>) will be easily created,
using a variable for incrementing its unique
value. (See Figure 6.)

In Figure 6, <new_element> is a tag
representing a new created element in the
dimension. It contains a key (<elementID>,
which takes predetermined values), actual
value which is the value of interest (that is
<element_name>, e.g., values of “country”)
and any other elements that can be helpful
in the dimension.

There can be situations where the
desired data do not exist in the initial docu-
ment, but they can be extracted from other
existing elements, using specific functions
(e.g., we may have the entire date element,
but only month would be needed for a di-
mension). (Applying a specific XQuery
function (get-month-from-date()) we can
obtain what we need.)

A general way to construct such a
partial-extracted dimension is described
in Figure 7 where <new_element> is a node
in the new constructed dimension, <ele-
ment1>, <element2> etc are children of
<new_element>, containing desired ex-
tracted values and <element_ID> is an
unique ident i f ier of the
<new_element>.

Figure 6. A general way to build an extracted dimension

let $a:=0
document {
for $t in distinct-values(doc(“doc_name.xml”)//element)
let $a:=$a+1
return

<new_element>
 <elementID>{$a}</elementID>
 <element_name>{$t}</element_name>
 ……………
 </new_element>
},

Figure 7. A general way to build a partial-extracted dimension

let $a:=0
document {
for $b in distinct-svalues(doc(doc_name.xml“)/element)
 let $a:=$a+1
 return
 <new_element>
 <element_ID>{$a}</element_ID)
 <element1>{function1($b)}</element1>
 <element2>{function1($b)}</element2>
 <element3>{function2($b)}</element3>
 …………………….
 </new_element>
}

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005 35

As an example, a time dimension is
shown in Figure 8, using two date func-
tions in XQuery.

In this case, function1 and function2
are get-month-from-date() and respectively,
get-year-from-date(). There are many
functions for date and time operations,
available in XQuery (http://www.w3.org/
TR/xpath-functions), so a large range of
time level summarisation can be analysed
and created.

Creating Intermediate
XML Documents

In the process of creating a data
warehouse from collection of documents,
creating intermediate documents is a com-
mon way to extract valuable & neces-

sary information (refer to example in Fig-
ure 9).

Which information in the initial docu-
ments is most important and necessary and
should be kept in the data warehouse is a
very good question and researchers have
attempted to answer it by determining dif-
ferent complex techniques (detecting pat-
terns in historical user queries (Zhang et
al., 2003) or detecting shared hierarchies
and convergence of dependencies
(Fernandez et al., 1999). Still, for gen-
eral users the analysis of possible que-
ries in the domain remains a common way
to do it.

During this step, we are only inter-
ested in data representing activity, which
include data involved in queries, calcula-
tions etc., from our initial document. At the

Figure 8. Example of building a time dimension

let $a:=0
document {
for $b in distinct-values(doc(“doc_name.xml”)/date_node)
let $a:=$a+1
return
 <time_node>
 <timeID>{$a}</timeID>
 <date>{$b}</date>
 <month>{get-month-from-date($b)}</month>
 <year>{get-year-from-date($b)}</ year >
 </time_node>
}

Intermediate Orders document

XML
documents

storing sales
details

Invoice_ID
Invoicedate
Price
Quantity
Customer_ID
Customer_name
Carrier
Transport_fee
………………

Invoice_ID
Invoicedate
Quantity
Price
Customer_ID

Figure 9. Extracting important information as a new XML document

36 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

same time, we will bring in the intermedi-
ate document elements from our initial
document, which are keys to dimensions,
if they already exist (e.g., “customerID” in
Figure 9, which references “customer” di-
mension). Actual fact document in data
warehouse will be this intermediate docu-
ment, but linked to the dimensions. (See
Figure 10.)

In Figure 10, <temp_fact> is a tag
representing a new element in the inter-
mediate document, containing <elem1_
name> (name of the element) and
<elem1_content> (value of element which
is valuable for our fact document), etc.

Updating/Linking
Existing Documents;

Creating Fact Document

At this step all intermediate XML
documents created in the earlier steps
should be linked, in such a way that rela-
tionships between keys are established
(Figure 11).

If linking dimensions to intermediate
documents and obtaining facts are pro-
cessed altogether, the number of iterations
through our initial document will be lower,
so it subsequently reduces the processing
time. A general way to do it is shown in
Figure 12.

Figure 10. Generic way to create the intermediate document

document {
for $t in (doc(“doc_name.xml”))
return
 <temp_fact>
 <elem1_name>{$t//elem1_content}</elem1_name>
 <elem2_name>{$t//elem2_content}</elem2_name>
 ………………
 </temp_fact>
},

Figure 11. Linking documents and creating star-schema of data warehouse

dimension2.xml

dimension1.xml

intermediate.xml

Linking created documents

Creating star-schema of the
data warehouse

dim1_key
dim2_key
…………..
Elem1
Elem2
…………..
…………...

Fact document dim1_key
Elem1
………….

Dim2_key
Elem1
………….

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005 37

In Figure 12, we just obtained the fact,
where <dim1_key>, <dim2_key> etc rep-
resent the new created keys elements
which will link the fact to dimensions and
<elem1>, <elem2>, <elem3>, etc., are ele-
ments of the fact, extracted from interme-
diate document. As can be seen in the
<elem3> declaration, a large range of op-
erators can be applied, in order to obtain
desired values for analysis (e.g., price *
quantity=income).

A CASE STUDY

Because the main purpose of this
paper is to show systematic steps to build
a XML data warehouse, we present a case
study based on a XML document contain-
ing data about borrowed books in a library
(see Figure 13). However, it is important
to note that our proposed steps for building
a XML data warehouse are generic enough
to be applied on different XML documents.

In this section, we will show how the
star-schema of data warehouse can be

obtained from initial XML documents struc-
ture, following our proposal and steps pre-
sented in the previous section. An example
of visual representation of mentioned XML
document is shown in Figure 14.

Figure 15 shows the mapping from
the visual representation as described in Fig-
ure 14 to the implementation in XML
schema (during the case study, we name
this schema “myschema.xml”, as it is a
XML document by itself):

Data Cleaning

The first step is to apply the specified
rules described in the methodology, which
include verifying correctness of all schema
stipulations, eliminating duplicate records,
inconsistencies and data entry errors. These
rules are applied to the data that will be
transferred to our data warehouse. This step
is normally performed by a user who has a
good understanding of the domain, as it
supposes some interaction during the pro-
cess, in vital moments, for deciding on

Figure 12. Linking dimensions to fact document

let $a:=doc(“dimension1.xml”) �e.g. time dimension
let $b:=doc(“dimension2.xml”) �e.g. customer dimension
document
{
for $t in (doc(“intermediate.xml”)/node)
return
 <dim1_key>{for $p in $a
 where $p//element=$t//element
 return $p//dim1_key}
 </dim1_key>
 <dim2_key>{for $p in $b
 where $p//element=$t//element
 return $p//dim2_key}
 </dim2_key>
 ------------- (for all dimensions) ---------
 <elem1>{$t//elem1_name}</elem1>
 <elem2>{$t//elem2_name}</elem2>
 <elem3>{$t//elem1 * $t//elem2}</elem3>

---- (for all extracted & calculated elements) ----

}

38 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 13. Example of XML document, considered in the case study

Figure 14. Example of a XML document schema-graph

(Document example: libraryBooks.xml)

<libraryBooks>
 <book>
 <title>Calculus with analytic geometry</title>
 <publisher>
 <name>Houghton Mifflin Co</name>
 <address>Boston, US</address>
 </publisher>
 <ISBN>0395899206</ISBN>
 <publishing_date>1998</publishing_date>
 <author>
 <name>Larson, Roland E.</name>

<affiliation>Boston University</affiliation>
 <author>
 <borrower>
 <name>John John</name>
 <identification>ID123456</identification>
 <address>15, Melanie St.</address>
 </borrower>
 <borrowing_date>16/04/2003</borrowing_date>
 <returning_date>20/08/2003</returning_date>
 </book>
 <book>
 <title>Calculus</title>
 <publisher>
 <name>Thomson Brooks/Cole</name>
 <address>Belmont, CA,US</address>
 </publisher>
 <ISBN>053439339x</ISBN>
 <publishing_date>2003</publishing_date>
 <author>
 <name>Stewart, James R.</name>

<affiliation>Belmont University</affiliation>
 <author>
 <borrower>
 <name>Mary Fitzpatrick</name>
 <identification>ID555666</identification>
 <address>27/150 Cotham Rd.</address>
 </borrower>
 <borrowing_date>12/08/2004</borrowing_date>
 <returning_date>25/09/2004</returning_date>
 </book>

</libraryBooks>

 libraryBook

title

ISBN
publisher

name address
publishing_date

author

name

affiliation

borower

name address

identification

borrowing_date

returning_date

book

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005 39

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="libraryBooks">
 <xs:complexType>

<xs:element name="book">
<xs:complexType>

<xs:element name="title" type=”xs:string”>
<xs:element name="publisher">
<xs:complexType>

 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="address" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

<xs:element name="ISBN" type=”xs:string”>
<xs:element name="publishing_date" type=”xs:date”>

 <xs:element name="author">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="affiliation" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="borrower">
 <xs:complexType>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="identification" type="xs:string"/>
 <xs:element name="address" type="xs:string"/>

</xs:complexType>
</xs:element>
<xs:element name="borrowing_date" type=”xs:date”>
<xs:element name="returning_date" type=”xs:date”>

 </xs:complexType>
 </xs:complexType>
</xs:element>
</xs:schema>

Figure 15. XML schema for libraryBooks.xml document example

Figure 16. Code example for Step 1 in verifying schema-level conflict S1

Step1:
let $root:=doc(“(“libraryBooks.xml””) -> my document root
let $schema:=doc(“mySchema.xml”) -> my schema root
let $bfound:=false
document{
for $t in distinct-values($root//) � for each descendant of root

return {
 for $p in distinct values ($schema//)
 if $p/@name=$t
 let $bfound:=true}
 if not $bfound
 return
 <element>{$t}</element>
 <exist>false</exist>
}

40 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Step2:
let d1:=doc(“document1.xml”)//
let $bfound:=false
document {
for $p in distinct-values(d1/element)
return {
 for $t in distinct-values($schema)
 if upper-case($p/@name)=uppercase($t)
 let $bfound:=true}
 if not $bfound
 return

<element>{$t}</element>
 <exist>false</exist>
}

Figure 17. Code example for Step2 in verifying schema-level conflict S1

keeping some elements. Following, we
show some code implementation using
XQuery.

a. Verifying Schema Level:
Name Conflict S1

Please refer to Figures 16 and 17 for
code example.

Step 1 creates a new document with
elements that are not found in the schema.
We will name the new created document
as “document1.xml”. Step 2 applies the
upper-case function on elements found at
Step 1 and create another new document,
containing all elements not found after up-
per-case search.

We have just obtained “document2.
xml”, containing those elements which ex-
ist in the primary document but not in the
schema, and we did not find that a case-
sensitive entering mistake would be the
reason)

In Steps 3 and 4, the user decides
whether the schema is to be extended with
the new elements. If the decision is to ex-
tend the schema, user will establish which
data type these elements should have.

b. Verifying Schema Level:
Data Type Conflict S2

Step 1 identifies what data types are
specified in the XML schema; at this step
it will be decided what checks should be
performed. Step 2 creates a new document
where all elements and their data type are
listed. Next, Step 3 goes through the docu-
ment created at Step 2 and identifies all
elements which do not have specified data
type and lists them in another new docu-
ment, for user to correct them.

In Step 1, we identified our schema
the most significant data types used and
decide what checks should be carried out
against them:

• For numeric type, we take each ele-
ments declared as numeric in the XML
schema, extract its value from the docu-
ment and test to determine if it is nu-
meric (do not appear in our case-study
document & schema);

• Same procedure for other types (string,
decimal, etc.)

• For date type, we can perform the fol-
lowings checks: if day is between 1 and
31, if month is between 1 and 12 and,

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005 41

Figure 18. Code example for Step 2 in verifying schema-level conflict S2

let $s:=doc(“myschema.xml//”)
document
{
 for $t in distinct-values ($s/xs:element)
 if $t/@type=”xs:string”
 return
 <string_element>{$t}</string_element>
 if $t/@type=”xs:integer”
 return
 <int_element>{$t}</int_element>
 if $t/@type=”xs:decimal”
 return
 <decimal_element>{$t}</dec_element>
 if $t/@type=”xs:date”
 return
 <date_element>{$t}</date_element>
}

<elementtype>
 <string_element>title</string_element>

<string_element>name</string_element>
<string_element>address</string_element>
<string_element>ISBN</string_element>
<date_element>publishing_date</date_element>
<string_element>affiliation</string_element>
<string_element>identification</string_element>
<date_element>borrowing_date</date_element>
<date_element>returning_date</date_element>

</elementtype>

Figure 19. Code example for Step 2 in verifying schema-level conflict S2-continued

let $d:=doc(“libraryBooks.xml”)//
let $p:=doc(“elementtype.xml”)//
document
{
for $t in distinct-values($p/string_element)
 for $n in distinct-values($d/$t)
 if not ($n instance of xs:string)
 return
 <wrong_string>{$n}</wrong_string>
for $t in distinct-values($p/int_element)
 for $n in distinct-values($d/$t)
 if not ($n instance of xs:integer)
 return
 <wrong_int>{$n}</wrong_int>
for $t in distinct-values($p/dec_element)
 for $n in distinct-values($d/$t)
 if not ($n instance of xs:decimal)
 return
 <wrong_dec>{$n}</wrong_dec>
}

Figure 20. Code example for Step 3 in verifying schema-level conflict S2

42 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

depending of what the document re-
fers to, we can check validity of the
year (e.g., if it is about issued invoices
in a company or contains dates of birth,
date cannot be greater than current
date);

Step 2 creates “elementType.xml”,
which is a new document, with all elements

and their data types, from the schema. (See
Figure 18 for code example.) Starting from
our document in the case study,
libraryBooks.xml, the new
“elementType.xml” is exemplified in Fig-
ure 19. At Step 3, we verify each element
in our document against data types from
previously created document during Step 2
(see Figure 20 for code details).

document
{
for $t in distinct-values ($s/xs:choice)
 let $np:=$t/../@name
 let $n:=$t/@name
 let $counta:=0
 for $p in distinct-values($d/$np/$n)
 let $counta:=$counta+1
 if $counta<>0
 let $countb:=0
 for $p in distinct-values($t/..//)
 if $p/@name<>$n
 for $q in distinct-values($d/$np/$p)
 let $countb:=$countb+1
 if $countb<>0
 return
 <many_choices>{$q}</many_choices>
}

Figure 21. Code example for Step 1 in verifying schema-level conflict S3

Figure 22. Code example for Step 2 in verifying schema-level conflict S3

document
{
for $t in distinct-values($s/xs:element)
 if not(empty($t/@minOccurs))
 let $m:=$t/@minOccurs
 let $n:=$t/@name
 let $countMin:=0
 for $p in distinct-values($d/$n)
 let $countMin:=$countMin+1
 if $countMin<$m
 return
 <too_few_occur>{$n}</too_few_occur>
 if not(empty($t/@maxOccurs))
 let $m:=$t/@maxOccurs
 let $n:=$t/@name
 let $countMax:=0
 for $p in distinct-values($d/$n)
 let $countMax:=$countMax+1
 if $countMax>$m
 return
 <too_many_occur>{$n}</too_many_occur>
}

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005 43

c. Verifying Schema Level:
Schema Restrictions Conflict S3

Step 1 shows how to check one of
possible order indicators, this is choice, re-
turning a document with wrong chosen el-
ements (see Figure 21 for code example).
Step 2 shows how to verify the number of
occurrences for each element, if specified
in the schema (Figure 22). Finally, Step 3
shows how to verify one possible relation-
ship, and this is parent-child (see Figure
23 and 24).

Once all the above rules have been
applied to the data, the following step —
data summarisation — is then performed.

Data Summarisation:
Creating Dimensions

By analysing possible queries to the
data warehouse for decision making, for
example, we need to summarise borrow-
ing details at a month level, to study how
this activity is related to different periods
of the year. Considering this, we will con-
struct a “time” dimension, where one of
the attributes will be “month” (in the same
way, we can obtain year, semester, quarter
level, etc.). At the same time, a
summarisation by authors, publishers or by
book titles could be necessary for further
studies. For easy referencing, we bring
again the schema-graph in attention.

Figure 23. Code example for Step 3 in verifying schema-level conflict S3

document {
for $a in distinct-values($schema//)
 if not (empty($a//))
 let $p:=$a/@name
 for $m in distinct-values($a//@name)
 let $c:=$a//@name
 return
 <family>
 <parent>{$a}</parent>
 <child>{$c}</child>
 </family>
}

Figure 24. Code example for Step 3 in verifying schema-level conflict S3 (continued)

document {
let $d:=doc(“document.xml”)
 let $r:=doc(“relationships.xml”)
 for $c in ($r/family/child)
 let $p:=$c/../parent
 let $bfound:=false
 for $t in distinct-values($d//)
 if $t=$c and not($c/../=$p)
 return
 <wrong_parent>{$c}</wrong_parent>
}

44 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Creating Time Dimension

Because we need “month” level of
summarization, we should link each par-
ticular borrowing date in our data with its
month value, so we will extract only dis-
tinct values of “borrowing_date” from the
initial document and will apply a “get-
month-from-date” function, in order to find
which month the date corresponds to. We
name this new document “timeDim.xml”.

Each new document will be created using
“document” instruction from XQuery.
(See Figure 25.)

Creating Authors Dimension

To do this, we will extract only dis-
tinct (unique) authors, considering their
names, from our initial document and we
will name it “authorDim.xml”. (See Figure
26.)

Figure 25. Creating time dimension example

let $b:=0
document{
for $t in distinct-values
(doc(“libraryBooks.xml”)//borrowing_date)
 let $b:=$b+1

return
 <borrowtime>
 <timeKey>{$b}</timekey>
 <borrowdate>{$t}</borrowdate>
 <month>{get-month-from-date($t)}</month>
 </borrowtime>

}

Figure 26. Creating authors dimension example

let c:=doc(“libraryBooks.xml”)/libraryBooks
let $b:=0
document{

for $t in distinct-values ($c/author/name)
let $b:=$b+1
return
 <author>
 <authorKey>{$b}</authorKey>
 <name>{$t}</name>
 <affiliation>{$t/../affiliation}</affiliation>
</author>

}

Figure 27. Creating title dimension example

let $b:=0
let $p:= doc(“libraryBooks.xml”)/libraryBooks
document {

for $t in dictinct-values($p/title)
let $b:=$b+1
return
 <title>
 <titleKey>{$t/../ISBN}</titleKey>
 <description>{$t}</description>
 <publishing_date>{$t/../publishing_date}</publishing_dates>
 </title>

}

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005 45

Creating Titles Dimension

The same as for “authors” dimension,
we will create a “titles” dimension which
contains only distinct book titles extracted
from our initial document and we will con-
sider “ISBN” element as a key, because it
can uniquely identify a book. We will name
it “titleDim.xml”. (See Figure 27.)

Creating Intermediate
XML Documents

As our possible queries refer to
month, author and titles as possible lev-

els of summarisation, we need to extract
from the cleaned “libraryBooks” document
all records having borrowing_date, author
and ISBN and, among them, borrower and
returning_date as main tools for analysing
this library activity. It is all we need for
now and we will name it
“LibraryTemp.xml”. (See Figure 28.)

Linking Existing
(Newly Created) Documents:
Creating a Data Warehouse

It is straightforward that we now have
to link “borrowing_date” from our inter-

document {
for $t in doc(“libraryBooks.xml”)//
return
 <borrow>

<ISBN>{$t/ISBN}</ISBN>
 <author>{$t/author/name}</author>

 <borrower>{$t/borrower/name}</borrower>
 <borrowing_date>{$t/borrowing_date}</borrowing_date>

<returning_date>{$t/returning_date}</returning_date>
 </borrow>}

Figure 28. Creating intermediate document example

let $p:=doc(“authorDim.xml”)
let $c:=doc(“titleDim.xml”)
let $t:=doc(“timeDim.xml”)
document {
 for $a in doc(“libraryTemp.xml”)/borrow
 return
 <authorKey>{for $b in $p/author

where $b/name=$a/author
 return $b/authorKey }
</authorKey>

 <titleKey> {for $b in $c/title
 where $b/description=$a/title

 return $b/ISBN}
</titleKey>

 <borrowDateKey> {for $b in $t/borrowtime
 where $t/borrowdate= $a/borrowing_date

 return $t/timekey} </borrowDateKey>
 <returning_date>{$a/returning_date}

</returning_date>
 <borrower>{$a/borrower}</borrower>

}

Figure 29. Linking documents and creating data warehouse example

46 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

mediate document (“libraryTemp.xml”)
with “time” dimension, “author” with “au-
thors” dimensions and “ISBN” with “titles”
dimension. We create now the final docu-
ment, which will be the fact of data ware-
house and will contain: keys for links with
all three dimensions, “borrower” and
“returning_date” as raw specific activity
data. (See Figure 29.)

Following all the steps from 1 to 4,
we have just obtained the following star-
schema for the data warehouse to store
“libraryBooks” XML documents, visually
described in Figure 30.

CONCLUSIONS AND
FUTURE WORK

This paper establishes a framework
for building an XML data warehouse, tak-
ing into consideration the quality of data
and practical procedures that can be fol-
lowed by general data warehouse users.
Our paper has presented a systematic ap-
proach on how to build a data warehouse
for XML documents. We have presented
this methodology in a generic way, so that
the rules and techniques can be applied to
a wide-range of XML data warehouse
models and implementations.

Our proposed methodology has two
major parts: first, we discuss data cleaning

techniques, applied to our row XML docu-
ments. Because the sources of these docu-
ments are widely spread, the possibility to
have dirty data, inconsistencies and errors
is quite high. Automation of the cleaning
activity is a very important issue, as it can
save a lot of precious time and can sub-
stantially improve the quality of data ob-
tained.

Secondly, techniques for data
summarisation, creating dimensions and the
fact documents are discussed and exem-
plified, building at the end a star-schema
data warehouse for XML documents. By
employing the appropriate technique for
data summarisation when developing di-
mensions, the volume of data can be
optimised. Therefore this may subsequently
impact on the optimisation of access to the
information in the data warehouse.

After covering all steps involved, we
obtain not only an efficient processing of
creating a data warehouse, but also high
quality data and a low level of redundancy.

Examples in the paper are written
using XQuery which represent a practical
technique to implement the rules. It is a
strong accomplishment that the steps of
work and the examples are presented in a
very clear and easy manner, so that people
who do not have a vast knowledge of
XQuery can iterate them, with adequate

Figure 30. Star-schema of libraryBooks XML data warehouse

 L IB R A R Y B O O K S
a u th o rK ey

ti tleK ey
b o rro wD a teK ey

b or r ow er
r e turn in g _ d ate

T IM E
tim eK ey

b or r ow D a te
m o n th

A U T H O R S
a u th o rK e y

n a m e
a ffi l ia t ion

T IT L E S
ti tleK ey

d escr ip tio n
p u bl ish in g D a te

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005 47

and proper modifications, in order to obtain
a data warehouse corresponding to their
necessities. Queries will be easy to gener-
ate and process, as long as dimensions re-
flect all level of summarisation suitable for
each specific case. For example, a query
“Give all purchase orders which were billed
to customers from UK” will only look in
“customer” dimension and take keys for
customers who have country=“UK” and,
for each of these keys will take order date,
price, quantity and income from the fact
document.

Because at this stage there are no
automatic methods for covering data clean-
ing, our aim is to study this concept and try
to identify some techniques that can be
applied to automate the XML documents
processing. Another interesting aspect to
study is the integration of different XML
schemas when data to be included in the
data warehouse come from documents with
different structures but with equivalent data
content. Data mining for a XML data ware-
house is another interesting field to research,
as we do not want just to keep our data in
a well-designed data warehouse, but to
learn some interesting facts from it.

REFERENCES

Bouzeghoub, M., Fabret, F., & Matulovic,
M. (1997). Modeling data warehouse
refreshment process as a workflow
application, Workflow Handbook.
Chichester, UK: John Wiley & Sons.

Cooley, R., Mobasher, B., & Srivastava, J.
(1999). Data preparation for mining
World Wide Web browsing patterns.
Knowledge and Information Systems,
1(1), 5-32.

Deutch, A., Fernandez, M., Florescu, D.,
Levy, A., & Suciu, D. (1999). A query
language for XML. Computer Net-

works, 31, 1155-1169.
Fayyad, U., Piatetsky-Shapiro, G., & Smyth,

P. (1996). Knowledge discovery and
data mining toward a unifying frame-
work. Proceedings of the Second Int.
Conference on Knowledge Discovery
and Data Mining, (pp. 82-88).

Fernandez, M., Simeon, J., & Wadler, P.
(1999). XML query languages: Expe-
riences and exemplars, raft manu-
script. Online: http://
homepages.inf.ed.ac.uk/wadler/topics/
xml.html

Galhardas, H., Florescu, D., Shasha, D., &
Simon, E. (2000). An extensible frame-
work for data cleaning. Proceedings
of the International Conference on
Data Engineering (ICDE), San Diego,
CA.

Goffarelli, M., Maio, D., & Rizzi, S. (1998).
Conceptual design of data warehouses
from E/R schemes. Proceedings of
Hawaii Int. Conf. on System Sciences,
Kona, Hawaii (vol. VII, pp. 334-343).

Guyon, I., Matic, N., & Vapnik, V. (1996).
Discovering informative patterns and
data cleaning. Advances in Knowledge
Discovery and Data Mining (pp. 181-
203). Menlo Park, CA: AAAI Press/
MIT Press.

Hernandez, M.A., & Stolfo, S.J. (1998).
Real-world data is dirty: Data cleansing
and the merge/purge problem. Journal
of Data Mining and Knowledge Dis-
covery, 2(1), 9-37.

http://www.w3.org/TR/xpath-functions
Kim, J., & Park, S. (2005). Periodic stream-

ing data reduction using flexible adjust-
ments of time section size. International
Journal of Data Warehousing and
Mining, 1(1), 37-56.

Ram, S., & Park, J. (2004, February). Se-
mantic conflict resolution ontology
(SCROL): An ontology for detecting and

48 International Journal of Data Warehousing & Mining, 1(2), 23-48, April-June 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

resolving data and schema level seman-
tic conflicts. IEEE Transaction on
Knowledge and Data Engineering,
(pp. 189-202).

Robie, J. (2004). XQuery, A Guided Tour.
Online: http://www.datadirect.com/
news/whatsnew/xquerybook/index.ssp

Roddick, J.F., Mohania, M.K., & Madria,
S.K. (1999). Methods and interpretation
of database summarisation. Database
and Expert Systems Application, Flo-
rence, Italy, Lecture Notes in Com-
puter Science, (vol. 1677, pp. 604-615).
Springer-Verlag.

Rusu, L.R., Rahayu W., & Taniar D.
(2004). On building XML data ware-
houses. Proceedings of the Fifth In-
ternational Conference on Intelligent
Data Engineering and Automated
Learning (IDEAL’ 04), Lecture Notes
in Computer Science (vol. 3177, p. 293).
Springer-Verlag.

Song, I.Y., Rowen, W., Medsker, C., &
Ewen, E. (2001). An analysis of many-

to-many relationships between fact and
dimension tables in dimensional model-
ling. Proceedings DMDW, Interlaken,
Switzerland, (pp. 6.1-6.13).

Vrdoljak, B., Banek, M., & Rizzi, S. (2003).
Designing Web warehouses from XML
schema. Data Warehousing and
Knowledge Discovery, 5th Interna-
tional Conference DaWak 2003,
Prague, Czech Republic, September 3-5.

World Wide Web Consortium (W3C).
XML Schema Part 0: Primer. Online:
http://www.w3.org/TR/xmlschema-0/
#emptyContent

Zhang, J., Ling, T.W., Bruckner, R.M., &
Tjoa, A.M. (2003). Building XML data
warehouse based on frequent patterns
in user queries. Data Warehousing and
Knowledge Discovery, 5th Interna-
tional Conference DaWak 2003,
Prague, Czech Republic.

Widom, J. (1999). Data management for
XML: Research directions. IEEE Data
Engineering Bulletin, 22(3), 44-52.

Laura Irina Rusu received her BSc (computer science) in 1996 and her MEc in 1997, both from
The Academy of Economic Studies, Bucharest, Romania. Currently, she is studying for a Master
by Research degree at La Trobe University, Australia, where her areas of interest are the XML
data warehousing and XML data mining. Rusu is working as an associate lecturer at La Trobe
University.

Johanna Wenny Rahayu received a PhD in computer science from La Trobe University, Australia
(2000). Her thesis has been awarded the 2001 Computer Science Association Australia Best
PhD Thesis Award. Dr. Rahayu is currently an associate professor at La Trobe University. She
has published two books and numerous research articles. Her research interests include
Semantic Web and ontology, medical information systems, bioinformatics databases, and XML
technologies.

David Taniar received his PhD in computer science from Victoria University, Australia (1997)
and is currently working at Monash University. His research interests include databases and
data mining, mobile information systems, Web information systems, and high performance grid
computing. He has published more than 30 journal papers and 150 conference papers in these
fields. He is an editor-in-chief of a number of international journals including Data Warehousing
and Mining, Business Intelligence and Data Mining, Mobile Information Systems, Mobile
Multimedia, Web Information Systems, and Web and Grid Services. He is fellow of the Institute
of Management Information Systems (FIMIS).

