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ABSTRACT 

General principles for fitting models to data containing 
"gross" errors in addition to "measurement" errors are 
presented A fitting technique is described and illustrated 
by its application to the problem of locating cylinders in 
range data, two key steps in this process arc fitting ellipses 
to partial data and fitting lines to sets of three-dimensional 
points The technique is specifically designed to filter out 
gross errors before applying a smoothing procedure to 
compute a precise model Such a technique is particularly 
applicable to computer vision tasks because the data in 
these tasks arc often produced by local computations that 
are inherently unreliable 

1 INTRODUCTION 

A common problem in computer vision is the fitting of 
on analytic model, such as a curve or surface, to data con­
taining two types of errors "measurement" errors and 
"gross" errors (i.e., classification errors) Measurement 
errors can often be adequately modeled as small, normally 
distributed deviations from the model to be fitted, whereas 
gross errors are relatively large and unpredictable An 
example of this kind of problem is the fitting of a plane to a 
set of points, most of which belong to the plane, but some 
of which arc from other surfaces in the scene 

A program to perform such fitting must include tech 
niques to 

* Kilter out gross errors 
* Smooth out measurement errors 
* Evaluate proposed fits 
* Incorporate a priori constraints 

The traditional least-squares fitting technique [ 1 ] is basi­
cally a computationally convenient smoothing procedure 
that computes the optimum fit (with respect to a squared 
error metric) for tasks in which the errors are normally 
distributed The technique is limited to linear models and 
linear constraints (i.e., the models and constraints arc 
linear in the set of unknown parameters), it has no built in 
mechanism to filter out gross errors, and it provides only a 
single number as the basis for evaluating a fit Therefore, 
by itself, least squares adequately performs only one of the 
four operations listed above 

Least squares, or any linear smoothing technique, can 
be applied to a nonlinear problem by iteratively applying it 
to locally linearized subspaces of the search space [2.3]. To 
do so. it is necessary to start with a good initial estimate of 
the model parameters and to formulate a linear approxima­
tion of the search space in a neighborhood containing a 
proposed set of parameter values This iterative approach 
is one of the best ways to fit nonlinear models, even though 
it is essentially a hill climbing technique, which implies that 
it may not converge or find the global optimum Obviously, 
other techniques do exist for global optimization, but they 
are often less general, and almost always much more 
expensive computationally 
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Many heuristics based on the iterative application of a 
smoothing technique have been proposed to filter out gross 
errors The basic theme of these heuristics is to use all the 
data to derive a set of model parameters, locate the datum 
that is farthest from the instantiated model, assume that it 
is a gross error, delete it, and iterate this process until the 
maximum deviation of the data from the currently instan­
tiated model is less than some threshold, or until there is 
no longer sufficient data to proceed Even though it is easy 
to show that a single gross error can cause these heuristics 
to fail, in practice they have been quite useful, successfully 
deleting gross errors when only a few such errors exist 
Our contention is. however, that smoothing is not an 
appropriate technique to apply to an "unverified" data set. 
especially when the data set may contain a large percen 
tage of gross errors (say 20 percent or more) In this paper 
we present a two-step fitting procedure that employs a 
filtering technique, which we call Random Sample Con­
sensus (RANSAC) [4], specifically designed to handle data 
sets containing a large number of gross errors 

Our basic approach is the following 
* Compute initial estimates of the model parameters 

and eliminate gross errors 
* Compute an improved fit by applying a smoothing 

technique, such as least squares, to the filtered data 
The first step involves two tasks that arc so intimately 
related that it is impossible to separate them computing a 
"reasonable" estimate of the parameters inherently implies 
an evaluation of each point's validity, and evaluating a 
point's consistency with a model requires an instantiated 
model and thus an estimate of the model parameters One 
might further note that the filtering task can be viewed as a 
restatement of the classical partitioning problem for scene 
analysis. 

In the remainder of this paper we describe how to use 
RANSAC to perform Step 1. briefly describe how to use on 
iterative least-squares approach for Step 2, present our 
ideas on how to evaluate a proposed fit. and then illustrate 
these ideas by showing how they can be applied to find 
cylinders in range data. 

II FILTERING AND COMPUTING INITIAL ESTIMATES 

The philosophy of the RANSAC filtering technique is 
opposite to that of conventional smoothing techniques. 
Rather than using as much of the data as possible to obtain 
an initial solution and then attempting to eliminate the 
invalid data points, RANSAC uses as small on initial data set 
as is feasible and enlarges this set with consistent data 
when possible For example, given the task of fitting a circle 
to a set of two-dimensional points, the RANSAC approach 
would be to select a set of three points (since three points 
arc required to determine a circle), compute the implied 
circle, and count the number of points close enough to that 
circle to suggest their compatibility with it (i.e.. their devi­
ations are small enough to be measurement errors) If 
there are enough compatible points. RANSAC passes the 
parameters of the circle and the set of mutually consistent 
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points to a smoothing technique to compute an improved 
estimate for the parameters. If there are not enough com­
patible points, another triple of points is selected and 
tested This process is repeated until a sufficiently large 
set of compatible points is found or until some predeter­
mined number of trials is made 

Given a specific task, the following elements must be 
present before using RANSAC: 

* The minimum number of data points required to 
instantiate a model 

♦ A procedure to compute a model from the minimum 
number of points 

* The expected magnitude of the measurement errors 
• The minimum number of compatible points required 

to suggest a valid instance of the model 
♦ The number of trials to be made before giving up 

The number of points that define a model is generally small 
Three points define a plane; four correspondences define an 
one-to-one mapping between two planes; and five points 
define a conic section The maximum error allowed for 
compatible points is generally somewhat larger than the 
expected measurement error because the initial model 
parameters are determined by points that are also in error 

The basic requirement for the threshold on the 
number of compatible points is that it should be large 
enough to avoid accidental alignment For example, if the 
task is to fit planes to a set of data points that may be from 
two or three different planes, the threshold should be set 
high enough to avoid accepting planes defined by points 
from distinct planes that just happen to be coplanar 
Task-dependent considerations may be needed to deter­
mine this threshold, fortunately, in most tasks the avail­
able number of points associated with each valid instance 
of a model is generally much larger than the number of 
points that might accidentally be consistent with an 
incorrect instance Thus, in practice, establishing a reason­
able threshold for distinguishing between valid and 
"accidental" fits poses no problem 

Given an estimate of the probability that a datum is a 
gross error (based on physical considerations associated 
with the data acquisition process and semantic or contex­
tual considerations), it is possible to estimate the number 
of trials required to select a sample of a certain size that 
contains no gross errors A set of formulas for this task is 
derived in [4 J. 

III APPLYING A LEAST-SQUARES TECHNIQUE 

If the unknown parameters in a model are linearly 
related, the best least-squares solution for the parameters 
can be directly computed [l] If the parameters are not 
linearly related, the least-squares solution to the linear 
problem can be embedded in an iterative solution to the 
nonlinear problem The idea is to approximate the surface 
about the estimated parameter values by a hyperplane, 
solve that linear problem, and iterate until the desired pre 
cision has been achieved If the hyperpiane is determined 
by the partial derivatives of the function relating the 
parameters, this approach is similar to a multidimensional 
Newton-Raphson method. (See [2] or [3] for a more 
detailed description of this approach.) 

The advantages of this approach are that it has qua­
dratic convergence (when it converges), the data can be 
weighted according to their measured precision, and the 
parameters can be constrained to he within specific ranges 
The disadvantages are that an initial set of parameter 
values is required, the method may not converge, and it 
may not converge to the global optimum We have used this 
method to fit curves, surfaces, and correspondences, and 
have had very little trouble with the method not converging 
or converging to the wrong values unless the solution was 
underdetermincd or the data contained several gross 
errors. 

IV EVALUATING A FIT 

Given a set of data and a proposed (hypothesized) 
model, how does one decide whether or not the model is an 
accurate description of the data9 It is difficult to think of a 
more pervasive question Most of statistics, and much of 
the methodology of science, revolves around ways to 
answer this question, a full treatment of the issues involved 
in model evaluation are well beyond the scope of this paper 
We limit our discussion here to justifying the particular 
approach we have adopted 

The approach we employ is based on the following 
viewpoint 

If one subtracts the predictions of a proposed 
model from the experimentally measured values, 
then the residuals should be independent 
(uncorrelated) To the extent that the measure­
ments have a natural spatial or temporal order­
ing, the sequence of residuals should have the 
characteristics of "white noise " 

What we are saying is that ALL. of our ability to predict the 
experimentally measured values should be embedded in 
the proposed model. If the residuals show any significant 
degree of correlation, then a more effective/accurate 
model can be constructed to explain the given experimen­
tal data In a more important sense, the existence of 
correlated residuals can indicate an invalid model or faulty 
data 

As a consequence of the above viewpoint, and to limit 
the required computational burden, we have selected the 
following statistics to evaluate (i.e.. compare, accept, or 
reject) the quality of the fit of a proposed model to a set of 
experimental data 

Error-Tolerance-Test The percentage of residuals that 
lies within a context-dependent tolerance band 
(this is the basic RANSAC evaluation metric) 

Sign-Test The ratio of positive to negative residuals 
(ignoring very small values) 

Run-Length Test The length of the longest sequence of 
monotonically increasing or decreasing residuals 
(allowing for a small amount of hystensis) 

The error tolerance test (based on problem-dependent 
parameters) provides the primary basis for accepting or 
rejecting a model \A\. The sign and run-length tests are 
perfectly general in that they require no problem 
dependent information, but are obviously weaker and thus 
can provide only secondary evaluation criteria 

The sign test assumes that the signs of the residuals 
are determined by independent Bernulli trials with equal 
probabilities of positive or negative excursions The stan 
dard deviation of the absolute difference between the 
number of positive residuals and the expected number of 
positive residuals (for a large number of trials, n) is bVn 
Thus, if D is the absolute difference between the number of 
positive and negative residuals, we can reject the 
hypothesis that the proposed model is unbiased at a 95 per­
cent level of confidence when D>2n 

The run-length test assumes that the signs of the 
differences between sequentially taken measurements are 
determined by independent Bernulli trials with equal pro­
babilities of positive and negative increments It can be 
shown that with confidence level b, we can reject the 
hypothesis that the sequence of residuals is uncorrelated 
when the longest run exceeds r, where 

r w log2 1-6 

Thus, for (6 = .95) we have r w 3. 32+log2n 
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V FINDING CYLINDERS IN RANGE DATA 

We recently started a project to investigate ways of 
recognizing industrial parts jumbled together in a pile 
Since we are restricting our attention to industrial tasks, 
we generally know the universe of parts the system is likely 
to sec, and we can control the environment to simplify data 
acquisition In particular, we believe that range sensors will 
soon be economical for such an environment Therefore, 
one aspect of our research is to develop techniques for 
using a part model to quickly and reliably locate 
occurrences of the part in a combination of range and 
Intensity data 

The first task we have set for ourselves is to find 
cylinders (with a known diameter) in range data The data 
for this experiment are gathered, one slice at a time, from 
a simple, structured-light range sensor as diagramed in 
figure 1 (see [5] for a more detailed description of the data 
acquisition system) Several computer vision programs 
locate cylinders in range data [6,7,8,9,10), but they are 
computationally expensive and are untried in complex 
domains Intuitively, knowing the diameter of the cylinder 
significantly reduces the complexity of the problem The 
question is how to use the known diameter to increase the 
speed and reliability of locating cylinders 

Figure 1 A simple range sensor 

Since the intersection of a plane and a cylinder is an 
ellipse (in the plane) whose minor diameter is equal to the 
diameter of the cylinder, our idea is to fit ellipses con­
strained to have the proper minor diameters to all curved 
segments along the intersection line, find clusters of simi­
lar ellipses by histogramming the orientations and major 
diameters of the ellipses, and then use RANSAC to partition 
the clusters into groups of ellipses belonging to individual 
cylinders The histogramming can be done quickly There­
fore, the viability of such an approach depends on the 
speed and precision of ( l ) fitting ellipses with a known 
diameter to partial data, and (2) "RANSACing" lines to sets 
of three-dimensional points (to find the cylinder axes) In 
this section we describe the application of the general 
curve-fitting principles discussed in previous sections to 
these two problems 

Figure 2 shows the intersection of the light plane with 
a simple scene containing two cylindrical castings. Figure 3 
shows a composite picture formed from 12 slices of those 
two castings. The cylinder-finding program first classifies 
the segments of the intersection into one of three types 
according to their curvature and length - straight lines, 
circular arcs, and elliptical arcs - and then tries to fit cir­
cles to the cirular arcs and ellipses to the elliptical arcs 
The circular arcs are treated separately because the ellipse 
fitter has trouble converging on them Since a circle does 
not have a distinct orientation, almost all values of the 
ellipse's orientation parameter are equal, causing the itera­
tive procedure to wander 

Figure 2 The intersection of the light plane and 
two cylindrical castings 

Figure 3 Twelve slices along the two castings 
shown in Figure 2 

The arcs look circular more often than one might 
think. The ratio of the minor diameter of the intersection 
ellipse to its major diameter is equal to the cosine of the 
angle between the axis of the cylinder and the normal to 
the plane of light Therefore, at 30 degrees this ratio is 
.866, which corresponds to an ellipse that is only slightly 
elongated Since the available range data cover only 
approximately one third of each ellipse, this elongation is 
not enough to reject a circular model. Thus, circles can 
generally fit the intersections from cylinders within this 
30-degree interval 

A. Fitting Ellipses 

As shown in Figure 4, points along a small portion of an 
ellipse do not adequately define it. Knowing the length of 
the minor diameter, however, significantly reduces the 
number of possible matches. The question is how to use the 
minor diameter to fit ellipses to such short segments. 

In our particular task the data presented to the ellipse 
fitter are generally free of gross errors because the process 
that segments the intersection line into line segments, cir­
cular arcs, and elliptical arcs works quite well. The data 
contain measurement errors due to quantization errors, 
calibration errors, and noise, but the lack of gross errors 
implies that a global smoothing technique is appropriate 
However, since the parameters of an ellipse are not linearly 
related, an iterative fitting procedure is required, and to 
start such a procedure requires initial parameter esti­
mates We have experimented with three methods for com­
puting initial estimates of an ellipse's parameters: 
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Linear-Least Squares First, use a least-squares tech 
niquc to fit a general second order curve of the 
fo rm  

to all the data, then determine whether or not the 
result is an ellipse with approximate ly the r ight 
minor d iameter If so. use the parameters of the 
ellipse as the ini t ial parameter values; if not, t ry 
another method 

Construct ion First, use two sets of paral lel chords to 
est imate the center of the ellipse, then use the 
known minor d iameter and a theorem about cen­
t ra l r ight angles to est imate the major diameter, 
and finally use the posit ions of the ex t rema to 
est imate the or ienta t ion 

RANSAC Rerat ivcly select sets of five points, compute 
the general second-order curve tha t passes 
through them, and then determine whether or not 
the result is an ellipse that has approximate ly the 
r ight minor d iameter and comes close to a 
suff iciently large number of the points If so, use 
the parameter values, if not. t ry another sel of 
five points 

Since the parameters of an ellipse with a known d iameter 
are not l inear ly re lated, it is not possible to d i rect ly apply a 
least-squares technique to all the data and produce a solu 
t ion However, since the coefficients of a general second 
order equation, which may represent an ellipse, a hyper 
bola. or a parabola, are l inearly related, we can solve for 
them in hopes that the result is an ellipse of the r ight size 

The fo rm of the second-order curve used in the l inear 
least-squares method was chosen because its coeff icients 
could be d i rec t ly computed f rom a l ist of points on the 
curve It is not a completely general second-order curve 
because the leading coeff icient is set to 1. which impl ies 
tha t the curve cannot be a parabola with its axis paral lel to 
the x-axis But this l im i ta t ion does not affect us because 
we arc looking only for ellipses 

In theory, the points along an arc in the data f rom a 
cyl inder fo rm an ell ipse, however, in pract ice, measure­
ment er rors pe r tu rb the points These per turbat ions, 
al though relat ively small , can dramat ica l ly affect the curve 
produced by the least-squares technique because the data 
cover such a small section of the ellipse These per tu rba­
tions may even change the curve f rom an ellipse to a para 
bola or hyperbola The bet ter the data, the less l ikely these 
abrupt changes 

In the const ruc t ion method we use two facts about 
ellipses that are i l lust rated in Figure 5 The first fact is 
that a line through the centers of two paral lel chords 
passes through the center of the ellipse (This result , which 
we derived [5 ] , is a general izat ion of the fact that a line 
joining two points on a ell ipse wi th the same slope passes-
through the center of the ell ipse This la t te r fact has been 
used by Tsuji et al to locate ellipses, but it requires them 
to be almost completely visible [11] ) Two sets of paral lel 
chords uniquely determine the center of the ellipse 

Having found the center of the ell ipse, we use the 
second fact, which states tha t the sides of a r igh t angle 
whose vertex is at the center of the ellipse are re lated by 
the formula shown in Figure 5, where R is a constant for the 
ellipse (This fact was also used by Tsuji et al. to separate 
concentr ic ellipses [11].) We const ruct a r igh t angle at the 
center and use the length of the minor d iameter to com­
pute the length of the major d iameter To determine the 
or ientat ion, we f i rst f ind the points on the arc that are 
closest to the center and far thest f rom the center, use the 
lengths of the major and minor d iameters to verify that 
they are ext rema. and then compute the or ientat ion f rom 
one or more of them. 
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The paral lel chord method for est imat ing the center of 
the ell ipse is the least rel iable step in this method, being 
par t icu la r ly susceptible to noise when the visible arc is a 
re lat ively s t ra ight sect ion of the ellipse. This is because 
small per turbat ions can signif icantly change the positions 
of the paral le l chords. Thus, this method probably should 
be considered only when the high curvature port ions of the 
ell ipse are visible. 

In the RANSAC method of est imat ing ellipse parame­
ters, the general second-order curves to be tested are 
d i rec t ly computed f r om sets of five points For each set. 
four lines are const ruc ted as shown in Figure 6 The 
coeff icients of the quadrat ic in X and Y are computed by 
evaluating the l inear equation: 

where  

at the fifth point and solving for A This computat ion is a 
fast and accurate way to compute the conic section deter­
mined by five points However, it too is sensitive to small 
per turbat ions of the points For example, given the points 

which are on the ellipse 

Increment ing the Y coordinate of the th i rd point by 10 
changes the f i t ted curve f rom an ellipse to a hyperbola To 
overcome this sensit ivi ty, sets of f ive points are t r ied unt i l 
the impl ied ellipse fits the data well Thus, while all the 
methoas for obtaining an ini t ia l est imate of the ellipse 
parameters are sensitive to noise, RANSAC is the only 
approach that gives one the opt ion of t rading search t ime 
for an acceptable solut ion. 

Given in i t ia l est imates of the ellipse parameters f rom 
one of these three methods, we use an i terat ive least-
squares technique to improve the estimates The quant i ty 
to be min imized is shown in Figure 7 This met r ic is used 
instead of the perpendicular distance to the ellipse because 
it is signif icantly easier to compute (see f[==[5] for the exact 
fo rmula used and its par t ia l derivatives) 

Figure 7 The met r i c used in the i terat ive least-
squares technique 

B RANSACing Lines 

Given a set of s imi lar ellipses, we par t i t i on it in to sub­
sets that correspond to individual cyl inders by locat ing 
groups of ellipses whose centers lie along three-dimensional 
lines (which are the axes of the cyl inders) In this task the 
data may contain gross er rors because there are two or 
more paral lel cyl inders in the data or because the grouping 
procedure included an incor rec t ellipse RANSAC is used to 
find the axes A pair of centers is selected, the l ine passing 
through them is computed, and the number of o ther 
centers lying within the expected measurement e r ro r of 
that line are determined If the number of compat ib le 
centers is larger than some threshold, that subset of points 
is used to hypothesize a cyl inder; otherwise, another pair of 
centers is selected 

C. An Example 

Figure 8 shows a set of 12 slices taken f rom the two 
cyl inders in Figure 2 The arcs at the top of the p ic ture are 
almost c i rcu lar in the plane of l ight because the cyl inder is 
almost perpendicular to that plane The program fi ts c i r ­
cles wi th the appropr iate d iameter to these arcs after they 
have been t ransformed in to the plane of l ight Two of these 
circles are shown in Figure 8 They appear as ellipses in 
the picture because they have been t ransformed back into 
the image plane of the camera that took the data Figure 9 
shows the same data, but f rom a point on the axis of the 
cyl inder associated with the c i rcular intersections. Notice 
the set of el l ipt ical arcs f rom the cyl inder lying on top of 
the located one 
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Figures 10 through 12 illustrate the process of finding 
a cylinder from a set of elliptical intersections Ellipses are 
fitted to the arcs after they have been transformed from 
the image plane into the plane of light. Figure 10 shows the 
initial ellipses produced by the procedures to estimate the 
ellipse parameters Figure 11 shows the ellipses produced 
by fixing the length of the minor diameter and iteratively 
improving the initial estimates And finally, Figure 12 shows 
the ellipses produced after histogramming and identifying 
a set of ellipses that corresponds to one cylinder For this 
fit the orientations and major diameters of the ellipses 
were set to the averages of the parameters for all ellipses 
associated with the cylinder 

D Discussion 

The intersection of the plane of light and an object is a 
relatively thin line, but since there is some thickness, it 
appears as a line several pixels wide in an image Which 
points in the image should be defined to be on the plane9 

For simplicity, most range acquisition systems that use a 
projected light plane have selected one point in each row of 
the image (e.g., see [9]) Usually they choose the middle 
pixel of the first long run of pixels that are "on " However, 
since the images are perspective images, there may be 
more than one valid intersection per row. More impor 
tantly, when the intersection line is horizontal in the image, 
the row centers are completely wrong (see Figure 13). 
Since some of the most important data for our task are 
obtained from horizontal or almost horizontal intersec­
tions, we apply a thinning algorithm (see [12]) to produce a 
center line that is independent of the intersection's orien­
tation in the image This center; line still may not lie in the 
light plane, but it is close, and to first order it is indepen­
dent of the camera's focus and the threshold used to pro­
duce the binary picture. 

As mentioned in the discussion about how to evaluate a 
fit, an error in the fit can be due to an incorrect model as 
well as to inaccurate parameter values. We have used this 
principle to check our range data The data shown in Fig­
ure 14 were taken from two cylinders perpendicular to the 
plane of light. The intersections should be circles whose 
diameters equal the diameters of the cylinders. However, 
as can be seen in Figure 14 and as confirmed by our evalua­
tion criteria, the data contain a slight systematic flattening 
that cannot be accounted for by the circular models We 
have not determined why this occurs 

Our approach to finding cylinders applies task-
dependent knowledge (i.e., the known diameter of the 
cylinder) at the time the program fits ellipses. It does not 
use the position of one elliptical section to help find the 
next one. The fact that cylinders occupy a continuous 
volume in space that leads to sets of similar ellipses is used 
later in the histogramming step. This decision raises an 
important question of when to apply contextual knowledge 
When the data are good, it is computationally effective to 
find the ellipses independently and perform a global histo­
gramming. If the data are degraded, the volume model of a 
cylinder would have to be used earlier. 

Figure 10 The initial ellipses for the elliptical arcs 

Figure 11 The iteratively improved ellipses 

VI CONCLUDING REMARKS 

We have presented a conceptually new way to approach 
the problem of fitting a model to data containing gross 
errors — a fundamental problem in science. Although we 
have concentrated on the problems of finding lines, 
ellipses, and cylinders, our approach to fitting is applicable 
to most problems in which the data may contain gross 
errors. It is robust in the sense that any gross errors are 
filtered from the data before a smoothing technique, such 
as least squares, is applied. It is slow compared to a single 
application of a smoothing technique, but its results arc 
unaffected by gross errors 

We briefly described the application of this approach to 
the problem of locating cylinders with a known diameter in 
range data We used it in two different tasks: estimating Figure 12 The final ellipses 
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ellipse parameters and locating groups of ellipses that 
belong to different cylinders In the first task the full 
power of RANSAC was not required except when the data 
had not been correctly segmented In the second task the 
basic use of RANSAC was to perform a segmentation, i.e., 
partition a set of points. We believe that the RANSAC para­
digm provides a general way to perform partitioning and we 
plan to investigate its properties when applied in this way 

We also presented the basis for an approach to evaluat 
ing a fit that is independent of the method used to produce 
the fit We plan to investigate ways of making this evalua­
tion procedure an integral component of our fitting tech­
niques 
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