
Rover Visual Obstacle Avoidance

Hans P. Moravec
Robotics Institute

Carnegie-Mellon University

Abstract
The Stanford AI Lab cart is a remotely controlled TV equipped mobile

robot. A computer program has driven the cart through cluttered spaces,
gaining its knowledge of the world entirely from images broadcast by the
onboard TV system.

The cart uses several kinds of stereo to locate objects around it in 3D
and to deduce its own motion. It plans an obstacle avoiding path to a
desired destination on the basis of a model built with this information.
The plan changes as the cart perceives new obstacles on its journey.

The system is reliable for short runs, but slow. The cart moves one
meter every ten to fifteen minutes, in lurches. After rolling a meter it
stops, takes some pictures and thinks about them for a long time. Then it
plans a new path, executes a little of it. and pauses again.

It has successfully driven the cart through several 20 meter courses
(each taking about five hours) complex enough to necessitate three or
four avoiding swerves. Some weaknesses and possible improvements were
suggested by these and other, less successful, runs.

INTRODUCTION

A run of the avoider system begins with a calibration of the cart's
camera. The cart is parked in a standard position in front of a wall of
spots. A calibration program notes the disparity in position of the spots in
the image seen by the camera with their position predicted from an
idealized model of the situation. It calculates a distortion correction
polynomial which relates these positions, and which is used in subsequent
ranging calculations.

The cart is then manually driven to its obstacle course (littered whith
large and small debris) and the obstacle avoiding program is started. It
begins by asking for the cart's destination, relative to its current position
and heading. After being told, say, 50 meters forward and 20 to the right,
it begins its maneuvers. It activates a mechanism which moves the TV
camera, and digitizes nine pictures as the camera slides in precise steps
from one side to the other along a 50 cm track.

A subroutine called the interest operator is applied to the one of these
pictures. It picks out 30 or so particularly distinctive regions (features) in
this picture. Another routine called the correlator looks for these same
regions in the other frames. A program called the camera solver
determines the three dimensional position of the features with respect to
the cart from their apparent movement image to image.

The navigator plans a path to the destination which avoids all the
perceived features by a large safety margin. The program then sends
steering and drive commands to the cart to move it about a meter along
the planned path. The cart's response to such commands is not very
precise. The camera is then operated as before, and nine new images are
acquired. The control program uses a version of the correlator to find as
many of the features from the previous location as,possiblc in the new
pictures, and applies the camera solver. The program then deduces the
cart's actual motion dunng the step from the apparent three dimensional
shift of these features. Some of the features are pruned during this
process, and the interest operator is invoked to add new ones.

This repeats until the cart arrives at its destination or until some

disaster terminates the program. Figure la and lb document uie cart's
internal world model at two points during a sample run.

CAMERA CALIBRATION

The camera's focal length an geometric distortion are determined by
parking the cart a precise distance in front of a wall of many spots and one
cross. A program digitizes an image of the spot array, locates the spots and
the cross, and constructs a a two dimensional polynomial that relates the
position of the spots in the image to their position in an ideal unity focal
length camera, and another polynomial that converts points from the
ideal camera to points in the image. These polynomials arc used to correct
the positions of perceived objects in later scenes.

The algorithm begins by determining the array's approximate spacing
and orientation. It trims the picture to make it square, reduces it by
averaging to 64 by 64, calculates the Fourier transform of the reduced
image and takes its power spectrum, arriving at a 21) transform symmetric
about the origin, and having strong peaks at frequencies corresponding to
the horizontal and vertical and half-diagonal spacings. with weaker peaks
at the harmonics. It multiplies each point [ij] in this transform by point [-
j.t] and points [j - i j+ i\ and [i+jj-il effectively folding the primary peaks
onto one another. The strongest peak in the 90 degree wedge around the y
axis gives the spacing and orientation information needed by the next part
of the process.

The interest operator described later is applied to roughly locate a spot
near the center of the image. A special operator examines a window
surrounding this position, generates a histogram of intensity values within
the window, decides a threshold for separating the black spot from the
white background, and calculates the centroid and first and second
moment of the spot. This operator is again applied at a displacement
from the first centroid indicated by the orientation and spacing of the
grid, and so on, the region of found spots growing outward from the seed.

A binary template for the expected appearance of the cross in the
middle of the array is constructed from the orientation/spacing data from
the Fourier transform. l"he area around each of the found spots is
thresholded on the basis of the expected cross area, and the resulting two
valued pattern is convolved with the cross template. The closest match in
the central portion of the picture is declared to be the origin.

Two least-squares polynomials (one for X and one for Y) of third (or
sometimes fourth) degree in two variables, relating the actual positions of
the spots to the ideal positions in a unity focal length camera, arc then
generated and written into a file. The polynomials arc used in the
obstacle avoider to correct for camera roll, tilt, focal length and long term
variations in the vidicon geometry.

INTEREST OPERATOR

The cart vision code deals with localized image patches called features.
A feature is conceptually a point in the three dimensional world, but it is
found by examining localities larger than points in pictures. A feature is
good if it can be located unambiguously in different views of a scene. A
uniformly colored region or a simple edge is not good because its parts are

785

indistinguishable. Regions such as corners, with high contrast in
orthogonal directions are best

New features in images are picked by a subroutine called the interest
operator. It tries to select a relatively uniform scattering of good features,
to maximize the probability that a few features will be picked on every
visible object by returning regions that arc local maxima of a directional
variance measure. Featureless areas and simple edges, which have no
variance in the directior of the edge, are thus avoided.

Directional variance is measured over small square windows. Sums of
squares of differences of pixels adjacent in each of four directions
(horizontal, vertical and two diagonals) over each window are calculated,
and the window's interest measure is the minimum of these four sums.
Features are chosen where the interest measure has local maxima. The
chosen features are stored in an array, sorted in order of decreasing
interest measure.

Once a feature is chosen, its appearance is recorded as series of excerpts
from the reduced image sequence. A window (6 by 6 in the current
implementation) is excised around the feature's location from each of the
variously reduced pictures. Only a tiny fraction of the area of the original
(unreduced) image is extracted. Four times as much of the x2 reduced
image is stored, sixteen umes as much of the x4 reduction, and so on until
at some level we have the whole image. The final result is a scries of 6 by 6
pictures, beginning with a very blurry rendition of the whole picture,
gradually zooming in linear expansions of two to a sharp closcup of the
feature.

Weaknesses

The measure is able to unambiguously reject edges only if they are
oriented along the four directions of summation. Edges with intermediate
direction give non-zero values for all four sums, and arc sometimes
incorrectly chosen as interesting. The operator especially favors
intersecting edges. These arc sometimes corners or cracks in objects, and
are very good. Sometimes they arc caused by a distant object peering
over the edge of a nearby one and then they are very bad. Such spurious
intersections do not have a definite distance, and must be rejected during
camera solving.

CORRELATION

Deducing the 3D location of features from their projections in 2D
images requires that we know their position in two or more such images.
The correlator is a subroutine that, given a feature description produced
by the interest operator from one image, finds the best match in a
different, but similar, image. Its search area can be the entire new picture,
or a rectangular sub-window.

The search uses a coarse to fine strategy that begins in reduced versions
of the pictures. Typically the first step takes place at the xl6 (linear)
reduction level. The 6 by 6 window at that level in the feature description,
that covers about one seventh of the total area of the original picture, is
convolved with the search area in the correspondingly reduced version of
the second picture. The 6 by 6 description patch is moved pixel by pixel
over the approximately 15 by 16 destination picture, and a correlation
coefficient is calculated for each trial position. The position with the best
match is recorded. The 6x6 area it occupies in the second picture is
mapped to the x8 reduction level, where the corresponding region is 12
pixels by 12. The 6 by 6 window in the x8 reduced level of the feature
description is then convolved with this 12 by 12 area, and the position of
best match is recorded and used as a search area for the x4 level. The
process continues, matching smaller and smaller, but more and more
detailed windows until a 6 by 6 area is selected in the unreduced picture.
The window sizes and other parameters are sometimes different from the
ones used in this example.

STEREO

Slider Stereo

At each pause on its computer controlled itinerary the cart slides its
camera from left to right on the 52 cm track, taking 9 pictures at precise
6.5 cm intervals. Points are chosen in the fifth (middle) of these 9 images,
either by the correlator to match features from previous positions.-or by
the interest operator. The camera slides parallel to the horizontal axis of
the (distortion corrected) camera co-ordinate system, so the parallax-
induced displacement of features in the 9 pictures is purely horizontal.

The correlator looks for the points chosen in the central image in each
of the eight other pictures. The search is restricted to a narrow horizontal
band. This has little effect on the computation time, but it reduces the
probability of incorrect matches. In the case of correct matches, the
distance to the feature is inversely proportional to its displacement from
one image to another. The uncertainty in such a measurement is the
difference in distance a shift one pixel in the image would make. The
uncertainty varies inversely with the physical separation of the camera
positions where the pictures were taken (the stereo baseline). Long
baselines give more accurate distance measurements.

After the correlation step the program knows a feature's position in
nine images It considers each of the 36 (= 9 choose 2) possible image
pairings as a stereo baseline, and records the estimated (inverse) distance
of the feature in a histogram. Each measurement adds a little normal
curve to the histogram, with mean at the estimated distance, and standard
deviation inversely proportional to the baseline, reflecting the uncertainty.
The area under each curve is made proportional to the product of the
correlation coefficients of the matches in the two images (in central image
this coefficient is taken as unity), reflecting the confidence that the
correlations were correct. The distance to the feature is indicated by the
largest peak in the resulting histogram, ;f this peak is above a certain
threshold. If below, the feature is forgotten about.

The correlator sometimes matches features incorrectly. The distance
measurements from incorrect matches in different pictures arc not
consistent When the normal curves from 36 pictures pairs arc added up.
the correct matches agree with each other, and build up a large peak in
the histogram, while incorrect matches spread themselves more thinly.
Two or three correct correlations out of the eight will usually build a peak
sufficient to offset a larger number of errors. In this way eight
applications of a mildly reliable operator interact to make a very reliable
distance measurement

Motion Stereo

After having determined the 3D location of objects at one position, the
computer drives the cart about a meter forward. At the new position it
slides the camera and takes nine pictures. The correlator is applied in an
attempt to find all the features successfully located at the previous
position. Feature descriptions extracted from the central image at the last
position arc searched for in the central image at the new stopping place.

Slider stereo then determines the distance of the features so found from
the cart's new position. The program now knows the 3D position of the
features relative to its camera at the old and the new locations. Its own
movement is deduced from 3D co-ordinate transform that relates the two.

The program first eliminates mis-matches in the correlations between
the central images at two positions. Although it doesn't yet have the co-
ordinate transform between the old and new camera systems, the program
knows the distance between pairs of feature positions should be the same
in both. It makes a matrix in which element [i,j] is the aosolute value of
the difference in distances between points i and / in the first and second
co-ordinate systems divided by the expected error (based on the one pixel
uncertainty of the ranging). Fach row of this matrix is summed, giving an
indication of how much each point disagrees with the other points. The
idea is that while points in error disagree with virtually all points, correct
positions agree with all the other correct ones, and disagree only with the
bad ones. The worst point is deleted, and its effect is removed from the
remaining points in the row sums. This pruning is repeated until the worst
error is within the error expected from the ranging uncertainty.

After the pruning, the program has a number of points, typically 10 to
20. whose position error is small and pretty well known. The program
trusts these, and records them in its world model, unless it had already

7 86

done so at a previous position. The pruned points are forgotten
forevcrmorc.

The 3d rotation and translation that relates the old and new cart
position is then calculated by a Newton's method iteration that minimizes
the sum of the squares of the distances between the transformed first co-
ordinates and the raw co-ordinates of the corresponding points at the
second position, with each term divided by the square of the expected
uncertainty in the 3D position of the points involved.

PATH PLANNING

The cart vision system "models" objects as simple clouds of features. If
enough features are found on each nearby object, this model is adequate
for planning a non-colliding path to a destination. The features in the
cart's 3D world model can be thought of as fuzzy ellipsoids, whose
dimensions reflect the program's uncertainty of their position. Repeated
applications of the interest operator as the cart moves cause virtually all
visible objects to be become modelled as clusters of overlapping
ellipsoids.

To simplify the problem, the ellipsoids arc approximated by spheres.
Those spheres sufficiently above the floor and below the carts maximum
height are projected on the floor as circles. The can itself is modelled as a
3 meter circle. The path finding problem then becomes one of
maneuvering the cart's 3 meter circle between the (usually smaller) circles
of the potential obstacles to a desired location. It is convenient (and
equivalent) to conceptually shrink the cart to a point, and add its radius to
each and every obstacle. An optimum path in this environment will
consist of cither a straight run between start and finish, or a series of
tangential segments between the circles and contacting arcs (imagine
loosely laying a string from start to finish between the circles, then pulling
it tight).

The program converts the problem to a shortest path in graph search.
There are four possible paths between each pair of obstacles because each
tangent can approach clockwise or counterclockwise. Each tangent point
becomes a vertex in the graph, and the distance matrix contains sums of
tangential and arc paths, with infinities for blocked or impossible routes.
The cart program was occasionally run using this exact procedure, but
more often with a faster approximation that made each obstacle into two
vertices (one for each direction of circumnavigation).

A few other considerations were essential in the path planning. The
charted routes consist of straight lines connected by tangent arcs, and are
thus plausible paths for the cart, which steers like an automobile. This
plausibility is not necessarily true of the start of the planned route, which,
as presented thus far, docs not take the initial heading of the cart into
account. The plan could, for instance, include an initial segment going off
90 degrees from the direction in which the cart points, and thus be
impossible to execute. This is handled by including a pair of "phantom"
obstacles along with the real perceived ones. The phantom obstacles have
a radius equal to the cart's minimum steering radius, and are placed, in
the planning process, on either side of the can at such a distance that after
their radius is augmented by the cart's radius (as happens for all the
obstacles), they just touch the cart's centroid. and each other, with their
common tangents being parallel to the direction of the carts heading.
They cfTcctivcly block the area made inaccessible to the cart by its
maneuverability limitations.

Path Execution

After the path to the destination has been chosen, a portion of it must
be implemented as steering and motor commands and transmitted to the
cart. The control system is primitive. The drive motor and steering motors
may be turned on and ofT at any time, but there exists no means to
accurately determine just how fast or how far they have gone. The
current program makes the best of this bad situation by incorporating a
model of the cart that mimics, as accurately as possible, the cart's actual
behavior. Under good conditions, as accurately as possible means about
20%; the carl is not very rcpcatablc, and is affected by ground slope and
texture, battery voltage, and other less obvious externals.

The path executing routine begins by excising the first .75 meters of the
planned path. This distance was chosen as a compromise between average
cart velocity, and continuity between picture sets. If the cart moves too
far between picture digitizing sessions, the picture will change too much
for reliable correlations. This is especially true if the cart turns (steers) as
it moves. 'The image seen by the camera then pans across the field of view.
The cart has a wide angle lens that covers 60 degrees horizontally. The .75
meters, combined with the turning radius limit (5 meters) of the cart
results in a maximum shift in the field of view of 15 degrees, one quarter
of the entire image.

The program examines the cart's position and orientation at the end of
the desired .75 meter lurch, relative to the starting position and
orientation. The displacement is characterized by three parameters;
displacement forward, displacement to the right and change in heading.
In closed form the program computes a path that will accomplish this
movement in two arcs of equal radius, but different lengths. The resulting
trajectory has a general "S" shape. Rough motors timings arc derived
from these paratmetcrs. The program then uses a simulation that takes
into account steering and drive motor response to iteratively refine the
solution.

CONCLUSION

Many years ago I chose the line of research described herein intending
to produce a combination of hardware and software by which the cart
could visually navigate reliably in most environments. For a number of
reasons, the existing system is only a first approximation to that youthful
ideal.

One of the most serious limitations is the excruciating slowness of the
program. In spite of my best efforts, and many compromises, in the
interest of speed, it takes 10 to 15 minutes of real time to acquire and
consider the images at each lurch, on a lightly loaded KL-10. This
translates to an effective cart velocity of 3 to 5 meters an hour. Interesting
obstacle courses (2 or three major obstacles, spaced far enough apart to
permit passage within the limits of the cart's size and maneuverability) are
at least 15 meters long, so interesting cart runs take from 3 to 5 hours, with
little competition from other users, impossibly long under other
conditions.

During the last lew weeks of the AI lab's residence in the D.C Power
building, when the full fledged obstacle runs described here were
executed, such conditions of light load were available on only some
nights, between 2 and 6 AM and on some weekend mornings. The cart's
video system battery lifetime on a full charge is at most 5 hours, so the
limits on field tests, and consequently on the debug/improve loop, were
strictly circumscribed.

Although major portions of the program had existed and been
debugged for several years, the complete obstacle avoiding system
(including fully working hardware, as well as programs) was not ready
until two weeks before the lab's scheduled move. The first week was spent
quashing unexpected trivial bugs, causing very silly cart behavior under
various conditions, in the newest parts of the code, and recalibrating
camera and motor response models.

The final week was devoted to serious observation (and filming) of
obstacle runs. Three full (about 20 meter) runs were completed, two
indoors and one outdoors. Two indoor false starts, aborted by failure of
the program to perceive an obstacle, were also recorded. The two long
indoor runs were nearly perfect

In the first, the cart successfully slalomed its way around a chair, a large
cardboard icosahedron, and a cardboard tree then, at a distance of about
16 meters, encountered a cluttered wall and backed up several times
trying to find a way around it.

The second indoor run involved a more complicated set of obstacles,
arranged primarily into two overlapping rows blocking the goal. The cart
backed up twice to negotiate the light turn required to go around the first
row, then executed several steer forward / back up moves, lining itself up
to go through a gap barely wide enough in the second row. This run had
to be terminated, sadly, before the cart had gone through the gap because
of declining battery charge and increasing system load.

7 87

The outdoor run was less successful. It began well; in the first few
moves the program correctly perceived a chair directly in front of the
camera, and a number of more distant cardboard obstacles and sundry
debris. Unfortunately, the program's idea of the cart's own position
became increasingly wrong. At almost every lurch, the position solver
deduced a cart motion considerably smaller than the actual move. By the
time the cart had rounded the foreground chair, its position model was so
far off that the distant obstacles were replicated in different positions in
the carts confused world model, because they had been seen early in the
run and again later, to the point where the program thought an actually
existing distant clear path was blocked. I restarted the program to clear
out the world model when the planned path became too silly. At that time
the cart was four meters in front of a cardboard icosahedron, and its
planned path lead straight through it. The newly reincarnated program
failed to notice the obstacle, and the cart collided with it. I manually
moved the icosahedron out of the way, and allowed the run to continue. It
did so uneventfully, though there were continued occasional slight errors
in the self position deductions. The cart encountered a large cardboard
tree towards the end of this journey and detected a portion of it only just
in time to squeak by without colliding.

The two short abortive indoor runs involved setups nearly identical to
the two-row successful long run described one paragraph ago. The first
row, about three meters in front of the cart's starting position contained a
chair, a real tree (a small cypress in a planting pot), and a polygonal
cardboard tree. The cart saw the chair instantly and the real tree after the
second move, but failed to see the cardboard tree ever. Its planned path
around the two obstacles it did sec put it on a collision course with the
unseen one. Placing a chair just ahead of the cardboard tree fixed the
problem, and resulted in a successful run. Never, in all my experience, has
the code described in this thesis failed to notice a chair in front of the cart.

Flaws Found

These runs suggest that the system suffers from two serious weaknesses.
It does not see simple polygonal (bland and featureless) objects reliably,
and its visual navigation is fragile under certain conditions. Examination
of the program's internal workings suggests some causes and possible
solutions.

Bland Interiors

The program sometimes fails to see obstacles lacking sufficient high
contrast detail within their outlines. In this regard, the polygonal uee and
rock obstacles 1 whimsically constructed to match diagrams from a 3D
drawing program, were a terrible mistake. In none of the test runs did the
programs ever fail to see a chair placed in front of the cart, but half the
time they did fail to see a pyramidal tree or an icosahedral rock made of
clean white cardboard. These contrived obstacles were picked up reliably
at a distance of 10 to 15 meters, silhouetted against a relatively unmoving
(over slider travel and cart lurches) background, but were only rarely and
sparsely seen at closer range, when their outlines were confused by a
rapidly shifting background, and their bland interiors provided no
purchase for the interest operator or correlator. Hvcn when the artificial
obstacles were correctly perceived, it was by virtue of only two to four
features. In contrast, the program usually tracked five to ten features on
nearby chairs.

In the brightly sunlit outdoor run the artificial obstacles had another
problem. Their white coloration turned out to be much brighter than any
"naturally" occurring extended object. These super bright, glaring,
surfaces severely taxed the very limited dynamic range of the carts
vidicon/digitzer combination. When the icosahedron occupied 10% of
the cameras field of view, the automatic target voltage circuit in the
electronics turned down the gain to a point where the background behind
the icosahedron appeared nearly solid black.

Confused Maps

The second major problem exposed by the runs is glitches in the cart's
self-posmon model. This model is updated after a lurch by finding the 3D

translation and rotauon that best relates the 3d position of the set of
tracked features before and after the lurch. In spite of the extensive
pruning that precedes this step, (and partly because of it. as is discussed
later) small errors in the measured feature positions sometimes cause the
solver to converge to the wrong transform, giving a position error beyond
the expected uncertainty. Features placed into the world model before
and after such a glitch will not be in the correct relative positions. Often
an object seen before is seen again after, now displaced, with the
combination of old and new positions combining to block a path that is in
actuality open.

This problem showed up mainly in the outdoor run. I've also observed
it indoors in past, in simple mapping runs, before the entire obstacle
avoider was assembled. There appear to be two major causes for it, and a
wide range of supporting factors.

Poor seeing, resulting in too few correct correlations between the
pictures before and after a lurch, is one culprit. The highly redundant
nine eyed stereo ranging is very reliable, and causes few problems, but the
non-redundant correlation necessary to relate the position of features
before and after a lurch, is error prone Sometimes the mutual-distance
invarianee pruning that follows is overly agressivc. and leaves too few
points for a stable least squares co-ordinate fit.

The outdoor runs encountered another problem. The program ran so
slowly that shadows moved significantly (up to a half meter) between
lurches, Their high contrast boundaries were favorite points for tracking,
enhancing the program's confusion.

Simple Fixes

Though elaborate (and thus far untried in our context) methods such as
edge matching may greatly improve the quality of automatic vision in
future, subsequent experiments with the program revealed some modest
incremental improvements that would have solved most of the problems
in the test runs.

The issue of unseen cardboard obstacles turns out to be partly one of
over-conservatism on the program's part. In all cases where the cart
collided with an obstacle it had correctly ranged a few features on the
obstacle in the prior nine-eyed scan. The problem was that the much
more fragile correlation between vehicle forward moves failed, and the
points were rejected in the mutual distance test. Overall the nine-eyed
stereo produced very few errors If the path planning stage had used the
pre-pruning features (still without incorporating them permanently into
the world model) the runs would have proceeded much more smoothly.
All of the most vexing false negatives, in which the program failed to spot
a real obstacle, would have been eliminated. There would have been a
very few false positives, in which non-existent ghost obstacles would have
been perceived. One or two of these might have caused an unnecessary
swerve or backup. Hut such ghosts would not pass the pruning stage, and
the run would have recovered after the initial, non-catastrophic, glitch.

The self-position confusion problem is related, and in retrospect may
be considered a trivial bug When the path planner computes a route for
the cart, another subroutine takes a portion of this plan and implements it
as a sequence of commands to be transmitted to the cart's steering and
drive motors. During this process it runs a simulation that models the cart
acceleration, rale of turning and so on. and which provides a prediction of
the cart's position after the move. With the current hardware the
accuracy of this prediction is not great, but it nevertheless provides much
a prion information about the carts new position. This information is
used, appropriately weighted, in the least-squares coordinate system
solver that deduces the carts movement from the apparent motion in 3D
of tracked features. It is not used, however, in the mutual distance
pruning step that proceeds this solving. When the majority of features
have been correctly tracked, failure to use this information does not hurt
the pruning Hut when the seeing is poor, it can make the difference
between choosing a spuriously agreeing set .of mis-tracked features and
the small correctly matched set

Incorporating the prediction into the pruning, by means of a heavily
weighted point that the program treats like another tracked feature,
removes almost all the positioning glitches when the program is fed the
pictures from the outdoor run.

788

Figure 1a:

This and the following diagram arc plan views of the
can's world model at obstacle run stopping positions.

In this first view, one step into a run. the can has (by
the program's reckoning) travelled a little under a meter.
The program has noted a number of objects; a chair in
the foreground, pieces of cardboard on the floor, an
icosahedron. a refrigerator, a cardboard tree, and some
other things. It has deduced that the chair, the
icosahedron and the tree arc real obstacles, and has
planned a path which slaloms around them (the
cardboard in the foreground has been ignored because it
lies on the floor).

The grid cells arc two meter squares, conceptually on
the floor. The cart's own position is indicated by the
small heavy square, and by the graph, indicating height,
calibrated in centimeters, to the left of grid. Since the
can never actually leaves or penetrates the floor, this
grapn provides an indication of the overall accuracy.
The irregular, tick marked, line behind the cart's
position is the past itinerary of the cart as deduced by
the program. Each tick mark represents a stopping
place. The picture at top of the diagrams is the view
seen by the TV camera. The two rays projecting forward
from the cart position show the horizontal boundaries of
the camera's field of view (as deduced by the camera
calibration program). The numbered circles in the plan
view arc features located and tracked by the program.
The centers of the circles are the vertical projections of
the feature positions onto the ground. The size of each
circle is the uncertainty (caused by finite camera
resolution) in the features position. The length of the 45
degree line projecting to the upper right, and terminated
by an identifying number, is the height of the feature
above the ground, to the same scale as the floor grid.
The features are also marked in the camera view, in the
guise of numbered boxes. The thin line projecting from
each box to a lower blob is a stalk which just reaches the
ground, in the spirit of the 45 degree lines in the plan
view. The irregular line radiating forwards from the carl
is the planned future path. This changes from slop to
stop, as the cart tails to obey instructions properly, and
as new obstacles are detected. The small ellipse a short
distance ahead of the cart along the planned path is the
planned position of the next stop.

7 89

Figure 1b:

After the l l ' t h lurch the cart has rounded the chair,
the icosahedron and is planning to round the cardboard
tree. The wold model has suffered som accumulated
drift error, and the oldest acquired features are
considerably misplaced. Also misplaced, due to human
error, is the carts destination, which is about a meter
behind the far wall of the room. The cart backed up a
number of times later in this run trying to get around it,
when il found planned paths blocked by newly observed
portions of the wall.

Calibration-polynomial distorted grid superimposed
on the spot image from which it was calculated.

7 90

