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Abstract 
The Stanford AI Lab cart is a remotely controlled TV equipped mobile 

robot. A computer program has driven the cart through cluttered spaces, 
gaining its knowledge of the world entirely from images broadcast by the 
onboard TV system. 

The cart uses several kinds of stereo to locate objects around it in 3D 
and to deduce its own motion. It plans an obstacle avoiding path to a 
desired destination on the basis of a model built with this information. 
The plan changes as the cart perceives new obstacles on its journey. 

The system is reliable for short runs, but slow. The cart moves one 
meter every ten to fifteen minutes, in lurches. After rolling a meter it 
stops, takes some pictures and thinks about them for a long time. Then it 
plans a new path, executes a little of it. and pauses again. 

It has successfully driven the cart through several 20 meter courses 
(each taking about five hours) complex enough to necessitate three or 
four avoiding swerves. Some weaknesses and possible improvements were 
suggested by these and other, less successful, runs. 

INTRODUCTION 

A run of the avoider system begins with a calibration of the cart's 
camera. The cart is parked in a standard position in front of a wall of 
spots. A calibration program notes the disparity in position of the spots in 
the image seen by the camera with their position predicted from an 
idealized model of the situation. It calculates a distortion correction 
polynomial which relates these positions, and which is used in subsequent 
ranging calculations. 

The cart is then manually driven to its obstacle course (littered whith 
large and small debris) and the obstacle avoiding program is started. It 
begins by asking for the cart's destination, relative to its current position 
and heading. After being told, say, 50 meters forward and 20 to the right, 
it begins its maneuvers. It activates a mechanism which moves the TV 
camera, and digitizes nine pictures as the camera slides in precise steps 
from one side to the other along a 50 cm track. 

A subroutine called the interest operator is applied to the one of these 
pictures. It picks out 30 or so particularly distinctive regions (features) in 
this picture. Another routine called the correlator looks for these same 
regions in the other frames. A program called the camera solver 
determines the three dimensional position of the features with respect to 
the cart from their apparent movement image to image. 

The navigator plans a path to the destination which avoids all the 
perceived features by a large safety margin. The program then sends 
steering and drive commands to the cart to move it about a meter along 
the planned path. The cart's response to such commands is not very 
precise. The camera is then operated as before, and nine new images are 
acquired. The control program uses a version of the correlator to find as 
many of the features from the previous location as,possiblc in the new 
pictures, and applies the camera solver. The program then deduces the 
cart's actual motion dunng the step from the apparent three dimensional 
shift of these features. Some of the features are pruned during this 
process, and the interest operator is invoked to add new ones. 

This repeats until the cart arrives at its destination or until some 

disaster terminates the program. Figure la and lb document uie cart's 
internal world model at two points during a sample run. 

CAMERA CALIBRATION 

The camera's focal length an geometric distortion are determined by 
parking the cart a precise distance in front of a wall of many spots and one 
cross. A program digitizes an image of the spot array, locates the spots and 
the cross, and constructs a a two dimensional polynomial that relates the 
position of the spots in the image to their position in an ideal unity focal 
length camera, and another polynomial that converts points from the 
ideal camera to points in the image. These polynomials arc used to correct 
the positions of perceived objects in later scenes. 

The algorithm begins by determining the array's approximate spacing 
and orientation. It trims the picture to make it square, reduces it by 
averaging to 64 by 64, calculates the Fourier transform of the reduced 
image and takes its power spectrum, arriving at a 21) transform symmetric 
about the origin, and having strong peaks at frequencies corresponding to 
the horizontal and vertical and half-diagonal spacings. with weaker peaks 
at the harmonics. It multiplies each point [ij] in this transform by point [-
j.t] and points [ j - i j+ i\ and [i+jj-il effectively folding the primary peaks 
onto one another. The strongest peak in the 90 degree wedge around the y 
axis gives the spacing and orientation information needed by the next part 
of the process. 

The interest operator described later is applied to roughly locate a spot 
near the center of the image. A special operator examines a window 
surrounding this position, generates a histogram of intensity values within 
the window, decides a threshold for separating the black spot from the 
white background, and calculates the centroid and first and second 
moment of the spot. This operator is again applied at a displacement 
from the first centroid indicated by the orientation and spacing of the 
grid, and so on, the region of found spots growing outward from the seed. 

A binary template for the expected appearance of the cross in the 
middle of the array is constructed from the orientation/spacing data from 
the Fourier transform. l"he area around each of the found spots is 
thresholded on the basis of the expected cross area, and the resulting two 
valued pattern is convolved with the cross template. The closest match in 
the central portion of the picture is declared to be the origin. 

Two least-squares polynomials (one for X and one for Y) of third (or 
sometimes fourth) degree in two variables, relating the actual positions of 
the spots to the ideal positions in a unity focal length camera, arc then 
generated and written into a file. The polynomials arc used in the 
obstacle avoider to correct for camera roll, tilt, focal length and long term 
variations in the vidicon geometry. 

INTEREST OPERATOR 

The cart vision code deals with localized image patches called features. 
A feature is conceptually a point in the three dimensional world, but it is 
found by examining localities larger than points in pictures. A feature is 
good if it can be located unambiguously in different views of a scene. A 
uniformly colored region or a simple edge is not good because its parts are 
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indistinguishable. Regions such as corners, with high contrast in 
orthogonal directions are best 

New features in images are picked by a subroutine called the interest 
operator. It tries to select a relatively uniform scattering of good features, 
to maximize the probability that a few features will be picked on every 
visible object by returning regions that arc local maxima of a directional 
variance measure. Featureless areas and simple edges, which have no 
variance in the directior of the edge, are thus avoided. 

Directional variance is measured over small square windows. Sums of 
squares of differences of pixels adjacent in each of four directions 
(horizontal, vertical and two diagonals) over each window are calculated, 
and the window's interest measure is the minimum of these four sums. 
Features are chosen where the interest measure has local maxima. The 
chosen features are stored in an array, sorted in order of decreasing 
interest measure. 

Once a feature is chosen, its appearance is recorded as series of excerpts 
from the reduced image sequence. A window (6 by 6 in the current 
implementation) is excised around the feature's location from each of the 
variously reduced pictures. Only a tiny fraction of the area of the original 
(unreduced) image is extracted. Four times as much of the x2 reduced 
image is stored, sixteen umes as much of the x4 reduction, and so on until 
at some level we have the whole image. The final result is a scries of 6 by 6 
pictures, beginning with a very blurry rendition of the whole picture, 
gradually zooming in linear expansions of two to a sharp closcup of the 
feature. 

Weaknesses 

The measure is able to unambiguously reject edges only if they are 
oriented along the four directions of summation. Edges with intermediate 
direction give non-zero values for all four sums, and arc sometimes 
incorrectly chosen as interesting. The operator especially favors 
intersecting edges. These arc sometimes corners or cracks in objects, and 
are very good. Sometimes they arc caused by a distant object peering 
over the edge of a nearby one and then they are very bad. Such spurious 
intersections do not have a definite distance, and must be rejected during 
camera solving. 

CORRELATION 

Deducing the 3D location of features from their projections in 2D 
images requires that we know their position in two or more such images. 
The correlator is a subroutine that, given a feature description produced 
by the interest operator from one image, finds the best match in a 
different, but similar, image. Its search area can be the entire new picture, 
or a rectangular sub-window. 

The search uses a coarse to fine strategy that begins in reduced versions 
of the pictures. Typically the first step takes place at the xl6 (linear) 
reduction level. The 6 by 6 window at that level in the feature description, 
that covers about one seventh of the total area of the original picture, is 
convolved with the search area in the correspondingly reduced version of 
the second picture. The 6 by 6 description patch is moved pixel by pixel 
over the approximately 15 by 16 destination picture, and a correlation 
coefficient is calculated for each trial position. The position with the best 
match is recorded. The 6x6 area it occupies in the second picture is 
mapped to the x8 reduction level, where the corresponding region is 12 
pixels by 12. The 6 by 6 window in the x8 reduced level of the feature 
description is then convolved with this 12 by 12 area, and the position of 
best match is recorded and used as a search area for the x4 level. The 
process continues, matching smaller and smaller, but more and more 
detailed windows until a 6 by 6 area is selected in the unreduced picture. 
The window sizes and other parameters are sometimes different from the 
ones used in this example. 

STEREO 

Slider Stereo 

At each pause on its computer controlled itinerary the cart slides its 
camera from left to right on the 52 cm track, taking 9 pictures at precise 
6.5 cm intervals. Points are chosen in the fifth (middle) of these 9 images, 
either by the correlator to match features from previous positions.-or by 
the interest operator. The camera slides parallel to the horizontal axis of 
the (distortion corrected) camera co-ordinate system, so the parallax-
induced displacement of features in the 9 pictures is purely horizontal. 

The correlator looks for the points chosen in the central image in each 
of the eight other pictures. The search is restricted to a narrow horizontal 
band. This has little effect on the computation time, but it reduces the 
probability of incorrect matches. In the case of correct matches, the 
distance to the feature is inversely proportional to its displacement from 
one image to another. The uncertainty in such a measurement is the 
difference in distance a shift one pixel in the image would make. The 
uncertainty varies inversely with the physical separation of the camera 
positions where the pictures were taken (the stereo baseline). Long 
baselines give more accurate distance measurements. 

After the correlation step the program knows a feature's position in 
nine images It considers each of the 36 (= 9 choose 2) possible image 
pairings as a stereo baseline, and records the estimated (inverse) distance 
of the feature in a histogram. Each measurement adds a little normal 
curve to the histogram, with mean at the estimated distance, and standard 
deviation inversely proportional to the baseline, reflecting the uncertainty. 
The area under each curve is made proportional to the product of the 
correlation coefficients of the matches in the two images (in central image 
this coefficient is taken as unity), reflecting the confidence that the 
correlations were correct. The distance to the feature is indicated by the 
largest peak in the resulting histogram, ;f this peak is above a certain 
threshold. If below, the feature is forgotten about. 

The correlator sometimes matches features incorrectly. The distance 
measurements from incorrect matches in different pictures arc not 
consistent When the normal curves from 36 pictures pairs arc added up. 
the correct matches agree with each other, and build up a large peak in 
the histogram, while incorrect matches spread themselves more thinly. 
Two or three correct correlations out of the eight will usually build a peak 
sufficient to offset a larger number of errors. In this way eight 
applications of a mildly reliable operator interact to make a very reliable 
distance measurement 

Motion Stereo 

After having determined the 3D location of objects at one position, the 
computer drives the cart about a meter forward. At the new position it 
slides the camera and takes nine pictures. The correlator is applied in an 
attempt to find all the features successfully located at the previous 
position. Feature descriptions extracted from the central image at the last 
position arc searched for in the central image at the new stopping place. 

Slider stereo then determines the distance of the features so found from 
the cart's new position. The program now knows the 3D position of the 
features relative to its camera at the old and the new locations. Its own 
movement is deduced from 3D co-ordinate transform that relates the two. 

The program first eliminates mis-matches in the correlations between 
the central images at two positions. Although it doesn't yet have the co-
ordinate transform between the old and new camera systems, the program 
knows the distance between pairs of feature positions should be the same 
in both. It makes a matrix in which element [i,j] is the aosolute value of 
the difference in distances between points i and / in the first and second 
co-ordinate systems divided by the expected error (based on the one pixel 
uncertainty of the ranging). Fach row of this matrix is summed, giving an 
indication of how much each point disagrees with the other points. The 
idea is that while points in error disagree with virtually all points, correct 
positions agree with all the other correct ones, and disagree only with the 
bad ones. The worst point is deleted, and its effect is removed from the 
remaining points in the row sums. This pruning is repeated until the worst 
error is within the error expected from the ranging uncertainty. 

After the pruning, the program has a number of points, typically 10 to 
20. whose position error is small and pretty well known. The program 
trusts these, and records them in its world model, unless it had already 
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done so at a previous position. The pruned points are forgotten 
forevcrmorc. 

The 3d rotation and translation that relates the old and new cart 
position is then calculated by a Newton's method iteration that minimizes 
the sum of the squares of the distances between the transformed first co-
ordinates and the raw co-ordinates of the corresponding points at the 
second position, with each term divided by the square of the expected 
uncertainty in the 3D position of the points involved. 

PATH PLANNING 

The cart vision system "models" objects as simple clouds of features. If 
enough features are found on each nearby object, this model is adequate 
for planning a non-colliding path to a destination. The features in the 
cart's 3D world model can be thought of as fuzzy ellipsoids, whose 
dimensions reflect the program's uncertainty of their position. Repeated 
applications of the interest operator as the cart moves cause virtually all 
visible objects to be become modelled as clusters of overlapping 
ellipsoids. 

To simplify the problem, the ellipsoids arc approximated by spheres. 
Those spheres sufficiently above the floor and below the carts maximum 
height are projected on the floor as circles. The can itself is modelled as a 
3 meter circle. The path finding problem then becomes one of 
maneuvering the cart's 3 meter circle between the (usually smaller) circles 
of the potential obstacles to a desired location. It is convenient (and 
equivalent) to conceptually shrink the cart to a point, and add its radius to 
each and every obstacle. An optimum path in this environment will 
consist of cither a straight run between start and finish, or a series of 
tangential segments between the circles and contacting arcs (imagine 
loosely laying a string from start to finish between the circles, then pulling 
it tight). 

The program converts the problem to a shortest path in graph search. 
There are four possible paths between each pair of obstacles because each 
tangent can approach clockwise or counterclockwise. Each tangent point 
becomes a vertex in the graph, and the distance matrix contains sums of 
tangential and arc paths, with infinities for blocked or impossible routes. 
The cart program was occasionally run using this exact procedure, but 
more often with a faster approximation that made each obstacle into two 
vertices (one for each direction of circumnavigation). 

A few other considerations were essential in the path planning. The 
charted routes consist of straight lines connected by tangent arcs, and are 
thus plausible paths for the cart, which steers like an automobile. This 
plausibility is not necessarily true of the start of the planned route, which, 
as presented thus far, docs not take the initial heading of the cart into 
account. The plan could, for instance, include an initial segment going off 
90 degrees from the direction in which the cart points, and thus be 
impossible to execute. This is handled by including a pair of "phantom" 
obstacles along with the real perceived ones. The phantom obstacles have 
a radius equal to the cart's minimum steering radius, and are placed, in 
the planning process, on either side of the can at such a distance that after 
their radius is augmented by the cart's radius (as happens for all the 
obstacles), they just touch the cart's centroid. and each other, with their 
common tangents being parallel to the direction of the carts heading. 
They cfTcctivcly block the area made inaccessible to the cart by its 
maneuverability limitations. 

Path Execution 

After the path to the destination has been chosen, a portion of it must 
be implemented as steering and motor commands and transmitted to the 
cart. The control system is primitive. The drive motor and steering motors 
may be turned on and ofT at any time, but there exists no means to 
accurately determine just how fast or how far they have gone. The 
current program makes the best of this bad situation by incorporating a 
model of the cart that mimics, as accurately as possible, the cart's actual 
behavior. Under good conditions, as accurately as possible means about 
20%; the carl is not very rcpcatablc, and is affected by ground slope and 
texture, battery voltage, and other less obvious externals. 

The path executing routine begins by excising the first .75 meters of the 
planned path. This distance was chosen as a compromise between average 
cart velocity, and continuity between picture sets. If the cart moves too 
far between picture digitizing sessions, the picture will change too much 
for reliable correlations. This is especially true if the cart turns (steers) as 
it moves. 'The image seen by the camera then pans across the field of view. 
The cart has a wide angle lens that covers 60 degrees horizontally. The .75 
meters, combined with the turning radius limit (5 meters) of the cart 
results in a maximum shift in the field of view of 15 degrees, one quarter 
of the entire image. 

The program examines the cart's position and orientation at the end of 
the desired .75 meter lurch, relative to the starting position and 
orientation. The displacement is characterized by three parameters; 
displacement forward, displacement to the right and change in heading. 
In closed form the program computes a path that will accomplish this 
movement in two arcs of equal radius, but different lengths. The resulting 
trajectory has a general "S" shape. Rough motors timings arc derived 
from these paratmetcrs. The program then uses a simulation that takes 
into account steering and drive motor response to iteratively refine the 
solution. 

CONCLUSION 

Many years ago I chose the line of research described herein intending 
to produce a combination of hardware and software by which the cart 
could visually navigate reliably in most environments. For a number of 
reasons, the existing system is only a first approximation to that youthful 
ideal. 

One of the most serious limitations is the excruciating slowness of the 
program. In spite of my best efforts, and many compromises, in the 
interest of speed, it takes 10 to 15 minutes of real time to acquire and 
consider the images at each lurch, on a lightly loaded KL-10. This 
translates to an effective cart velocity of 3 to 5 meters an hour. Interesting 
obstacle courses (2 or three major obstacles, spaced far enough apart to 
permit passage within the limits of the cart's size and maneuverability) are 
at least 15 meters long, so interesting cart runs take from 3 to 5 hours, with 
little competition from other users, impossibly long under other 
conditions. 

During the last lew weeks of the AI lab's residence in the D.C Power 
building, when the full fledged obstacle runs described here were 
executed, such conditions of light load were available on only some 
nights, between 2 and 6 AM and on some weekend mornings. The cart's 
video system battery lifetime on a full charge is at most 5 hours, so the 
limits on field tests, and consequently on the debug/improve loop, were 
strictly circumscribed. 

Although major portions of the program had existed and been 
debugged for several years, the complete obstacle avoiding system 
(including fully working hardware, as well as programs) was not ready 
until two weeks before the lab's scheduled move. The first week was spent 
quashing unexpected trivial bugs, causing very silly cart behavior under 
various conditions, in the newest parts of the code, and recalibrating 
camera and motor response models. 

The final week was devoted to serious observation (and filming) of 
obstacle runs. Three full (about 20 meter) runs were completed, two 
indoors and one outdoors. Two indoor false starts, aborted by failure of 
the program to perceive an obstacle, were also recorded. The two long 
indoor runs were nearly perfect 

In the first, the cart successfully slalomed its way around a chair, a large 
cardboard icosahedron, and a cardboard tree then, at a distance of about 
16 meters, encountered a cluttered wall and backed up several times 
trying to find a way around it. 

The second indoor run involved a more complicated set of obstacles, 
arranged primarily into two overlapping rows blocking the goal. The cart 
backed up twice to negotiate the light turn required to go around the first 
row, then executed several steer forward / back up moves, lining itself up 
to go through a gap barely wide enough in the second row. This run had 
to be terminated, sadly, before the cart had gone through the gap because 
of declining battery charge and increasing system load. 
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The outdoor run was less successful. It began well; in the first few 
moves the program correctly perceived a chair directly in front of the 
camera, and a number of more distant cardboard obstacles and sundry 
debris. Unfortunately, the program's idea of the cart's own position 
became increasingly wrong. At almost every lurch, the position solver 
deduced a cart motion considerably smaller than the actual move. By the 
time the cart had rounded the foreground chair, its position model was so 
far off that the distant obstacles were replicated in different positions in 
the carts confused world model, because they had been seen early in the 
run and again later, to the point where the program thought an actually 
existing distant clear path was blocked. I restarted the program to clear 
out the world model when the planned path became too silly. At that time 
the cart was four meters in front of a cardboard icosahedron, and its 
planned path lead straight through it. The newly reincarnated program 
failed to notice the obstacle, and the cart collided with it. I manually 
moved the icosahedron out of the way, and allowed the run to continue. It 
did so uneventfully, though there were continued occasional slight errors 
in the self position deductions. The cart encountered a large cardboard 
tree towards the end of this journey and detected a portion of it only just 
in time to squeak by without colliding. 

The two short abortive indoor runs involved setups nearly identical to 
the two-row successful long run described one paragraph ago. The first 
row, about three meters in front of the cart's starting position contained a 
chair, a real tree (a small cypress in a planting pot), and a polygonal 
cardboard tree. The cart saw the chair instantly and the real tree after the 
second move, but failed to see the cardboard tree ever. Its planned path 
around the two obstacles it did sec put it on a collision course with the 
unseen one. Placing a chair just ahead of the cardboard tree fixed the 
problem, and resulted in a successful run. Never, in all my experience, has 
the code described in this thesis failed to notice a chair in front of the cart. 

Flaws Found 

These runs suggest that the system suffers from two serious weaknesses. 
It does not see simple polygonal (bland and featureless) objects reliably, 
and its visual navigation is fragile under certain conditions. Examination 
of the program's internal workings suggests some causes and possible 
solutions. 

Bland Interiors 

The program sometimes fails to see obstacles lacking sufficient high 
contrast detail within their outlines. In this regard, the polygonal uee and 
rock obstacles 1 whimsically constructed to match diagrams from a 3D 
drawing program, were a terrible mistake. In none of the test runs did the 
programs ever fail to see a chair placed in front of the cart, but half the 
time they did fail to see a pyramidal tree or an icosahedral rock made of 
clean white cardboard. These contrived obstacles were picked up reliably 
at a distance of 10 to 15 meters, silhouetted against a relatively unmoving 
(over slider travel and cart lurches) background, but were only rarely and 
sparsely seen at closer range, when their outlines were confused by a 
rapidly shifting background, and their bland interiors provided no 
purchase for the interest operator or correlator. Hvcn when the artificial 
obstacles were correctly perceived, it was by virtue of only two to four 
features. In contrast, the program usually tracked five to ten features on 
nearby chairs. 

In the brightly sunlit outdoor run the artificial obstacles had another 
problem. Their white coloration turned out to be much brighter than any 
"naturally" occurring extended object. These super bright, glaring, 
surfaces severely taxed the very limited dynamic range of the carts 
vidicon/digitzer combination. When the icosahedron occupied 10% of 
the cameras field of view, the automatic target voltage circuit in the 
electronics turned down the gain to a point where the background behind 
the icosahedron appeared nearly solid black. 

Confused Maps 

The second major problem exposed by the runs is glitches in the cart's 
self-posmon model. This model is updated after a lurch by finding the 3D 

translation and rotauon that best relates the 3d position of the set of 
tracked features before and after the lurch. In spite of the extensive 
pruning that precedes this step, (and partly because of it. as is discussed 
later) small errors in the measured feature positions sometimes cause the 
solver to converge to the wrong transform, giving a position error beyond 
the expected uncertainty. Features placed into the world model before 
and after such a glitch will not be in the correct relative positions. Often 
an object seen before is seen again after, now displaced, with the 
combination of old and new positions combining to block a path that is in 
actuality open. 

This problem showed up mainly in the outdoor run. I've also observed 
it indoors in past, in simple mapping runs, before the entire obstacle 
avoider was assembled. There appear to be two major causes for it, and a 
wide range of supporting factors. 

Poor seeing, resulting in too few correct correlations between the 
pictures before and after a lurch, is one culprit. The highly redundant 
nine eyed stereo ranging is very reliable, and causes few problems, but the 
non-redundant correlation necessary to relate the position of features 
before and after a lurch, is error prone Sometimes the mutual-distance 
invarianee pruning that follows is overly agressivc. and leaves too few 
points for a stable least squares co-ordinate fit. 

The outdoor runs encountered another problem. The program ran so 
slowly that shadows moved significantly (up to a half meter) between 
lurches, Their high contrast boundaries were favorite points for tracking, 
enhancing the program's confusion. 

Simple Fixes 

Though elaborate (and thus far untried in our context) methods such as 
edge matching may greatly improve the quality of automatic vision in 
future, subsequent experiments with the program revealed some modest 
incremental improvements that would have solved most of the problems 
in the test runs. 

The issue of unseen cardboard obstacles turns out to be partly one of 
over-conservatism on the program's part. In all cases where the cart 
collided with an obstacle it had correctly ranged a few features on the 
obstacle in the prior nine-eyed scan. The problem was that the much 
more fragile correlation between vehicle forward moves failed, and the 
points were rejected in the mutual distance test. Overall the nine-eyed 
stereo produced very few errors If the path planning stage had used the 
pre-pruning features (still without incorporating them permanently into 
the world model) the runs would have proceeded much more smoothly. 
All of the most vexing false negatives, in which the program failed to spot 
a real obstacle, would have been eliminated. There would have been a 
very few false positives, in which non-existent ghost obstacles would have 
been perceived. One or two of these might have caused an unnecessary 
swerve or backup. Hut such ghosts would not pass the pruning stage, and 
the run would have recovered after the initial, non-catastrophic, glitch. 

The self-position confusion problem is related, and in retrospect may 
be considered a trivial bug When the path planner computes a route for 
the cart, another subroutine takes a portion of this plan and implements it 
as a sequence of commands to be transmitted to the cart's steering and 
drive motors. During this process it runs a simulation that models the cart 
acceleration, rale of turning and so on. and which provides a prediction of 
the cart's position after the move. With the current hardware the 
accuracy of this prediction is not great, but it nevertheless provides much 
a prion information about the carts new position. This information is 
used, appropriately weighted, in the least-squares coordinate system 
solver that deduces the carts movement from the apparent motion in 3D 
of tracked features. It is not used, however, in the mutual distance 
pruning step that proceeds this solving. When the majority of features 
have been correctly tracked, failure to use this information does not hurt 
the pruning Hut when the seeing is poor, it can make the difference 
between choosing a spuriously agreeing set .of mis-tracked features and 
the small correctly matched set 

Incorporating the prediction into the pruning, by means of a heavily 
weighted point that the program treats like another tracked feature, 
removes almost all the positioning glitches when the program is fed the 
pictures from the outdoor run. 
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Figure 1a: 

This and the following diagram arc plan views of the 
can's world model at obstacle run stopping positions. 

In this first view, one step into a run. the can has (by 
the program's reckoning) travelled a little under a meter. 
The program has noted a number of objects; a chair in 
the foreground, pieces of cardboard on the floor, an 
icosahedron. a refrigerator, a cardboard tree, and some 
other things. It has deduced that the chair, the 
icosahedron and the tree arc real obstacles, and has 
planned a path which slaloms around them (the 
cardboard in the foreground has been ignored because it 
lies on the floor). 

The grid cells arc two meter squares, conceptually on 
the floor. The cart's own position is indicated by the 
small heavy square, and by the graph, indicating height, 
calibrated in centimeters, to the left of grid. Since the 
can never actually leaves or penetrates the floor, this 
grapn provides an indication of the overall accuracy. 
The irregular, tick marked, line behind the cart's 
position is the past itinerary of the cart as deduced by 
the program. Each tick mark represents a stopping 
place. The picture at top of the diagrams is the view 
seen by the TV camera. The two rays projecting forward 
from the cart position show the horizontal boundaries of 
the camera's field of view (as deduced by the camera 
calibration program). The numbered circles in the plan 
view arc features located and tracked by the program. 
The centers of the circles are the vertical projections of 
the feature positions onto the ground. The size of each 
circle is the uncertainty (caused by finite camera 
resolution) in the features position. The length of the 45 
degree line projecting to the upper right, and terminated 
by an identifying number, is the height of the feature 
above the ground, to the same scale as the floor grid. 
The features are also marked in the camera view, in the 
guise of numbered boxes. The thin line projecting from 
each box to a lower blob is a stalk which just reaches the 
ground, in the spirit of the 45 degree lines in the plan 
view. The irregular line radiating forwards from the carl 
is the planned future path. This changes from slop to 
stop, as the cart tails to obey instructions properly, and 
as new obstacles are detected. The small ellipse a short 
distance ahead of the cart along the planned path is the 
planned position of the next stop. 
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Figure 1b: 

After the l l ' t h lurch the cart has rounded the chair, 
the icosahedron and is planning to round the cardboard 
tree. The wold model has suffered som accumulated 
drift error, and the oldest acquired features are 
considerably misplaced. Also misplaced, due to human 
error, is the carts destination, which is about a meter 
behind the far wall of the room. The cart backed up a 
number of times later in this run trying to get around it, 
when il found planned paths blocked by newly observed 
portions of the wall. 

Calibration-polynomial distorted grid superimposed 
on the spot image from which it was calculated. 
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