
H.264/AVC CODEC: INSTRUCTION LEVEL COMPLEXITY ANALYSIS

Ce Xu, Thinh M. Le, Teng-Tiow Tay, MIEEE

Department of Electrical and Computer Engineering, National University of Singapore

ABSTRACT

H.264/AVC has been designed particularly to improve
coding efficiency and network friendliness. In this paper,
a simulator and profiler tool set based on the SimpleScalar
framework [1] is developed to derive instruction level
complexity of the H.264/AVC codec [2]. The reference
software JM8.6 is analyzed. Arithmetic, logic, shift,
control operations and memory bandwidth requirements
for the full codec are presented. The results of various
configurations on a tool-by-tool basis are compared and
analyzed so that trade-off decisions can be made. Finally,
a performance metric combining complexity, the objective
quality and the bit-rate is presented to assist design space
exploration.

1. INTRODUCTION

H.264/AVC [2] employs the same basic coding
framework as that of MPEG2, H.263, and MPEG4. It
achieves enhanced coding efficiency by adopting tools
such as multiple reference frames, variable block size,
Content Adaptive Binary Arithmetic Coding (CABAC),
etc. These tools demand much higher computation
capability. Efficient implementation targeting at real-time
applications requires proper choice of the hardware
platform. Traditional approaches are: general purpose
processor, media enhanced Digital Signal Processor (DSP)
and application-specific integrated circuit (ASIC) chip. It
is therefore essential to identify the instruction level
processing requirements to assist system design.

Priori works on complexity assessment have been
presented in [3-5], and [7]. In [4], [5], complexity issue is
addressed in terms of decoding/encoding time only.
Horowitz et al. [3] estimated the complexity in machine
cycles, but the analysis is limited to the baseline profile of
the decoder. Their method on average underestimates the
actual implementation complexity by a factor of 3-5.
Saponara et al. [7] reported total access count and peak
memory usage using the ATOMIUM tool set. However,
the instruction level complexity in terms of arithmetic,
logic, shift, and control operations were not addressed.

Figure 1: Simulation and profiling methodology.

In this work, a novel method is developed to report

the encoder and decoder complexities in RISC-like
instructions. As the reference software is non-optimized,
all reported complexity will be higher than optimized
implementations. The analysis focuses on functional unit
requirements (integer and floating point ALU), memory
access bandwidth and control logics as these are the main
costs for both software and hardware realizations.
H.264/AVC tools are examined on a tool-by-tool basis for
the full codec. Computation complexity, objective quality
(SNR-Y) and bit-rate saving are combined to form the
complete metric for design space exploration.

The rest of the paper is organized as follows. Section
2 describes the simulation and profiling method. Section 3
shows the codec configurations. Section 4 and 5 provides
the analysis of encoder and decoder complexity,
respectively. Section 6 presents a performance metric
incorporating complexity, quality, and bit-rate. Finally,
conclusions are provided in Section 7.

2. SIMULATION/PROFILING METHODOLOGY

The H.264/AVC reference software JM8.6 is compiled to
the SimpleScalar target, which is based on the popular
MIPS IV ISA. We developed a tool set to gather the data
and keep the simulation time practical. The strategy is to
split the simulation into two stages: the fast simulator and
the post-simulation profiler as depicted in Fig 1.

In the first stage, the user pre-configures a sampling
period in terms of number of instructions (default 20
million for encoder, 1 million for decoder). Then fast

functional simulation is performed and the simulator
records each accessed basic block’s address into a basic
block index file (bb.address). The simulator also
summarizes a basic block access count for every sampling
period (bb.count). In the second stage, the profiler loads
the program binary file and the basic block address file
(bb.address) to generate detailed information for each
basic block, including total number of instructions in the
basic block, count of each instruction, and the function
routine that the basic block belongs to by comparing the
basic block’s address with the text symbols in the binary
file. The profiler then combines the basic block
information with the basic block counts (bb.count) to
generate various statistics for each sampling period, hence
the entire simulation. This strategy introduces minimal
simulation overhead and the simulation speed is measured
15 MIPS on a 2.8 GHz Pentium 4/Linux system.

3. CONFIGURATION

The reference software JM8.6 is designed to include many
tools, to analyze the complexity on a tool-by-tool basis we
performed multiple simulations. The detailed
configurations for the codec are listed in Table 1. For
instance, configurations 1 and 2 force intra coding, and
configuration 2 further switches on all advanced tools
such as CABAC. Each of the configurations 3-10 encodes
the sequence in ...IPPP order. All advanced tools are
switched off and on for configurations 3 and 10,
respectively. For configurations 4-9, each has one or two
tools switched on. B-frame is not enabled in all the
simulations. The Foreman testing sequence is in QCIF
size and 50 frames are coded for each simulation.

4. COMPLEXITY: ENCODER

4.1. Overall Complexity

The SimpleScalar ISA is classified into six classes: load,
store, unconditional branch, conditional branch, integer
ALU, and floating point ALU. Figure 2 shows the
percentage of instruction classes in each sampling period
for the first 5 frames (configuration 6). Frame-to-frame
boundaries can be directly observed from the distribution
patterns. Fig. 3 shows the distribution on a per-frame
basis over the entire 50 frames. It is worth noting the first
frame, which is intra coded, requires the least number of
operations whereas the complexity for frames 2, 3, 4
keeps increasing due to added motion estimation reference
frame. All subsequent P-frames (4-7) show consistent
complexity since maximum reference frame is 3.

Table 2 gives the RISC-like instruction complexity for
configuration 10 (all tools switched on), including the first

I-frame, subsequent P-frame and the average over the
sequence. Fig. 3 gives the comparative average
complexity of all the configurations. The encoder requires
453.6 to 2110.4 million instructions for QCIF size I-frame
and 1175.2 to 5498 million for P-frame. It shows the
encoder complexity of H.264/AVC is at least one order
more than MPEG-4 base layer Lehtoranta et al. [6].

Table 2: “allon” encoder complexity per frame (million)
 I

(1st frame)
P

(2-50)
Avg

(1-50)
Load 690.29 2036.3 2009.4
Store 314.15 845.79 835.16
Unconditional Br 72.60 173.15 171.14
Conditional Br 97.71 190.24 188.39
Integer 924.91 2321.4 2293.5
Floating Point 0.34 0.41 0.40
Total 2100.0 5567.3 5498

4.2. Memory bandwidth

Fig.3 shows that for encoder, the load and store operations
take up 29-38% and 12-15%, respectively. Based on the
~2:1 relationship between load and store, associated
memory read and memory write circuitries and bus widths
can be designed accordingly. It is observed that the load
and store operations of inter coding is on the average 3
times more often than that of intra coding. Assuming
QCIF 10fps and all load/store are 1 Byte, the memory
bandwidth of intra coding is 1.3-6.9GB/sec for reading
and 0.53-3.1GB/sec for writing. The bandwidth of inter
coding is 4.16-20GB/sec for reading and 1.73-8.4GB/sec
for writing.

4.3. Computational complexity

Integer computation dominates the encoder complexity:
44%-50% for intra coding and 42%-45% for inter coding.
As expected, floating point operations are almost
negligible because H.264/AVC is designed to avoid them.
We classifies the MIPS IV integer operations into {add,
sub, mult, div, shift, logic, misc} and the breakdown is
shown in Fig. 4. It shows add, sub and shift dominate the
integer operations. Logic and mult operations take up a
small fraction, while div operations are almost negligible.
The reference software employs various strategies to
convert mult and div to less expensive operations like add
and shift. For instance, the coefficients of scaling
multiplication in integer transform is integrated into
quantization steps and stored as entries in a lookup table.
This converts several mult and div operations to one shift
only. Similar strategy is applied in inverse integer
transform and backward quantization.

Table 1: Simulation configurations

 Intra (III…) Inter (IPPPP…)
Configuration 1 2 3 4 5 6 7 8 9 10
Label intra intra2 alloff hada-

mard
cabac 3refs meblock rd hada-

cabac
allon

Hadamard N Y N Y N N N N Y Y
Ref. Frames - - 1 1 1 3 1 1 1 3
Block size - - 16x16 16x16 16x16 16x16 All 16x16 16x16 All
B-frames - - N N N N N N N N
CABAC N Y N N Y N N N Y Y
RD-optimize N Y N N N N N Y N Y
Search Range - - 16 16 16 16 16 16 16 16

0 100 200 300 400
0.25

0.3

0.35

0.4

0.45
load distribution

pe
rc

en
t

0 100 200 300 400
0

0.05

0.1

0.15

0.2
store distribution

pe
rc

en
t

0 100 200 300 400
0

0.02

0.04

0.06

0.08
uncond branch distribution

pe
rc

en
t

0 100 200 300 400
0

0.05

0.1
cond branch distribution

pe
rc

en
t

0 100 200 300 400
0.3

0.4

0.5

0.6

0.7
int operation distribution

pe
rc

en
t

0 100 200 300 400
0

0.5

1

1.5

2
x 10-3 floating point distribution

pe
rc

en
t

Figure 2: Encoder (config. 6, 3-refernce frames) instruction class distributions in each

interval of 20 million instructions. (X-axis indicates interval number)

4.4. Control instructions

For hardware ASIC implementation, branches add
difficulty to control logic design since more branches
means less regularity in data flow. For software
implementation, branches may stall the processor pipeline.
Unconditional branch contributes 3.5%-5.7% for intra

coding and 2.7%-3.7% for inter coding. Conditional
Branch contributes 4%-4.7% for intra coding and 2%-
3.6% for inter coding. Although these numbers are not
comparable to memory and integer operations, branches
could considerably degrade system performance. The
measured count is nearly 2G/sec for both branch types
when all the tools are switched on.

0 10 20 30 40 50
0

1000

2000

3000

Frame number (IPPP...)

N
um

be
r o

f I
ns

tru
ct

on
s

(M
ill

io
n)

total
load
store
uncond br
cond br
int
f loat

Figure 3: Encoder (config.6) complexity on a frame basis

0 1000 2000 3000 4000 5000

intra
intra2
alloff

hadamard
cabac
3refs

meblock
rd

hada_cabac
allon

load
store
uncond br
cond br
int
f loat

Figure 4: Encoder (all configs) complexity (million)

 per frame

0 500 1000 1500 2000

intra

intra2

allof f

hadamard

cabac

3refs

meblock

rd

hada_cabac

allon

add
sub
mult
div
logic
shif t
misc

Figure 5: Encoder integer operation complexity (million)

3 4 5 6 7 8 9 10
0.99

1

1.01

1.02

Configuration

SN
R

-Y

bi
t-r

at
e

3 4 5 6 7 8 9 10
0.7

0.8

0.9

1

Figure 9: Normalized SNRY and bit-rate

0 10 20 30 40 50
0

10

20

30

40

50

Frame number (IPPP...)

N
um

be
r o

f I
ns

tru
ct

on
s

(M
ill

io
n)

total
load
store
uncond br
cond br
int
f loat

Figure 6: Decoder (config.6) complexity on a frame basis.

0 10 20 30 40

intra
intra2
alloff

hadamard
cabac
3refs

meblock
rd

hada_cabac
allon

load
store
uncond br
cond br
int
f loat

Figure 7: Decoder complexity (million) per frame

0 2 4 6 8 10 12 14 16 18

intra
intra2
allof f

hadamard
cabac
3refs

meblock
rd

hada_cabac
allon

add
sub
mult
div
logic
shif t
misc

Figure 8: Decoder integer operation complexity (million)

3 4 5 6 7 8 9 10
20

22

24

26

28

Configuration

FO
M

Figure 10: FOM for configuration 3-10

5. COMPLEXITY: DECODER

The encoder shows consistent inter-frame complexity,
whereas decoder complexity is more content dependent
(20% variations are observed) as shown in Fig 6. Fig 7
shows the decoder complexity does not vary much for
different encoder configurations. The average operations
per QCIF sized frame is 30-42 million instructions, about
1-2 order of magnitude less than that of the encoder.
Integer computation is again the major part, 12.8-17.9
million per I-frame and 14.7-15.8 million per P-frame. Fig
8 gives the breakdown of integer operations. It is worth
noting that mult and div take a larger percentage
compared to that of encoder. Unlike the encoder, the
memory write bandwidth (63-99 MB/sec) is higher than
memory read bandwidth (48-82 MB/sec) for the decoder.
Unconditional branch takes up a small fraction (0.55-
1.1milion) but conditional branch takes up a much larger
percentage (3.8-5.1 million).

6. COMPLEXITY, QUALITY, AND BIT RATE
TRADE-OFF

The normalized SNR-Y and bit-rate to “alloff” is show in
Fig. 9. As for this experiment (low bit-rate, low to
moderate scene complexity), CABAC and variable block
size improves bit-rate saving at low complexity increase;
multiple reference frames improves bit-rate saving but
doubles the complexity. When all tools are switched on,
26% bit-rate saving is achieved and SNR-Y is improved
by 0.5 dB.

Besides the instruction count complexity measure, it
is sometimes desirable to consider the instruction latency
and power consumption. For example, power is one of the
primary concerns for multimedia processing in handheld
devices. To accommodate these concerns, we develop a
general complexity metric as follows.

arith arith mem mem control controlComplexity W C W C W C= ⋅ + ⋅ + ⋅

where W is the weight vector and C is the measured
instruction count vector. The conventional instruction
count measure is a special case where all weights are 1.

We further present two weight metrics emphasizing
on execution time and power, respectively. These weights
have to be specifically chosen for different target
processors. As an example in this work, the MIPS R10000
processor [8] is assumed. Table 4 gives the instruction
latency and Table 5 gives the function units power
consumption for this processor. The power model was
presented by Brook et al. in their Wattch [9] framework.
We configured the parameters according to MIPS R10000
as follows: CMOS technology: 0.35µm, Clock: 195MHz,

Vdd: 3.3 V. The integer operations and conditional
branches consume integer ALU power, each load and
store operation consumes cache/TLB power.
Unconditional branch are not counted. Similar complexity
metric can be derived easily if a different target processor
is to be chosen.

Table 3: Instruction latency as weights
Instruction Latency Instruction Latency
add/sub/logic/set 1 Div 34
mf/mt hi/lo 1 Load 2
shift/lui 1 Store -
Mult 5 Cond. Br 1

Table 4: Function units power consumption as weights
Component Function Power

(Watts)
Int ALU 1 add, sub, logic, shift,

conditional branch
0.6597

Int ALU 2 add, sub, logic, mult, div 0.6597
L1 data
cache

32K, 2 way set-assoc.
refill line: 32 byte

4.6444

Data cache
TLB

64 entries, full-assoc. page
size:4096K

0.5111

To combine the defined complexity, objective visual

quality and bit-rate saving into one metric, a figure of
merit (FOM) of a particular configuration c relative to the
basic configuration “alloff” is introduced and defined as
follows:

()FOM c X Y Zα β γ= ⋅ − ⋅ − ⋅

() () ()
, ,

() () ()

SNRY c bitrate c Complexity c
X Y Z

SNRY alloff bitrate alloff Complexity alloff
= = =

where , ,α β γ are adjustable coefficients. For example, in
applications requiring high quality, α should be set large
to emphasis quality, whereas in real-time applications,
γ should be set small to emphasis complexity saving.

, ,α β γ may be calculated using “equivalent performance”
criteria. For instance, if “1% increase in SNR-Y and 10%
increase in bit rate without complexity change” and “1%
increase in SNR and 30% increase in complexity without
bit rate change” are both considered as good as the
original one, then:

1.01 1.1 1.01 1.3andα β α β α γ α γ− = − − = −

One particular solution is 30, 3, 1α β γ= = = . Using
instruction count as the complexity measure, along with
these parameters, the FOM of all inter-coding
configurations in Table 1 is shown in Fig. 10. In this case
configuration 9 gives the best FOM. It is important to note

that the FOM defined here is not an absolute metric, i.e. it
is meaningless to apply it to a single configuration.
Instead the FOM is a relative performance measure
among different configurations of a single application, or
possibly across different applications in the same domain,
hence assist system designers to evaluate trade-offs.

7. CONCLUSION

In this paper, a toolset is developed to study the
complexity of H.264/AVC encoder and decoder. Analysis
shows complexity of inter coding is 3 times intra coding.
Memory read bandwidth is 2 times write bandwidth for
encoder but less than write bandwidth for decoder.
Analysis of integer-ALU instructions shows add, sub, and
shift are dominant for both encoder and decoder. These
results are particularly useful for resource allocation in
hardware implementations. Tool-by-tool analysis shows
trade-offs between various configurations. A complexity-
quality-bitrate performance metric is presented to examine
the relative performance among all the configurations.
The metric contains application-dependent coefficients
and can be customized to a variety of H.264/AVC
application domains. In this work, the configuration with
hadamard transform and CABAC achieves highest figure
of merit.

8. REFERENCES

[1] D. Burger and T. M. Austin, “The SimpleScaler Tool Set,”
Version 2.0. Computer Architecture News, page 13-15, June
1997.

[2] “Information technology - Coding of audio-visual objects -
Part 10: Advanced video coding,” Final Draft International
Standard, ISO/IEC FDIS 14496-10, Dec. 2003.

[3] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro,
“H.264/AVC Baseline Profile Decoder Complexity Analysis”,
IEEE Transactions on Circuits and Systems for Video
Technology, pp. 704-716, vol. 13, no. 7, Jul. 2003.

[4] V. Lappalainen, A. Hallapuro, T.D. Hamalainen,
“Optimization of emerging H.26L video encoder”, Proc. IEEE
Workshop on Signal Processing Systems, pp. 406-415,
September 2001.

[5] V. Lappalainen, A. Hallapuro, T.D. Hamalainen,
“Complexity of optimized H.26L video decoder
implementation”, IEEE Transactions on Circuits and Systems
for Video Technology, pp.717–725, vol. 13 , no. 7 , July 2003.

[6] O. Lehtoranta, T.D. Hamalainen, “Complexity analysis of
spatially scalable MPEG-4 encoder,” Proc. International
Symposium on System-on-Chip, pp57-60, Nov. 2003.

[7] S. Saponara, C. Blanch, K. Denolf, J. Bormans, “The JVT
Advanced Video Coding Standard: Complexity and Performance
Analysis on a Tool-by-Tool Basis”, IMEC, 2003.

[8] MIPS Technologies, “MIPS R10000 Microprocessor User’s
Manual, Version 2.0,” MIPS Technologies, 1996.

[9] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations,” Proceeding of 27th Annual International
Symposium on Computer Architecture, p.83-94, June 2000.

