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ABSTRACT 
 
H.264/AVC has been designed particularly to improve 
coding efficiency and network friendliness. In this paper, 
a simulator and profiler tool set based on the SimpleScalar 
framework [1] is developed to derive instruction level 
complexity of the H.264/AVC codec [2]. The reference 
software JM8.6 is analyzed. Arithmetic, logic, shift, 
control operations and memory bandwidth requirements 
for the full codec are presented. The results of various 
configurations on a tool-by-tool basis are compared and 
analyzed so that trade-off decisions can be made. Finally, 
a performance metric combining complexity, the objective 
quality and the bit-rate is presented to assist design space 
exploration.  

 

1. INTRODUCTION 
 
H.264/AVC [2] employs the same basic coding 
framework as that of MPEG2, H.263, and MPEG4. It 
achieves enhanced coding efficiency by adopting tools 
such as multiple reference frames, variable block size, 
Content Adaptive Binary Arithmetic Coding (CABAC), 
etc. These tools demand much higher computation 
capability. Efficient implementation targeting at real-time 
applications requires proper choice of the hardware 
platform. Traditional approaches are: general purpose 
processor, media enhanced Digital Signal Processor (DSP) 
and application-specific integrated circuit (ASIC) chip. It 
is therefore essential to identify the instruction level 
processing requirements to assist system design.  

Priori works on complexity assessment have been 
presented in [3-5], and [7]. In [4], [5], complexity issue is 
addressed in terms of decoding/encoding time only. 
Horowitz et al. [3] estimated the complexity in machine 
cycles, but the analysis is limited to the baseline profile of 
the decoder. Their method on average underestimates the 
actual implementation complexity by a factor of 3-5. 
Saponara et al. [7] reported total access count and peak 
memory usage using the ATOMIUM tool set. However, 
the instruction level complexity in terms of arithmetic, 
logic, shift, and control operations were not addressed.  

 
Figure 1: Simulation and profiling methodology. 

 
In this work, a novel method is developed to report 

the encoder and decoder complexities in RISC-like 
instructions. As the reference software is non-optimized, 
all reported complexity will be higher than optimized 
implementations. The analysis focuses on functional unit 
requirements (integer and floating point ALU), memory 
access bandwidth and control logics as these are the main 
costs for both software and hardware realizations. 
H.264/AVC tools are examined on a tool-by-tool basis for 
the full codec. Computation complexity, objective quality 
(SNR-Y) and bit-rate saving are combined to form the 
complete metric for design space exploration.  

The rest of the paper is organized as follows. Section 
2 describes the simulation and profiling method. Section 3 
shows the codec configurations. Section 4 and 5 provides 
the analysis of encoder and decoder complexity, 
respectively. Section 6 presents a performance metric 
incorporating complexity, quality, and bit-rate. Finally, 
conclusions are provided in Section 7. 
 

2. SIMULATION/PROFILING METHODOLOGY 
 
The H.264/AVC reference software JM8.6 is compiled to 
the SimpleScalar target, which is based on the popular 
MIPS IV ISA. We developed a tool set to gather the data 
and keep the simulation time practical. The strategy is to 
split the simulation into two stages: the fast simulator and 
the post-simulation profiler as depicted in Fig 1. 

In the first stage, the user pre-configures a sampling 
period in terms of number of instructions (default 20 
million for encoder, 1 million for decoder). Then fast 



functional simulation is performed and the simulator 
records each accessed basic block’s address into a basic 
block index file (bb.address). The simulator also 
summarizes a basic block access count for every sampling 
period (bb.count). In the second stage, the profiler loads 
the program binary file and the basic block address file 
(bb.address) to generate detailed information for each 
basic block, including total number of instructions in the 
basic block, count of each instruction, and the function 
routine that the basic block belongs to by comparing the 
basic block’s address with the text symbols in the binary 
file. The profiler then combines the basic block 
information with the basic block counts (bb.count) to 
generate various statistics for each sampling period, hence 
the entire simulation.  This strategy introduces minimal 
simulation overhead and the simulation speed is measured 
15 MIPS on a 2.8 GHz Pentium 4/Linux system. 
 

3. CONFIGURATION 
 
The reference software JM8.6 is designed to include many 
tools, to analyze the complexity on a tool-by-tool basis we 
performed multiple simulations. The detailed 
configurations for the codec are listed in Table 1. For 
instance, configurations 1 and 2 force intra coding, and 
configuration 2 further switches on all advanced tools 
such as CABAC. Each of the configurations 3-10 encodes 
the sequence in ...IPPP  order.  All advanced tools are 
switched off and on for configurations 3 and 10, 
respectively. For configurations 4-9, each has one or two 
tools switched on. B-frame is not enabled in all the 
simulations. The Foreman testing sequence is in QCIF 
size and 50 frames are coded for each simulation. 
 

4. COMPLEXITY: ENCODER 
 
4.1. Overall Complexity 
 
The SimpleScalar ISA is classified into six classes: load, 
store, unconditional branch, conditional branch, integer 
ALU, and floating point ALU. Figure 2 shows the 
percentage of instruction classes in each sampling period 
for the first 5 frames (configuration 6). Frame-to-frame 
boundaries can be directly observed from the distribution 
patterns. Fig. 3 shows the distribution on a per-frame 
basis over the entire 50 frames. It is worth noting the first 
frame, which is intra coded, requires the least number of 
operations whereas the complexity for frames 2, 3, 4 
keeps increasing due to added motion estimation reference 
frame. All subsequent P-frames (4-7) show consistent 
complexity since maximum reference frame is 3. 

Table 2 gives the RISC-like instruction complexity for 
configuration 10 (all tools switched on), including the first 

I-frame, subsequent P-frame and the average over the 
sequence. Fig. 3 gives the comparative average 
complexity of all the configurations. The encoder requires 
453.6 to 2110.4 million instructions for QCIF size I-frame 
and 1175.2 to 5498 million for P-frame. It shows the 
encoder complexity of H.264/AVC is at least one order 
more than MPEG-4 base layer Lehtoranta et al. [6]. 
 
Table 2: “allon” encoder complexity per frame (million) 
 I 

(1st frame) 
P 

(2-50) 
Avg 

(1-50) 
Load 690.29 2036.3 2009.4 
Store 314.15 845.79 835.16 
Unconditional Br 72.60 173.15 171.14 
Conditional Br 97.71 190.24 188.39 
Integer 924.91 2321.4 2293.5 
Floating Point 0.34 0.41 0.40 
Total 2100.0 5567.3 5498 

 
4.2. Memory bandwidth 
 
Fig.3 shows that for encoder, the load and store operations 
take up 29-38% and 12-15%, respectively. Based on the 
~2:1 relationship between load and store, associated 
memory read and memory write circuitries and bus widths 
can be designed accordingly. It is observed that the load 
and store operations of inter coding is on the average 3 
times more often than that of intra coding. Assuming 
QCIF 10fps and all load/store are 1 Byte, the memory 
bandwidth of intra coding is 1.3-6.9GB/sec for reading 
and 0.53-3.1GB/sec for writing. The bandwidth of inter 
coding is 4.16-20GB/sec for reading and 1.73-8.4GB/sec 
for writing. 
 
4.3. Computational complexity 
 
Integer computation dominates the encoder complexity: 
44%-50% for intra coding and 42%-45% for inter coding.  
As expected, floating point operations are almost 
negligible because H.264/AVC is designed to avoid them. 
We classifies the MIPS IV integer operations into {add, 
sub, mult, div, shift, logic, misc} and the breakdown is 
shown in Fig. 4. It shows add, sub and shift dominate the 
integer operations. Logic and mult operations take up a 
small fraction, while div operations are almost negligible. 
The reference software employs various strategies to 
convert mult and div to less expensive operations like add 
and shift. For instance, the coefficients of scaling 
multiplication in integer transform is integrated into 
quantization steps and stored as entries in a lookup table. 
This converts several mult and div operations to one shift 
only. Similar strategy is applied in inverse integer 
transform and backward quantization. 



 
Table 1: Simulation configurations 

 Intra (III…) Inter (IPPPP…) 
Configuration 1 2 3 4 5 6 7 8 9 10 
Label intra intra2 alloff hada- 

mard 
cabac 3refs meblock rd hada-

cabac 
allon 

Hadamard N Y N Y N N N N Y Y 
Ref. Frames - - 1 1 1 3 1 1 1 3 
Block size - - 16x16 16x16 16x16 16x16 All 16x16 16x16 All 
B-frames - - N N N N N N N N 
CABAC N Y N N Y N N N Y Y 
RD-optimize N Y N N N N N Y N Y 
Search Range - - 16 16 16 16 16 16 16 16 
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Figure 2: Encoder (config. 6, 3-refernce frames) instruction class distributions in each 

interval of 20 million instructions. (X-axis indicates interval number) 
 
4.4. Control instructions 
 
For hardware ASIC implementation, branches add 
difficulty to control logic design since more branches 
means less regularity in data flow. For software 
implementation, branches may stall the processor pipeline. 
Unconditional branch contributes 3.5%-5.7% for intra 

coding and 2.7%-3.7% for inter coding. Conditional 
Branch contributes 4%-4.7% for intra coding and 2%-
3.6% for inter coding. Although these numbers are not 
comparable to memory and integer operations, branches 
could considerably degrade system performance. The 
measured count is nearly 2G/sec for both branch types 
when all the tools are switched on. 
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Figure 3: Encoder (config.6) complexity on a frame basis 
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Figure 4: Encoder (all configs) complexity (million) 

 per frame  
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Figure 5: Encoder integer operation complexity (million) 
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Figure 9: Normalized SNRY and bit-rate 
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Figure 6: Decoder (config.6) complexity on a frame basis. 

 

0 10 20 30 40

intra
intra2
alloff

hadamard
cabac
3refs

meblock
rd

hada_cabac
allon

load
store
uncond br
cond br
int
f loat

 
Figure 7: Decoder complexity (million) per frame  
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Figure 8: Decoder integer operation complexity (million) 
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Figure 10: FOM for configuration 3-10 

 
 



5. COMPLEXITY: DECODER 
 
The encoder shows consistent inter-frame complexity, 
whereas decoder complexity is more content dependent 
(20% variations are observed) as shown in Fig 6. Fig 7 
shows the decoder complexity does not vary much for 
different encoder configurations. The average operations 
per QCIF sized frame is 30-42 million instructions, about 
1-2 order of magnitude less than that of the encoder. 
Integer computation is again the major part, 12.8-17.9 
million per I-frame and 14.7-15.8 million per P-frame. Fig 
8 gives the breakdown of integer operations. It is worth 
noting that mult and div take a larger percentage 
compared to that of encoder. Unlike the encoder, the 
memory write bandwidth (63-99 MB/sec) is higher than 
memory read bandwidth (48-82 MB/sec) for the decoder. 
Unconditional branch takes up a small fraction (0.55-
1.1milion) but conditional branch takes up a much larger 
percentage (3.8-5.1 million). 
 

6. COMPLEXITY, QUALITY, AND BIT RATE 
TRADE-OFF 

 
The normalized SNR-Y and bit-rate to “alloff” is show in 
Fig. 9. As for this experiment (low bit-rate, low to 
moderate scene complexity), CABAC and variable block 
size improves bit-rate saving at low complexity increase; 
multiple reference frames improves bit-rate saving but 
doubles the complexity. When all tools are switched on, 
26% bit-rate saving is achieved and SNR-Y is improved 
by 0.5 dB. 

Besides the instruction count complexity measure, it 
is sometimes desirable to consider the instruction latency 
and power consumption. For example, power is one of the 
primary concerns for multimedia processing in handheld 
devices. To accommodate these concerns, we develop a 
general complexity metric as follows. 

 

arith arith mem mem control controlComplexity W C W C W C= ⋅ + ⋅ + ⋅

 
where W is the weight vector and C is the measured 
instruction count vector. The conventional instruction 
count measure is a special case where all weights are 1. 

We further present two weight metrics emphasizing 
on execution time and power, respectively. These weights 
have to be specifically chosen for different target 
processors. As an example in this work, the MIPS R10000 
processor [8] is assumed. Table 4 gives the instruction 
latency and Table 5 gives the function units power 
consumption for this processor. The power model was 
presented by Brook et al. in their Wattch [9] framework. 
We configured the parameters according to MIPS R10000 
as follows:  CMOS technology: 0.35µm, Clock: 195MHz, 

Vdd: 3.3 V. The integer operations and conditional 
branches consume integer ALU power, each load and 
store operation consumes cache/TLB power. 
Unconditional branch are not counted. Similar complexity 
metric can be derived easily if a different target processor 
is to be chosen. 
 

Table 3: Instruction latency as weights 
Instruction Latency Instruction Latency 
add/sub/logic/set  1 Div 34 
mf/mt hi/lo 1 Load 2 
shift/lui 1 Store - 
Mult 5 Cond. Br 1 

 
Table 4: Function units power consumption as weights 
Component Function Power 

(Watts) 
Int ALU 1 add, sub, logic, shift, 

conditional branch 
0.6597 

Int ALU 2 add, sub, logic, mult, div 0.6597 
L1 data 
cache 

32K, 2 way set-assoc. 
refill line: 32 byte 

4.6444 

Data cache 
TLB 

64 entries, full-assoc. page 
size:4096K 

0.5111 

 
To combine the defined complexity, objective visual 

quality and bit-rate saving into one metric, a figure of 
merit (FOM) of a particular configuration c relative to the 
basic configuration “alloff” is introduced and defined as 
follows: 

( )FOM c X Y Zα β γ= ⋅ − ⋅ − ⋅  

( ) ( ) ( )
, ,

( ) ( ) ( )

SNRY c bitrate c Complexity c
X Y Z

SNRY alloff bitrate alloff Complexity alloff
= = =  

where , ,α β γ are adjustable coefficients. For example, in 
applications requiring high quality, α should be set large 
to emphasis quality, whereas in real-time applications, 
γ should be set small to emphasis complexity saving. 

, ,α β γ may be calculated using “equivalent performance”  
criteria. For instance, if “1% increase in SNR-Y and 10% 
increase in bit rate without complexity change” and “1% 
increase in SNR and 30% increase in complexity without 
bit rate change” are both considered as good as the 
original one, then: 

1.01 1.1 1.01 1.3andα β α β α γ α γ− = − − = −  

One particular solution is 30, 3, 1α β γ= = = . Using 
instruction count as the complexity measure, along with 
these parameters, the FOM of all inter-coding 
configurations in Table 1 is shown in Fig. 10.  In this case 
configuration 9 gives the best FOM. It is important to note 



that the FOM defined here is not an absolute metric, i.e. it 
is meaningless to apply it to a single configuration. 
Instead the FOM is a relative performance measure 
among different configurations of a single application, or 
possibly across different applications in the same domain, 
hence assist system designers to evaluate trade-offs.  
 

7. CONCLUSION 
 

In this paper, a toolset is developed to study the 
complexity of H.264/AVC encoder and decoder. Analysis 
shows complexity of inter coding is 3 times intra coding. 
Memory read bandwidth is 2 times write bandwidth for 
encoder but less than write bandwidth for decoder. 
Analysis of integer-ALU instructions shows add, sub, and 
shift are dominant for both encoder and decoder. These 
results are particularly useful for resource allocation in 
hardware implementations. Tool-by-tool analysis shows 
trade-offs between various configurations. A complexity-
quality-bitrate performance metric is presented to examine 
the relative performance among all the configurations. 
The metric contains application-dependent coefficients 
and can be customized to a variety of H.264/AVC 
application domains. In this work, the configuration with 
hadamard transform and CABAC achieves highest figure 
of merit. 
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