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Abstract. The new form of quantitative and multi-dimensional 
association rules, unlike other approaches, does not require the 
discretization of real value attributes as a preprocessing step. Instead, 
associations are discovered with data-driven algorithms. Thus, such rules 
may be considered as a good tool to learn useful and precise knowledge 
from scientific, spatial or multimedia data, because data -driven 
algorithms work well with any sampling method. This paper presents 
the whole methodology of automatic discovery of new rules that includes 
theoretical background, algorithms, complexity analysis and 
postprocessing techniques. The methodology was designed for a specific 
telecom research problem, but it is expected to have a wide range of 
applications. 
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1 Introduction 
 

Problem statement. Association rules are a highly popular data mining 
method. However, most of the approaches are designed for "market basket 
analysis" and operate on categorical (qualitative) data. It renders them useless 
for learning from many common types of data based on numeric values. 
Special forms of association rules for quantitative att ributes may be applicable 
here. There are only few algorithms and methodologies to deal with 
quantitative associations [8, 4, 5].  
Most of them are based on some form of discretization labeled as partitioning, 
quantization or bucketing of numeric attributes, which means dividing the 
attribute domain into separate ranges. Such preprocessing method results in 
the loss of informational value of discovered rules, or often looses significant 
ones.  
There are lots of examples of misleading discretization. The paper [9] gives a 
proof that the problem of optimal quantization of real value attributes is NP -
hard. 
Data-driven algorithms are expected to be competitive to those based on 
discretization. An example of such algorithm is Window algorithm proposed 



in [4] for their new form of a quantitative rule. In Window, the boundaries of 
ranges in the antecedent of an association rule are determined by attribute 
values for specific tuples. A set of these ranges, called a profile, selects a 
subset of tuples. The antecedent consists of a statistical measure (usually the 
mean), which is based on values of another numeric attribute. The measure 
for the subset is compared with the same measure for the whole relation. The 
rule is significant if the difference between these two measures is high. An 
example of the rule discovered by this algorithm would be: 
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In [4] only rules with single numeric attribute in the antecedent are presented. 
This paper describes a generalization of this solution to multiple attributes. 
 The main task of this methodology is the automatic discovery of or hyper -
cuboid sub-spaces that have significantly different qualities from the whole 
space. It may be useful for intelligent analysis of maps, continuous proce sses 
or even multimedia. Consequently, this paper discusses various aspects of such 
multidimensional quantitative rules. 
 
Contribution. Definitions of quantitative association rules of Aummann and 
Lindell type are extended in this paper to fit multiple attributes. This allows 
us to construct the algorithm for discovering such rules. The algorithm utilizes 
specific rule properties described in theorems. We have also proposed some 
variations of the algorithm enhanced by heuristic strategies and advanced 
database indexing. The whole methodology is completed with proposition of 
post-processing techniques with the use of similarity and significance 
measures. Finally, the paper justifies that the methodology may be applied to 
real-world databases, utilizing our experience from the telecom GIS mining 
research project [2].  
 
Outline. The rest of the paper is organized as follows. Section 2 presents 
definition and properties of extended quantitative rule model. This properties 
are used for algorithms and strategies in Section 3, while their indispensable 
part: multi-attribute database indexes is described in Section 4. Section 5 
presents a general outlook on the rule discovery cycle, which includes 
definitions of similarity and importance measures used for rule management. 
Section 6 discusses two examples of application in knowledge discovery from a 
telecom company GIS database. Section 7 contains conclusions and 
recommendations for future work. 
 
 

2 Definitions 
 
In [4] rules with single numeric attribute in both antecedent and consequent 
are presented. In this paper we consider their generalized forms. Thus, 



definitions included in this section are multi-dimensional extensions of 
definitions for "Quantitative toQuantitative" rule from [4].  
Notations. Let D be a relational table with a set of quantitative attributes E 
= {I1, I2,…,Ik, J}. Letters A, B, ... mean single attributes from E, while X,Y, ... 
mean subsets of E. Table D may be viewed as a set of tuples D ={t1, t2,…,tn}. 
Notation ti.A indicates the value of attribute A for tuple i. A range (A, a, b) 
is defined by a single attribute EA∈ and two numbers 

baAdomainba ≤⊆∈ ,)(},{ R . A profile PrX over EX ⊆ is defined as a common 
part of ranges � Xi ii bia

∈
, - one range for each attribute in X. Notation 

xbaA Pr),,( ∈ means that range (A, a, b) is one of the ranges that delimit PrX. 
Basically, a profile may be simply viewed as a k-dimensional hyper-cuboid. 
|PrX| is a number of tuples from D that have all corresponding attribute values 
within profile PrX. A statistical measure M is defined over distribution of 
attribute J values. M(PrX) is a value of this measure for distribution of J for 
tuples that have all corresponding attribute values within PrX. In addition, 
M(D) is the measure value for distribution of J attribute values for the whole 
D. As in [4], the measure M is usually the mean of J values. With the use of 
above notations we can build up a definition of generalized �Quantitative to 
Quantitative� rule. 
 
Definition 21 Multi-dimensional (mean based) quantitative association rule 
is a rule of the form: 
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The antecedent of the rule is a profile that defines a sub-population of tuples 
that is significantly different from the whole D with regard to the attribute J. 
It is assured by the second condition (a difference condition) that holds if 
there is a minimal difference mindif between the measure for D and for the 
PrX. In [4] standard methods for statistical hypothesis testing were then 
applied (e.g. a Z-test for the mean) to check the significance of the difference. 
The third condition is a standard support requirement for an association rule.  
Constants mindif and minsup are user-defined parameters. There is no 
confidence parameter of the rule. The rule has the difference parameter dif 
=M(PrX)-M(D) instead, to indicate its strength. Let us here specify minimal 
M for a rule by � = M(D) +mindif. The dimensionality of the rule is equal to 
the number of attributes in its profile. 
 
Remark. Definition 21 describes a rule that has the mean above average 
(M(PrX)>M(D)). The work in this paper considers above-average rules that 



follow this definition. All this may be also applied by the simple analogy for 
below-average rules. 
 
Examples of quantitative rules are: 
 

cigarettes daily ∈ (10, 20) ∧ overweight ∈ (10; 20) ⇒  
life expectancy = 58 (life expectancy = 72) 

 
latitude ∈ (49N, 50N) ∧ longitude ∈ (19E, 21E) ⇒ 
AprAvgTemp = 3oC (AprAvgTempPoland = 7oC) 

 
Now we can define rules with profiles contained in other rules' profiles and 
basic rules: 
 
Definition 22 (Sub-rules) The rule PrX ⇒ M(PrX) is contained in PrY⇒ 
M(PrY) (i.e. is a sub-rule), if Y ⊆ X, and for each attribute B with the range 
(B, a, b) ∈ PrX exist such c, d, that (B,c, d) ∈ PrY ∧ c ≤ a ≤ b ≤ d 
 
Definition 23 (Basic rule) Basic rule is not contained in any other rule.  
 
Other important notions are irreducible and maximal rules: 
 
Definition 24 (Irreducible rule) The rule PrX ⇒ M(PrX) is irreducible, 
if for every range (A, a, b) ∈  PrX and every number c, a <  c <  b is true as 
follows: profiles PrX1 and PrX2 that are created by exchanging (A, a, b) in PrX 
respectively with ranges (A, a, c) and (A, b, c) result in rules PrX1 ⇒ M(PrX1 
) and PrX2 ⇒ M(PrX2) that fulfill at least the difference condition from 
definition 21. 
 
Definition 25 (Maximal rule) The rule PrX ⇒ M(PrX) is a maximal rule, 
if for every range (A, a, b) ∈ PrX and every c, c > b(c < a) the rule which is 
created by exchanging range (A, a, b) in the input rule with range (A, a, c) 
((A, c, b)) does not fulfill the difference condition from definition 21 or is 
reducible. 
 
Accordingly, irreducible rule profile may be divided by any hyperplane A = c 
into two profiles, that maintain above-average difference condition. As it is 
pointed out in section 5 in multiple dimensions irreducibility is not good 
enough to fit the intuitive connotation of a homogeneous rule. However, 
irreducibility is a basic quality that makes the rule desired. 
 
Maximal rule is one that can not be extended into a single dimension. 
Nonetheless, it may be extended into two or more dimensions by enlarging 
more than one range from PrX. That is why definition of maximality is useful 
mainly for one-dimensional rules. 
Let us present two theorems that describe properties of quantitative rules 



and are essential for discovering them. 
 
Theorem 21 If the quantitative association rule PrXM⇒(PrX) is irreducible, 
then 
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Proof. This theorem states that on every profile boundary of irreducible rule 
is a tuple (called �-tuple), that has J value above �. Let us assume that, on 
the contrary, there is a plain, below-average tuple that is closer to profile 
boundary than a �-tuple. Then we can draw a division line between the tuple 
and the rest of the profile along the boundary. As a result the part with this 
single tuple is below average, so the whole profile can not be irreducible rule.  
The practical consequence of this theorem is that �-tuples with maximal and 
minimal PrX attribute values define the profile area of the rule. 
 
Theorem 22 There are minimum 2, maximum 2k �-tuples to define a profile 
of the irreducible rule. 
 
Proof. The profile of the rule is a hyper-cuboid with 2k faces and 2k vertexes. 
A single � -tuple defines maximum of k faces, if is in one of vertexes. If the �-
tuple is neither a vertex nor an edge, it defines only 1 face. Hence, a minimum 
of 2 �-tuples is needed (in opposite vertexes) and maximum 2k �-tuples one in 
each face of the hyper-cuboid. 
For example, a profile in two dimensions is defined by 2,3 or 4 �-tuples (Fig. 
1). 

 Fig. 1. �-tuples that define a profile 
 
 
 



3 Mining algorithm and cost reduction strategies 
 
The general outline of the mining algorithm that utilizes theorems 21 and 22 
is as follows. First, select all the �-tuples. Then consider the �-tuples in sets 
from minimum 2 to maximum 2k elements. For each set find minimal and 
maximal values for each attribute I1, …, Ik. In this way we obtain suspected 
profile boundaries. Then, check the irreducibility of the profile by 
incrementally checking divisions of the profile into two hyper-cuboids with all 
included tuples. All the hyper-cuboids have to be above average in terms of 
the mean J value. If only one of the checks fails, the profile does not form a 
rule and so may be rejected. 
The algorithm may be sketched in a recursive form: 
 
1 int CheckMiTuples (int level, int TupleNo) 
2 { 
3   if (level < 2*k) 
4   { 
5     for(int i=TupleNo+1; i<=MiTuplesQ,i++) 
6     { 
7       AddTuple(MiTupleSet,i); 
8       if (level>1) CheckProfile(MiTupleSet); 
9       CheckMiTuples(level+1,i); 
10    } 
11   } 
12 } 
13 FindQRules() 
14 { 
15    SelectAndSortMiTuples(); 
16    CheckMiTuples(1,0); 
17 } 

The computational complexity of above algorithm depends on the percentage 
p of �-tuples in the database, and may be estimated [7] as O(k(pn)2k). This 
assumes that the cost of selecting tuples inside a profile hyper-cuboid is small, 
because of effective indexing method for k attributes. 
The complexity is polynomial, but may be still considered high. However if we 
divide the attribute space into r sub-spaces, the complexity is decreased to: 
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There are several complexity reduction strategies that are based on this 
property. For example �-tuples may be divided into r disjoint groups with 
some clustering algorithm in order to search for rules within clusters. 
Alternatively, if we assume that rules can not be found in regions where there 
are no �-tuples, excluding one most spacious �empty� hyper-cuboid results in 
division into 2k smaller search spaces. 



Another cost reduction strategy is based on the construction of sorting 
function from line 15. If we sort �-tuples by the descending value of attribute 
J we can expect most significant rules to be found first. 
 
 

4 The use of multi-dimensional indexes 
 

Presented in this paper discovery of quantitative associations in spatial data is 
related only to point objects what enables data to be efficiently stored in 
relational DBMS. The problem of fast selection of tuples within a rectangle 
that in�uences the complexity of the algorithm may be solved by the latest 
advances in the area of multi-dimensional indexing.  
There have been many attempts to provide efficient method for management 
of multi-dimensional data as a result of increasing interest in GIS or VLSI 
CAD, etc. Broad research in the area resulted in proposal of many 
multidimensional access methods. [3] gives survey of almost all of these 
techniques, presenting requirements that such access methods should meet 
and upon which they are evaluated. A classification of point access methods 
for storing point objects and classification of spatial access methods for storing 
objects with spatial extensions are also presented.  
Analysis of processing characteristics of the proposed algorithm implies that 
the most essential subjects to optimization of operations are exact match 
query and region search query. Since algorithm for mining quantitative 
associations deals only with point data, one of point access methods may be 
utilized to improve performance.  
A very promising multi-dimensional point access method that could improve 
the proposed algorithm performance is UB-tree [1]. It uses a space filling curve 
to create a partitioning of the space while preserving multi-dimensional 
clustering. As a result of disjoint partitioning of a multi -dimensional space 
and utilization of B-tree to store Z-addresses, UB-tree provides logarithmic 
performance, guaranteed for insertion, deletion and exact match queries.  
Answering a range query over a database, which is organized as a UB -Tree, 
requires time proportional to the size of the answer to the query. In fact, this 
is another data-driven solution in our methodology. The most crucial task of 
the range query algorithm is to calculate the next region in Z-order which 
intersects the query box after a Z-region (which also intersects the query box) 
that has been retrieved. [6] presents three variations of an algorithm solving 
that problem with complexity ranging from exponential  to linear. 
 
 

5 Rule management 
 

After discovering rules, they have to be presented in understandable form to 
the user. It may happen that the number of rules is high or that there is a lot 
of rules that overlap one another. In such cases there is a demand for a rule 



management system that will refine the result and give feedback for 
subsequent stages of knowledge discovery cycle. 
Crucial problems with multi-dimensional quantitative associations is the need 
to determine the most significant rules and to distinguish between groups of 
rules with very similar profiles [4]. This problem may be solved by the 
application of specific quality measures in a rule management system [7].  
One kind of measures determines the significance of the rule. Such measure 
may be support, difference (diff(P)), volume (V(P)), rule density (ρ(P)) or 
differential density (ρdiff (P)), defined as follows: 
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As it was noticed in Section 2, irreducibilty is not always enough to determine 
intuitively homogeneous rules. Figure 2 shows some examples of not uniform 
distribution of �-tuples in irreducible 2D rules. There are various formulas 
possible for measuring the consistency of the rule. For instance let us consider 
that the rule profile is divided into 2k equal hyper-cuboid parts )Pr,...,(Pr 21 k by 
splitting all attribute ranges in two. Consistence then may be expressed as: 
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 Fig. 2. Rules irreducible, but not consistent 
 



Another kind of measures are used for comparison of rules - to determine if 
the profiles are close or distant. Such measure may be common support Csupp 
or common volume CV or mean intra-rule distance Lir between tuples. 
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6 Applications 
 

The whole idea of quantitative rules research came from a problem of 
planning cellular radio network according to cellular traffic data from GIS 
database of a telecom provider [2]. Classic association rules failed here, due to 
problems with discretization. Thus, quantitative and data-driven associations 
are an obvious form of knowledge that may be automatically inferred from 
spatial data. In this section we present two examples of application of a new 
methodology to raw and preprocessed spatial data.  
Raw spatial data. Such data may be sampled, even at random, and used as 
an input to rule mining algorithm. It is obvious that the frequency of 
sampling increases rule accuracy and consequently the algorithm running 
time. Antecedent attributes I1, �, Ik are coordinates of points in 2D, 3D or 
even higher dimensionality space. Decisive attribute J describes the analyzed 
value (i.e. elevation, temperature, cellular traffic, etc.). As a result we obtain 
hyper-cuboid regions (squares in 2D) where the value is high above (or below) 
average for the whole space. As a post-processing step one can use the 
measures from Section 5 to find significant and representative rules. 
Preprocessed spatial data. As described in [2], the space may be divided 
into regions, for example mobile telecom cells. For each region we can 
establish a number of numeric parameters (e.g. population or percentages of 
area types in the cell: forests, urban, water,etc.). For each regionwe obtain a 
tuple of attributes I1, �, Ik that stand for parameters plus one analyzed 
attribute J. These tuples are the input to rule discovery algorithm. As a result 
we obtain a rule-based predictive model that may be used for classification of 
other regions in the space. The predictive model in the telecom research was 
utilized to determine cellular traffic in newly designed cells. 
In a similar way the methodology may be applied to other kinds of numeric  
data, for example to sampled mutimedia or to readings from sensors in 
scientific or engineering data sets. 

 
 
 



7 Conclusions 
 
Quantitative association rules in the form presented in this paper are 
applicable to any form of numeric data and have clear advantages. Data -
driven algorithms for rule discovery have polynomial complexity, and are 
additionally sped up by heuristic strategies. Thanks to latest advances in 
spatial indexing, the rule discovery can be now even more accelerated. Profile 
boundaries are determined by the data themselves, without errors in�icted by 
the static discretization. Input data may be sampled even at random. Output 
rules, especially mean based, are understandable and may be easily visualized 
because a square or hyper-cuboid is very intuitive in its perception. All the 
algorithms and strategies are currently under rigorous experimental 
examination that  will be described in some follow-up papers. Other future 
work in this field includes discovery algorithms with dynamic changes of �-
level, improved performance strategies and new measures for rule 
management. The knowledge discovery methodology may be even closer 
linked to spatio-temporal databases by new preprocessing and visualization 
techniques. It is also expected that quantitative association rules will be 
applicable to other forms of numeric data. 
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