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Abstract—In this paper we present a clustering schemeto create a hier-
archical control structure for multi-hop wireless networks. A cluster isde-
fined asa subset of vertices, whoseinduced graph isconnected. I n addition,
acluster isreguired to obey certain constraintsthat are useful for manage-
ment and scalability of the hierarchy. All these constraints cannot be met
simultaneously for general graphs, but we show how such a clustering can
be obtained for wireless network topologies. Finally, we present an efficient
distributed implementation of our clustering algorithm for a set of wireless
nodes to createthe set of desired clusters.
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I. INTRODUCTION

APID advances in hardware design have greatly reduced

cost, size and the power requirements of network el ements.
Asa conseguence, it is now possibleto envision networks com-
prising of alarge number of such small devices. In the Smart
Dust project at UC Berkeley [1] and the Wirel ess Integrated Net-
work Sensors (WINS) project * at UCLA researchers are at-
tempting to create a wirel ess technol ogy, where a large number
of mobile devices, with wireless communication capability, can
be rapidly deployed and organized into a functional network.

Hierarchica structures have been used to provide scalable so-
[utions in many large networking systems that have been de-
signed [2], [3]. For networks composed of alarge number of
small, possibly mobile, wirel ess devices, astatic manual config-
uration would not be a practical solution for creating such hi-
erarchies. In this paper, we focus on the mechanisms required
for rapid self-assembly of a potentially large number of such de-
vices. More specifically, we present the design and implementa-
tion of an algorithm that can be used to organize these wireless
nodes into clusters with a set of desirable properties.

Typicaly, each cluster in the network, would select a“ cluster-
representative’ that is responsible for cluster management —
thisresponsibility isrotated among the capabl e nodes of theclus-
ter for load balancing and fault tolerance.

A. Target Environment

Whileour clustering scheme can be applied to many network-
ing scenarios, our target environment is primarily wireless sen-
sor networks[4], and we exploit certain properties of these net-
works to make our clustering mechanism efficient in this envi-
ronment. These networkscomprise of a set of sensor nodes scat-
tered arbitrarily over some region. The sensor nodes gather data
from the environment and can perform various kinds of activi-
ties depending on the applications — which include but is not
limited to, collaborative processing of the sensor datato produce
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an aggregate view of the environment, re-distributing sensor in-
formation within the sensor network, or to other remote sites,
and performing synchronized actions based on the sensor data
gathered. Such wireless networks can be used to create “smart
spaces’, which can be remotely controlled, monitored aswell as
adapted for emerging needs.

B. Applicability

The clustering scheme provides an useful service that can be
leveraged by different applicationsto achieve scal ahility. For ex-
ample, it can be used to scale a service location and discovery
mechanism by distributing the necessary state management to
be localized within each cluster. Such a clustering-based tech-
nique has been proposed to providelocation management of de-
vices for QoS support [5]. Hierarchies based on clustering have
also been useful to define scalable routing solutions for multi-
hop wireless networks [6], [7], [8] and [9].
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Fig. 1. Anexampleof athreelayer hierarchy

The design of our clustering scheme is motivated by the need
to generate an applicable hierarchy for multi-hop wireless envi-
ronment as defined in the Multi-hop Mobile Wireless Network
(MMWN) architecture [5]. Such an architecture may be used to
implement different servicesin a distributed and scalable man-
ner. In this architecture, wireless nodes are either switches or
endpoints. Only switches can route packets, but both switches
and endpoints can be the source or the destination of data. In
wireless sensor networks, all sensor devices deployed will be
identical, and hence we treat all nodes as switches, by MMWN
terminology. Switches are expected to autonomously group
themsalvesinto clusters, each of which functionsas a multi-hop
packet radio network. A hierarchical control structureisillus-
trated in Figure 1 with the nodes organized into different lay-



ers. Aninstance of the clustering scheme operates at each of the
layers to create a set of clusters at that layer. All nodesin the
network are joined to the lowest layer (Layer 0). Three of the
clusters of Layer O are shown in the figure. Nodes B, G and K
are the cluster representatives of these clusters. The representa-
tives of the clustersin alayer join the layer immediately above.
The instance of the clustering scheme operating at Layer 1, has
placed these nodes (B, G and K) into one cluster. Node GG is
the representative of this cluster at Layer 1, and hence is aso
present in Layer 2 (the highest layer in this example). Connec-
tivity between adjacent clustersisprovided by virtual gateways,
that essentially are pairs of peer switches, in the neighboring
clusters. Each virtual gateway comprises of multiple such peer
pairs. Other details on routing and addressing schemes within
and outside the cluster may befoundin[5].
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Fig. 2. A routing scheme using a clustering-based hierarchical structure would
be most useful in aslowly changing mobility domain

The MMWN architecture is “not currently designed to oper-
ate effectively in a network comprised of highly mobile nodes’
[5]. Hence, arouting scheme created using the clustering-based
hierarchical control infrastructure, like MMWN, is most effec-
tive in a dlower mobility domain than aflat routing scheme us-
ing on-demand routing sol utionsfor highly mobileenvironments
like Dynamic Source Routing (DSR) [10], Ad-hoc On-Demand
Distance Vector routing protocol (AODV) [11] and Temporally
Ordered Routing Algorithm (TORA) [12], as shown in Figure
2, but would have the benefits of scalability of a hierarchical
scheme.

We hypothesize that topol ogy changes in wirel ess sensor net-
works will also be dow and infrequent. Once a cloud of sen-
sor devicesisdeployed, they would mostly stay stationary. New
nodes will occasionally join the network, by drifting into the
vicinity of the existing network, or some existing nodeswill drift
away or disappear (e.g., due to loss of power). The clustering
scheme needs to maintain clusters across such topol ogy changes
and we address such issuesin Section IV.

C. Desired goals of the clustering scheme

To create the hierarchical control structure described above,
we postulate the following desirable properties that should be
present in the clustering mechanism that runsat each layer of the
hierarchy. Similar clustering goals have been specified in related
clustering work for wireless networksin[13], [14].

« Each cluster is connected. Thisis an obvious requirement to
localize and restrict cluster traffic to within the cluster.

« All clusters should have a minimum and maximum size con-
straint. Typically acluster member maintains compl ete statein-
formation about &l other members within its cluster. Hence, a
maximum cluster size constraint limitsper cluster state to within
what can be efficiently maintained by the cluster members. Ide-
ally, wewant al clustersto be of the same size, so that no cluster

isoverburdened, or under-burdened with processing and storage
requirements of cluster maintenance. Small clusters are ineffi-
cient use of resources at the nodes, while large clusters increase
the overhead. For ease of the clustering scheme design, we set
the minimum cluster size to be half the maximum size.
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Fig. 3. Clustering inastar graphwith onecentral vertex and n— 1 radial vertices

« Anodeinanylayer of thehierarchy bel ongsto a constant num-
ber of clustersinthat layer. 1deally, we would want anodeto be-
long to only asingle cluster in alayer. However, it is apparent,
that for connected clusterswith sizes bounded as described inthe
previous goa, such a requirement cannot aways be met. Some
nodes in the network that have very high degree, might need to
be included in multiple clusters. For example, in the star graph
(shown in Figure 3), any cluster that has size greater than one,
needs to include the central node to maintain cluster connectiv-
ity. The centrd nodein the star graph will therefore, belong to
each cluster in the network. However, we are able to leverage
special properties of the communication graph of wireless net-
worksto guarantee a small constant upperbound for the number
of clustersto which anode belongsto 2.

o Twoclusters(inanylayer) should havelowoverlap. All nodes
common to two clusters, will have to maintain cluster state and
carry intra-cluster traffic for both the clusters. Ideally, clusters
should have no overlap. But as discussed above, since in some
topol ogies, some nodes might have to belong to morethan asin-
gle cluster, zero overlap is not possible. Our clustering scheme
guarantees that no two clustersin alayer will have an overlap of
more than one node.

o Clusters should be stable across node mobility. The cluster-
ing scheme should scalably adapt to new nodes drifting into the
network, existing nodes disappearing from the network (due to
power loss) and other node such node migration scenarios. Such
events should cause only a very localized re-clustering (if at all
necessary) so that the previousdesired goa sare maintained. We
describe our cluster maintenance scheme for the distributed im-
plementation of clustering that handles node mobility in Sec-
tion 1V-B.

D. Main contributions

In this paper we propose a clustering scheme to create alay-
ered hierarchy, similar to that desired in MMWN [5], for wire-
less networks. We define our clustering problem in a graph the-
oretic framework, and present an efficient distributed solution

21t should be noted, that in our clustering scheme, most of the nodes belong
to only asingle cluster in each layer and the few that do not are within the small
constant bound as described.



that meets all desirable properties mentioned earlier. For arbi-
trary graph topol ogi es, sometimes no solution may exist that can
satisfy al the requirements of a desirable solution. But in wire-
less network topologies, properties of the underlying communi-
cation graphs may be exploited to achieve desired solutions, as
we demonstrate in this paper.

The rest of the paper is structured as follows. We pose our
problem in a graph theoretic framework in Section 1I. We dis-
cuss the clustering algorithm in Section 111. In Section 1V, we
demonstrate how our clustering algorithm can be implemented
in adistributed environment as the sensor network. We evaluate
our clustering scheme through simulationsin Section V. Finally,
we discuss related work in Section VI and conclude in Section
VII.

Il. PROBLEM STATEMENT

We first define a generic network clustering problem as fol-
lows: Given an undirected graph G = (V, E), and a positive
integer k£, such that, 1 < k& < |V, for each connected compo-
nent, find a collection of subsets (clusters), V1, ..., V; of V, so
that the following conditions are met.

1. U, V; = V. All vertices are part of some cluster.

2. (G[V;], the subgraph of G induced by V; is connected.

3. k < |Vi| < 2k. Thisisthesize bound for the clusters.

4. |VinV;| ~ O(1). Twoclusters should haveuptoasmall con-
stant number of common vertices. We show, later in the section,
why all clusters cannot be guaranteed to be non-overlapping and
yet meet the other requirements. 3

5 |S(v)] ~ O(1), where S(v) = {Vi|v € Vi}, i.e. avertex
belongsto a constant number of clusters.

We note that there may not be a feasible solution to the above
problem for any general graph. Requirement (5) would be vi-
olated in a star graph (a graph with a single center vertex and
n — 1 radia vertices, and there is an edge between the cen-
ter vertex and each radial vertex asin Figure 3). For k& > 2,
any cluster in the star graph would include the center vertex,
for the cluster to be connected. Hence, for the center vertex, c,
we would have |S(c)| ~ O(%), violaing requirement (5) of
the problem statement. However, the underlying graph struc-
ture for a network of wireless nodes has certain useful proper-
ties that can be exploited. A wireless node A, can communi-
cate with another node B, if and only if, B lieswithinthe trans-
mission radius, R4, of node A. The underlying graph, in this
case, would have a directed edge A — B. For our agorithm,
we only consider bi-directional edges. So, a valid edge in the
graph reflects the fact that both the nodes are within each other’s
transmissionrange, i.e., d( A, B), thedistance between the nodes
Aand B isat most min(R4, Rp), for them to have an edge in
the graph. Thisis in conformance with the assumptions made
for most MAC protocols for wireless environments, including
MACA [15], MACAW [16], |EEE standard 802.11[17], FAMA
[18] and RIMA [19].

Wefirst consider the case when al nodes in the network have
the same transmission range. In this case, the underlying com-
munication graph, is a Unit Disk graph — defined in [20], [21]
in terms of “distance” or “proximity” models, which consist of

30ur clustering algorithm actually guaranteesthat |V; n V;| < 1,i.e. two
clusters overlap in not more than one vertex.

avalue R > 0 and an embedding of the vertices in the plane,
such that (u,v) is an edge if and only if d(u,v) < R. Here,
R isthe common transmission radius of all wireless nodes. For
such graphs, it can be seen that if a node has many neighbors,
i.e, avertex has very high degree, then al these vertices have
to be within its transmission radius. These neighboring nodes
will, therefore, be relatively close to each other. As a conse-
guence many of these neighboring nodes will be within trans-
mission range of each other and will have edges between them-
selvesinthe communication graph. Thiswould prevent thecom-
munication graph fromhaving dense“ star-like” components em-
bedded in them. Thisis proved rigorously in Section I11-C. We
exploit thisfeature to guarantee that each vertex in the graph is
in at most three clusters . Thisisnot possiblein general graph
topol ogies, as shown before.

Since the transmission range depends on the power available
at the node, in general, for a homogeneous set of sensor nodes,
thetransmission radii would be closeto each other. We also con-
sider the case where different nodes may have different trans-
mission radii. For such scenario, our clustering algorithm would
guarantee that no node isamember of morethan O(log( Zmax )

min

clusters, where R,.x and R, are the maximum and minimum
transmission radii respectively. We use the term Bounded Disk
graph to classify these underlying topologies®. Hence, the al-
gorithm does not violate Requirement (5) even when orders of
magnitude difference exist between the transmission power of
the nodes.

If there are nodes with very small transmission radii, then the
bound on |S(v)| may be large, but in general, nodes with very
small transmission radii would be nearly disconnected from the
rest of thenetwork, and can be considered “dead” for all practical
purposes.

For therest of the paper, wewill focus only on communication
graphs that are either unit disk graphs (for wireless nodes with
identical transmission radii /) or bounded disk graphs (where
the transmission radii of the nodes are bounded between R..in
and Rm.x) 8. Even for these graphs, to satisfy Requirements (2)
and (3), may lead to violation of Requirements (4) and (5), as
shown below.

Requirement (4) would be violated even in unit disk graphsas
shown in Fig. 4 for any clustering algorithm. The total number
of verticesin thetreeisn. Thezones A, B and C each have 0.3n
vertices, thesegmentsL1, L2 and L3 have 0.03n vertices, while
the segment L4 has 0.01n vertices. If &, the lower bound of the
size of acluster, is set at 0.45n, any cluster will have vertices
from at least two of the zones A, B and C. Also, from Condi-
tion (2), the upper bound of the size of a cluster is 0.9, and so
there must be at least two clustersto cover all the vertices. Let
us choosetwo such clusters, €'y and C, and let C'; have vertices

41n this paper, we only illustrate the results for two-dimensional topologies.
The scheme works for any D-dimensional space, with the upper bound of S(v)
being a function of only the dimensionality, D.

5From our algorithm and its proof, it will be apparent that one can construct
some specific Bounded Disk Graphs, for which some nodeswill necessarily be-

longto O (log( l;méx )) clusters, to meet the conditionsof the problem statement.

6Qur clustering technique can also be applied to general graph topologies, if
we remove the Requirement (5), that each node belong to a constant number of
clusters. The upper bound on the number of clusters a node bel ongsto, for gen-
eral graphs, is the maximum degree of a node, which is usually low for many
topologies.




Total n vertices

Segment L4 has 0.01n vertices

Each of L1, L2 and L3
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Fig. 4. Violation of constant sharing between clusters (with size parameter k),
even for disk graphs

from zones A and B (and maybe some other verticestoo) and | et
(> haveverticesfrom zones B and C (and some other verticesas
might be necessary). To keep each cluster connected, we must
have dl verticesin segment L2 belong to both the clusters. This
would mean |Cy| N |C| > |L2| = 0.03n, i.e., overlap, whichis
linear in the number of vertices.

Hence, we modify our Requirement (3) as follows:
3. Vi, |Vi| < 2k.
3(b). Vi except one k < |V;|, we alow one single cluster in the
entire graph to have size smaller than %.

Under such a relaxation, it is possible to cluster the graph in
Fig. 4, by making C; include zones A and B and the segments
L1, L2 and L4, and C; include zone C and segment L 3.

Hence, our exact problem can be refined as stated below :
Given adisk graph ¢ = (V, E), and a positive integer, &, such
that, 1 < k& < |V, for each connected component of 7, find a
collection of subsets V4, ..., V; of V, so that
LU Vi=V.

2. (G[V;], the subgraph of G induced by the vertices V;, is con-
nected.
3. The sizes of the subsets are bounded as follows:

(@ Vi, |Vi| < 2k.

(b) Vi( except one)k < |Vi], i.e, we alow one single cluster
in the entire graph to be smaller than &.
4. [V v;| ~0(1)
5 |S(v)] ~ O(1), where S(v) = {Vi|v € Vi}, i.e. avertex
belongsto a constant number of subsets.
Next, we state and provethe algorithm, first for unit disk graphs,
when all nodes have the same transmission radius, R. Sub-
sequently, we show how the same algorithm can be applied
for bounded disk graphs, where nodes have varying transmis-
sion radii, but with Requirement (5) modified as |S(v)| ~
O(log(Lusx)),

I1l. SOLUTION

We first outline the algorithm as it applies to a connected
graph. In thissection wefirst outlinethe clustering algorithm as
it appliesto a connected graph (or to each connected component
of the graph, if it isnot connected).

A. Overview of the Solution

The algorithm proceeds by finding a (rooted) spanning tree
of the graph. One could use a Breadth-First-Search tree, or any
other tree. The main advantage of a BFStreeisthat it hasara
dius, which is bounded by diameter of the graph.

The algorithmrunsin linear time. Let 7" be thisrooted span-
ning tree, and 7'(v) denote the subtree of 7" rooted at vertex v.
We use |T'(v)| to denote the size of the subtree rooted at v. Let
C'(v) bethe set of childrenof v inT.

Weassumethat |V| > 2k, elsewecan treat theentiregraph as
onecluster. First weidentify anodew such that |7'(w)| > k such
that for each v € C'(u) wehave |T'(v)| < k. Itisclear that such
anode always exists. Let C'(u) consist of £ nodes vy, . . ., v.

If we do not worry about Requirement (5), then it is easy
to create a set of clusters from the subtree 7'(w). This can be
achieved by partitioning the set of subtrees {7'(v1), ..., T(v,)}
where vy, .. ., v, arethechildren of « in the tree, appropriately
asdescribed below. The partitionsare, by definition, digoint and
each partition consists of a set of subtrees, such that the number
of al vertices in the subtrees comprising the partition lies be-
tween k — 1 and 2k — 2. Each partition is created by adding
subtrees sequentialy to it until the size lies between & — 1 and
2k — 2. Addition of asingle subtree cannot increase the partition
sizetomorethan 2k — 2, since each subtreehassizeat most £ — 1.
Only one single partition (the last partition) may have size less
than k — 1. Thevertex u isadded to each of the partitionsto en-
surethat they are connected. All the partitionsare connected and
each partition that now meets the desired size bound between &
and 2k — 1 (all partitionsexcept possibly thelast one) are defined
to be clusters. All the vertices put into clusters are deleted from
thetree. Vertex u isnot deleted if the last partition did not meet
the size bounds and hence, not made a cluster. These steps are
repeated to create all clusters.

In fact, this agorithm can be implemented via a post-order
traversal of 7. When we are visiting a vertex, we can check the
size of the subtree rooted at that vertex. If the subtree has size
> k then we can trigger the above scheme. Once we output a set
of clusters and consequently, delete the vertices that belong to
these clusters, we can update the size of the current subtree and
continuewith the post-order traversal at the parent of thisvertex.

The main problemwith the aboveschemeisthat « may belong
tomany clusters (in the worst case, proportional to the degree of
u even though thisbound is unlikely to be achieved in practice).
We will now make use of the properties of the disk graphs that
arisein this application to avoid this problem.

We will prove that for any six vertices that are adjacent to «,
there exists a pair of them with an edge between them. Using
these edges, we can connect the subtrees rooted at children of u
to each other to create the clusters, without using vertex u (ex-
cept in asmall number of clusters). In the pseudo-code descrip-
tion of the procedure GRAPHCLUSTER, thiscan be observed as
the second condition to enter thewhileloop at Line 7. Thiswill
guarantee that vertex « belongsto at most a constant number of
clusters. It iseasy to seethat theintersection of clusterswill also
have at most one vertex.



B. Detailed Description of Algorithm

We use the following notation :

T : A BFStreeof graph .

root(7) : Root of the BFStree.

T(x): Subtreeof T, rooted at vertex x.

ClusterSet : The set of clusters created by the algorithm.

o UnpChildren: Variableused to storethe set of remaining chil-
dren (i.e. that has not been deleted) that are yet to be processed
at avertex.

o PartialClusterSet: Set of temporary clustersthat have size <
k.

o Empty set isdenoted by —.

Proc. 1: GRAPHCLUSTER((, k)

1. T «— BFStreeof ¢; ClusterSet — —
2. foru € G,inpost-order traversa of 7' do
if (|T(w)| > k) then
{ASSERT : |T'(v)| < k,v € Children(u)}
4: PartialClusterSet — —
UnpChildren — Children(w)

w

5: whiledv € UnpChildren do
6: TempCluster — T'(v)
Remove v from UnpChildren
7: while (|TempCluster| < k) A
(3= € UnpChildren, st. z hasan
edgetow € Children(u) N TempCluster) do
8: TempCluster
TempCluster U T'(z)
o Remove = from UnpChildren
10: end while
11: if (|[TempCluster| > k) then
12: ClusterSet
ClusterSet U {TempCluster}
13: Remove al subtrees in TempCluster
14: ese
{ASSERT : No such z isfound}
15: PartialClusterSet  —
Partial ClusterSet U TempCluster
16 end if
17: end while
18: MERGEPARTIALCLUSTERS(u, k,
Partial Cluster Set, Cluster Set)
19: if (Children(u) = —) A
(u has been assigned to some cluster) then
20: Remove « from thetree
21 end if
22 endif
23: end for

24: if PartialClusterSet # — then

{ASSERT : |PartialClusterSet| = 1}

{Let P € PartialClusterSet}
25:  ClusterSst — ClusterSet U {P U {root(7)}}
26: end if

The algorithm creates a BFS tree and traverses the the tree in
post-order. Figure 5 showsthe processing for avertex, u, in the
tree. The vertex v has already been visited. Since |T'(v)| > k,

Proc. 2: MERGEPARTIALCLUSTERS(u, k, P, Cluster Set)

1. C «— —
2. while(P # —)do
3: Pick an arbitrary partia cluster, p from P
4: C — C U p; RemovepfromP
5: if (|C > k) then
6: ClusterSet — ClusterSet U {C' U {u}}
7: Removeadl subtreesinC; C «— —
8: end if
o:  end while

|T(u)| = 4.7k + 1 after v is processed
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Fig. 5. Exampleoperation at a vertex « for the GRAPHCLUSTER procedure

cluster, A, has been created rooted at v and deleted from the
tree (Line 4 of the GRAPHCLUSTER procedure). Hence, at the
time u is being processed, there are seven remaining children
of u: x,y,p,4q,z,r sandtheremaning subtreesize of T'(u) is
4.7k +1, that included «. Thetwo clusters, B and C' areformed
first without including « in any of these clusters (They both sat-
isfy theif conditionon Line 11 of procedure GRAPHCLUSTER),
and are placed intoclustersonLine12. When M ERGEPARTIAL-
CLusTERSIiscdled (Line18), therearethreepartia clusters, the
subtreesrooted at verticesz, y and z. INMERGEPARTIALCLUS-
TERS, thecluster D isformed using the partia clustersfrom the
subtrees rooted at  and y, and vertex « is used to connect the
two subtrees, which do not share acommon edge. Findly, asin-
gle partial cluster (the subtree rooted at vertex z) isleft. Vertex
u isadded to thispartial cluster to formthe partia cluster £, and
thisisthe only subtree that remains in the tree, and each of the
other vertices have been placed into some cluster and deleted.
Hence, when processing is done at the parent vertex of «, the
subtree rooted at « comprises of only the vertices in the partial
cluster, F'.

If asingle partid cluster isleft in thetree after the entire post-
order traversal, itismadeintoacluster of sizelessthan & inLines
24-26 of procedure GRAPHCLUSTER.

C. Proof of Correctness

We now outline the proof of correctness of the algorithm de-
scribed above. We use the following standard graph-theoretic
terminology :

+ TheNeighborhood, N (u), of avertex v, isthe set of vertices
that have an edge to the vertex « in the graph.

o A set of vertices that have no edges between any pair of ver-
ticesin the set istermed an Independent Set.



+ The Maximum Independent Set, A .S, of verticesisan inde-
pendent set with maximum size.

LEMMA 111.1. For unit disk graphs, the maximumindependent
set,(M I15), intheneighborhood, NV (u), of avertex v hasat most
5 vertices.

Fig. 6. Every six neighborsof avertex have at least one edge

Proof. The proof followsfrom simplegeometric arguments. Let
the distance parameter of the unit disk graph be R. Consider a
vertex, u, st. |N(u)| > 6. Let usassume that thereis an Inde-
pendent Set of size six inthe neighborhood, N (). Let these six
verticesbe vy, . . ., vg Withthe vertex indiceslabeled in acyclic
order as shown in Figure 6. Since, v; € N(u),d(u,v;) < R.
Consider vertices v; and v;, such that they aresuccessive vertices
fromthislindependent Setinthecyclicorder, i.e. j = i(mod6)+
L. If (v;,v;) ¢ E, thend(v;,v;) > R. Also, R > d(u,v;) and
R > d(u,v;). S0, d(vi, vj) > d(u,v;) and d(u, v;). Hence, in
Auw;vg, (vg, v;) isthelargest side, and so Zu isthelargest angle,
whichmust be> Z. Hence, SO0 Lvjuvy > 6x % = 2w, acon-
tradiction. Hence, 37, suchthat d(v;, v;) < R, i.e, (v;,v;) € E.

OBSERVATION 1. When the algorithm terminates, each vertex
ispart of some cluster.

OBSERVATION 2. Each cluster formed by the algorithmis con-
nected.

OBSERVATION 3. Only one cluster may have size < k and all
other clusters have sizes between k and 2k.

OBSERVATION 4. Any pair of clusters has only one common
vertex.

OBSERVATION 5. The number of partial clusters, created on
exiting thewhileloop of Lines5-17 of procedure GRAPHCLUS-
TER, isfive.

Proof. Each partial cluster in the Partial Cluster Set, has at |east
onechild of u inthetree, since TempCluster (Line 8 of procedure
GRAPHCLUSTER), comprises of subtrees of u rooted a some
children of u. A partial cluster is added to Partial ClusterSetin
line 15 of procedure GRAPHCLUSTER. Let there be at least six
partid clusters Py, ..., Ps numbered in the sequence in which
they are crested. Let v ...vg € Children(u) be vertices, in
these six different partia clusters respectively. A partia cluster
isadded to Partial Cluster Setif theinner whileloop (Lines 7-10)

exitswhen the second condition on line 7 of procedure GRAPH-
CLusTER isfalse. So, at thetime P; was put in Partial Cluster-
St (Line 15 of procedure GRAPHCLUSTER), there would have
been no edge from any child of « in P; to any other unprocessed
child of u. Theseincludeall children of « in partial clusters P;,
for j > ¢ Inparticular, for j > 4 (v;,v;) ¢ E,i.e. v1...vg
form an independent set of vertices. This contradicts Lemma
[11.1. Hence, there can be up to five partial clusters.

OBSERVATION 6. During the processing pass (Lines 3-22) of
vertex w inthe post-order traversal of GRAPHCLUSTER, itisei-
ther deleted in that pass (being put in some cluster(s)) or isleft
inthetree, and isplaced in only one more cluster during the sub-
sequent processing pass of some ancestor « of w.

Proof. Let usassumethat avertex w isnot deleted duringitspro-
cessing pass in the post-order traversal. Then, if w isnot deleted
by the time some ancestor « of w is being processed, w will be
part of some subtree rooted at a child of «. Each of the subtrees
rooted at children of « is placed in only one single cluster and
deleted from thetree, or isnot assigned to any cluster during the
processing pass of . Since thisistrue a each ancestor of w,
eventally w will be assigned to asingle cluster at some ancestor
and get del eted.

OBSERVATION 7. Avertex v, ispart of up tothree distinct clus-
ters [ Requirement 4].

Proof. A vertex that is part of multiple clusters, would have to
satisfy theif conditionin Line 3 of GRAPHCLUSTER. If thisif
conditionfails, thevertex isnot placed into any cluster duringits
processing pass of the post-order traversal, and will be placed in
only asingle cluster subsequently (due to Observation 6). It can
be observed that all other vertices will be put into asingle clus-
ter. Thevertex that satisfies theif conditionin Line 3 would not
be placed in any cluster created on Line 12 of GRAPHCLUSTER
in the same pass of the for loop (Lines 2-23) of the post-order
traversal. These clusterscompriseonly of subtreesrooted at chil-
dren of « inthe tree. In this pass « may only be placed in the
clusterscreated out of thepartia clusters(Line6 of M ERGEPAR-
TIALCLUSTERS called from GRAPHCLUSTER). From observa-
tion 5, there are only five partial clusters. Each partia cluster
has size < k. Hence, at least two such partia clusters needsto
be merged in Line 4 of MERGEPARTIALCLUSTERS to cregte a
cluster in Line 6. Hence, the maximum number of clusters cre-
ated out of thefive partial clustersin Line 18 (of GRAPHCLUS-
TER) istwo. If an additional partial cluster isstill left intree after
processing of « inthepost-order traversal, thisentirepartial clus-
ter along with vertex « will be placed further in only one more
cluster (Observation 6). Conseguently, the vertex « can be apart
of up to three clusters.

Thus, when the algorithm terminates, all the requirementsfor
the problem statement is satisfied.

LEMMA I11.2. If Rpax and Ry,in are the maximum and min-
imum radii respectively, then the maximum independent set in
N (u) hascardinality at most O(log fmax),

min

Proof. Let I(u) be the largest independent set in the subgraph
induced by {u}UN (u). Wedefinea“moat” b(¢) fori > 0, which
is the annulus defined by circles of radii ¢! R,;, and ¢!t Ry,



Fig. 7. Twovertices p and ¢ intheneighborhood, IV; («) of « that are part of the
maximum independent set in the subgraphinduced by N; (v) U {u} havean
angular separation, o« > Z. They belong to the same moat b(:), and there

arelog( &max ) such moats.

centered at v (see Figure (7). (Note that the constant, ¢ is cho-
sen to be /3 as ascale factor, for ease of proof using geometric
properties.) Let N;(u) bethene ghborsof « that areinmoat 6(7).
Note that, any vertex, v € N;(u), must have atransmission ra-
dius, R, > ¢! Ryiy. Thisconditionis needed for (u, v) to bean
edge in the graph. We will prove that within each N;(u) there
are at most 11 verticesin I (). Since the number of moats that
contain vertices from N (u) is O(log £=ax), the result follows.

Let p, ¢ betwo verticesthat arein N;(«). Without loss of gen-
erdity, let ®, < R,. The distance between p and ¢ is &t least
min(R,, R,) = R, sincethereis no edge between p and ¢. We
can “shrink” the circle centered at p with radius 72, until « ison
the boundary of thecircle (see Figure 7). This new radius satis-
fies R, < R, and R}, > ¢’ Riiy. Noticethat the distance from
utogisa most ¢t R < cR;,. Draw acircle centered at u
with radius cR;,. Notice that ¢ isinside thiscircle, but outside
the circle centered at p with radius f;,. Thisimpliesthat ¢ isin
the crescent shaped shaded region.

Under these circumstances, the angle between p and ¢ a w is
> %, and by thesame argumentsasin Lemmalll.1, there cannot
be more than 11 vertices in the moat 6(7).

min

As a consequence of Lemma I11.2, the procedure GRAPH-
CLUsSTER would be applicablefor Bounded Disk graphs, so that

each vertex will be a part of O(log(%;‘i‘: )) clusters.

D. Algorithm Complexity

The tree computation of Line 1 GRAPHCLUSTER, takes
O(|E|). The computation at each vertex v, in post-order traver-
s, isO(degr(u)). i.e. thedegree of v inthetree. Hence, the
total cost for the entire post-order traversal is 5, degr(u) =
O(]V]). Hence, thecomplexity of thea gorithmisO(| E|+|V]).

IV. DISTRIBUTED IMPLEMENTATION

The algorithm that is described in Section 111-B, is a cen-
tralized solution to the clustering problem. In the distributed
scheme, each wirelessnodein the network runsan identica pro-
tocol. The protocol has two phases : Cluster Creation and Clus-
ter Maintenance. The cluster creation phase of the protocol is
invoked very infrequently, when the existing clustering falls be-
low a quality threshold. Cluster maintenance is an inexpensive

phase of the protocol that handles node maobility and other usual
dynamics of the network.

A. Cluster Creation

Thisisasimpledistributed version of the centralized GRAPH-
CLUSTER agorithm. It can be initiated by any node in the net-
work (theinitiator will be the root of the BFS tree). If multiple
nodesinitiate Cluster Creation at the same time, simpl etiebreak-
ing heuristics (e.g. initiator with least ID) isimposed to alow
only one instance to proceed; the rest are not propagated.

There are two partsto cluster creation : Tree Discovery and
Cluster Formation. The messages for Cluster Formation are pig-
gybacked on the messages for the Tree Discovery component.

Tree Discovery : Thisisadistributed implementation of cre-
ating a BFStree. Each node, u, transmits a tree discovery bea-
con, which indicates its shortest hop-distanceto theroot, ». The
beacon containsthefollowingfields: {src-1d, parent-Id, root-Id,
root-seg-no, root-distance}. If any neighbor, v of u onrecelving
thisbeacon, discoversashorter path to theroot through w, it will
updateits hop-distance to the root appropriately and will choose
u to beitsparent in the tree asindicated in Figure 8. As shown,
node £ originally at distance 3 from theroot A, receives abea-
con from node D, at distance 1 from the root and consequently
chooses D to beitsnew parent. This decreases the distanceof £
from theroot to 2.

src-ld=D
parent-Iid = A
A root—lql =A A

root—_dlstance =1

" D

B
A C
E
[ IS [ IS

Fig. 8. Periodic tree discovery beacon transmitted by a node during the Tree
Discovery part of the Cluster Creation phase to distributedly create a BFS
tree. The relevant beacon fields areindicated.

The parent-Id field will be initially NULL, and change as the
appropriate parent in the BFS tree is discovered. The root-
distance field reflects the distance in hops from the root of the
tree. Theroot-1d is used to distinguish between multiple ssimul-
taneousinitiatorsof the Cluster Creation phase of which only one
instanceisallowed to proceed. The root-seg-noisused todistin-
guish between multiple instances of the Cluster Creation phase
initiated by the same root node at different time instants. The
{root-1d, root-seg-no} pair, therefore, uniquely identifiesa Clus-
ter Creation phase instance.

Cluster Formation : To cregate the clusters on the BFS tree,
each node needs to discover its subtree size and the adjacency
information of each of its childrenin the BFStree, as explained
below. For this purpose, a cluster formation message is pig-
gybacked onto the tree discovery beacon by each node and has



the followingfields: {subtree-size, node-adjacency}. The sub-
tree size information is aggregated on the tree from the leaves
to the root. The subtree size at a node, « is given by 1 +
dove Childrenu) subtree-size(v). When anode, w, detects that
itssubtree size has crossed the size parameter, £, it initiatesclus-
ter formation on its subtree (thisis the condition tested in Line
3 of GRAPHCLUSTER). If the entire subtree 7T'(w) is of size
< 2k it creates one single cluster for the entire subtree, or else,
it will create a set of clusters by appropriately partitioning the
children subtrees into these clusters. This information is sub-
sequently propagated down the child subtrees as cluster assign-
ment messages to the relevant nodes. The partitioning of child
subtreesinto clusters is implemented as specified in Lines 4-21
of GRAPHCLUSTER. To do this, node w needsto know the ad-
jacency information of its children in the tree. This is avail-
able asthe neighborhoodinformation, N () carried in the node-
adjacencyfield of the cluster formation message from each child,
u. Inits subsequent cluster formation messages to its parent,
node w does not include al the nodes which it has assigned
to different clusters. Thisis equivalent to the deletion of these
nodes from thetreein Lines 13 and 20 of GRAPHCLUSTER and
Line 7 of MERGEPARTIALCLUSTERS). An example is shown
in Figure 9. The subtrees C' and 1 rooted at node v in Figure 9

/\ subtree-size = k/2 |
u

3k/2

7k/4

Fig. 9. Cluster formation messagesare piggybackedonto the tree discovery bea-
cons. Only the subtree-sizefield is shown here. The subtree size reported by
anode, «, to its parent include only those subtree nodesthat have not been
putinto any cluster at «.

has been put into two separate clusters, i.e. thereis no node in
the subtree of node v, which has not been put into some cluster.
Hence, v reportsasubtree size of zero toitsparent, u, inthetree.
Node u has assigned the entire subtree B into asingle cluster but
has not assigned subtree A to any cluster. It, therefore, reports
the size of this subtree to its parent 7. This subtree will be as-
signed a cluster by a node upstream of «. When a node detects
that its children and their subtree sizes have not changed for the
last max-consecutive-static-subtree messages from its children,
it terminates the cluster formation phase for al the clusters that
it has assigned. To do so, it sends a terminate cluster message
down the subtrees of these clusters. This procedure happens at
each node of the tree. Clusters are, therefore, created from the
leaves of the tree towards the root akin to the post-order traver-
sa of thetree. The phase terminates when all the nodes havere-
ceived cluster terminate messages.

Thetree discovery beacons are transmitted by each node once
every P unitsof time, over the duration of the cluster creation

"Nodew isalso included in this subtree.

phase. The period P should be chosen depending onthe average
connectivity of a node in the network and the bandwidth avail-
ablefromthewirelessinterface. With an average degree of four
for a network of low bandwidth (100 Kbps) sensor devices, as-
suming thebeacons are 100 bitsin length, we can choose P as40
msto ensurethat the collision probability of beaconsislessthan
0.1. Theaverage number of beacons sent by anodefor theentire
cluster creation phase isapproximately bounded by the diameter
of thenetwork. Hence, for avery large network of 10, 000 sensor
nodes distributed on a square grid,with the above properties, an
average sensor nodeswill send about 100 beacons and thewhole
network will take less than 8 seconds for the entire cluster cre-
ation phase.

Asthe cluster creation phase ends, only the cluster informa-
tion needs to be retained by the clusters. The BFS tree does not
need to be maintained any further.

During the cluster creation phase, afew nodes may be missed
(could be dueto transient channel errors over the duration of the
cluster creation phase). Such nodes will be able to join some
cluster during the Cluster Maintenance phase, discussed next.

B. Cluster Maintenance

Oncethe cluster creation phase generates a set of clusters, the
cluster maintenance phaseisinvokedto performsmall incremen-
tal changesto the clustersto handle node mobility, as new nodes
arrive and existing nodes depart from the network (battery might
run out). For the Cluster Maintenance phase, we relax the upper
bound of the cluster size to 3k. Hence, clusters in the mainte-
nance phase can have sizes between k and 3k 8.

New node joins : A sensor node, v, on joining the net-
work,establishes its set of neighbors, N (v). If any node v €
N(v) belongsto some cluster of size < 3k — 1 then we add v
to the cluster that « belongsto. This also ensures that we main-
tain connectivity in the cluster and the size requirement.

However, it is possible that al neighbors belong to clusters
of size3k — 1. Inthiscase, we add v to one such cluster, thus
making its size, 3k. Hence this cluster is split into two sepa-
rate clusters. The splitting process involves the use of the same
distributed implementation described in Cluster Creation phase.
However, in this scenario, it is even simpler, since as soon as a
cluster isidentifiedto havesize > k, theremaining 2% nodes can
immediately be put into another cluster. Note, this splitting in-
volvesonly thenodesinthiscluster of size 3% being split. Hence,
this splitting effort has constant communication and time re-
quirements unlikethe clustering of the entire network, for which
it is proportional to the diameter of the network. It can aso be
observed, that once acluster is split, in thismanner, it would re-
quire at least k other nodes joining one of the clusters (in the
worst case) before another split would be necessary.

Triggering re-clustering : A cluster is split into two when it
reaches the 3k size upper bound, as a new member joins. How-
ever, it might be necessary to share anode, =, by both the new
clusters created (to ensure connectivity of each cluster). As
a consequence |.S(x)| would incresse. There are cases when

8 At the end of cluster creation, however, al the clusters had size between &
and 2k. Hence, at the end of cluster creation, if asmall cluster of size < k exists
(there can be only one such cluster), it is merged with another cluster of size <
2k.



|S(x)| decreases too. However, by a pathological sequence of
joins by other nodes to the set of clusters S(z), the value of
|S(z)| can increase without bounds. We consider a clustering
to be of “poor” quality, when an estimated average of |S(z)|
exceeds a specified threshold. Thistriggersthe cluster-creation
phase to re-create a “good” clustering. This estimation can be
done periodically a each node by randomly sampling a small
subset of its nearby nodes. Network-wide flooding solutions are
not used to gather this estimate. In the event multiple nodes
trigger re-clustering simultaneoudly, the cluster creation phase
chooses only one of these re-clustering initiatorsto proceed and
inhibits al the others, as aready described. For a relatively
sowly changing network topology, like the wireless sensor net-
works, the gap between successive invocations of the cluster-
creation phase will very high.

Existing node leaves : When a node leaves, it may cause
the cluster(s) it belongs to, become disconnected. However, it
may be shown (using the same argumentsasin Lemmalll.1 and
[11.2), that the number of remaining connected components of a
cluster, due to a node leaving, will be bounded (using the same
boundsas beforefor the Maximum Independent Set in the neigh-
borhood of asingle node). Any such connected component, that
hasitssize > k, is made acluster. Each component that has a
size < k, will cease to be acluster, and each node in the compo-
nent will attempt to join one of itsits neighboring clusters —the
same mechanism of a node joining a cluster, appliesfor each of
these nodes.

Link outages and network partitions: A link outage does
not ater the number of nodes in the cluster. It may split the
cluster into disconnected components, henceisequivalent to the
cluster maintenance mechanism, when an existing node leaves.
When anetwork partition happens, theremay betwo setsof clus-
terson each side of the partition. When the partitionsjoin again,
no special mechanisms are needed.

V. EXPERIMENTAL RESULTS

We simulated the operations of our clustering scheme on a set
of wireless sensor nodes. For the simulation, we generate ar-
bitrary wireless topologies. We randomly place a set of nodes
in a 1000 unit x 1000 unit grid, and vary the connectivity for
the topol ogy, by appropriately choosing a uniform transmission
radii for al the nodes. No intelligent channel access scheme
(e.g. using RTS-CTS messages) has been used for these smula-
tions. Hence, messages collisionshappened infrequently leading
to packet losses. This, however, does not affect the correctness
of the clustering protocol as no hard state is maintained at the
nodes. The maintained soft state times out when a sequence of
consecutive beacons are lost due to collisions or errors. While
channel acquisition based access schemes would improve the
simulation results, the nature of the results would be unaffected.

Nodes arbitrarily join and leave the topology. Each node ran
an instance of the cluster creation phase of the protocol. In the
experimentsreported here, we chose P, the averagetimegap be-
tween successive beacons transmitted by anode, to be 10ms.

Timeto Stabilize: A wirelessnodeis said to stabilizeinto a
final cluster, duringthecluster creation phase, when it undergoes
no further changes in its cluster membership during this phase,
and stopstransmitting cluster creation beacons. In Figure 10, we

Nodes = 700, Cluster size : 8-16
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Fig. 10. Cumulative fraction of nodes stabilized into their final clusters during
the cluster creation phasewith time, in awireless network for different con-
nectivity (the graph diameter changes) of the topology

Transmit Avg. Cluster Dia. for different sizes

Radius (Diameter) 10—20 2040 25-50 4080
60.0 (24) 48 7.8 9.1 11.2
71.0 (21) 44 7.6 82 10.7
84.9 (16) 42 6.8 7.3 10.0
101.1 (13) 34 51 59 71

Fig. 11. Cluster diameter for varying connectivity of nodesin the topology and
varying cluster sizes

plot results from a set of experiments, on a 700-node topol ogy.
The cluster creation phaseisinitiated by one node at random, at
time 1 second into simulated time. The x-axis shows the sim-
ulated time elapsed. The y-axis indicates the cumulative frac-
tion of the nodes that have stabilized. Asthe connectivity of the
topology is increased the diameter of the graph decreased, and
the cluster creation phase takes lesser time to complete. For a
highly connected graph (with diameter 10), the cluster creation
phase completesin 150 ms(itisexpected to be upper bounded by
(2x diameter of the graph x avg. inter-beacon period), which
is200 msinthiscase), but for alow connectivity graph (diame-
ter 24) it takes much longer (250 ms). Operations of the cluster
mai ntenance phaseinvolvesmostly asinglecluster at atime, and
hence involve much smaller time scales.

Cluster Diameter : In general, it isdesirableto have clusters
of low diameter. In Figure 11, we show the average diameter of
the different clusters for the 700-node topology. The cluster di-
ametersincreasewith increasing cluster size and with decreasing
connectivity (i.e. increased transmission radius of theindividual
nodes) of the topology, as would be expected.

We ran experiments on networks with up to 1100 nodes using
our simulator. All clusters, as expected, meet the desired cluster
sizebounds. Only inafew experimentsdid we seeanode having
to belong to multiple clusters during the cluster creation phase.

VI. RELATED WORK

Some routing solutionsfor the Internet have used hierarchies
to provide scd ability, e.g. OSPF protocol [22] and ATM PNNI
[23]. Additionaly, in some cases, ATM PNNI [23], [24] splits
the network into clusters, called peer-groups, and only summa:
rized information e.g., of cost of traversal, of the peer-groupsis
exported to the remaining network.



Krishnan et al [13] have explored different graph partitioning
schemes for Internet-like graphs. Their target problem is, as a
consequence, somewhat different from ours.

In mobile wirel ess environments, the Zone Routing Protocol
(ZRP) [25], has the wesk notion of groups, called zones, which
are used to limit the propagation of updates. The notion of clus-
tering has a so been used previoudly for hierarchica routing for
packet radio networks in [26] and [27]. In [6], [7] clustering
algorithms are described for multi-hop mobile radio network,
where the clusters are chosen such that the cluster-heads form
a dominating set in the underlying graph topology. This makes
the number and size of the clusters, largely dependent on the
graphtopology. They useit primarily for “ spatial reuse’ of chan-
nel spectrum. A similar mechanism is used in Cluster Based
Routing Protocol (CBRP) [28] and amore generalized approach
is used in [8] for mobile ad-hoc networks. Das et a [9] de-
vel op adistributed implementation of approximation agorithms
to compute the connected dominating set of agraph [29], to cre-
ate arouting ‘ spine’ and describe a clustering scheme to create
two layered hierarchies. Krishna et a [30] defines a clustering
scheme, where each cluster is required to be a clique. These
mechanisms are possible by allowing small clustersto exist as
may be needed.

VII. CONCLUSIONS

In this paper, we demonstrate how certain geometric proper-
tiesof thewirel ess networkscan be exploited to perform cluster-
ing with some desired properties. Generic graph agorithms de-
veloped for arbitrary graphswoul d not exploit therich geometric
information present in specific cases, e.g. the wireless network
environment. Even without exact knowledge of nodelocationin
different environments, understanding various specia properties
of the communi cation graph can lead to better and efficient a go-
rithms.
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