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Abstract

Multimedia traffic can tolerate some loss but has rigid delay constraints. A natural QoS
requirement for a multimedia connection is a prescribed bound on the the fraction of traffic
that exceeds an end to end delay limit. We propose and analyze a traffic management schemes
which guarantees QoS to multimedia traffic while simultaneously allowing for a large connection-
carrying capacity. We study our traffic management scheme in the context of a single node.
In order for the node to guarantee QoS, each connection’s traffic is regulated. In order to
support many connections, the link statistically multiplexes the connections’ traffic. The scheme
consists of (i) cascaded leaky-buckets for traffic regulation, (ii) smoothers at the ingresses, and
(iii) bufferless statistical multiplexing within the node. For this scheme we show that loss
probabilities are minimized with simple one buffer smoothers which operate at specific minimum
rates. We also show that the worst case input traffic is extremal on off traffic for all connections.
These two results lead to a straightforward scheme for guaranteeing QoS to regulated traffic.
Using MPEG video traces, we present numerical results which demonstrate the methodology.
Finally, we compare the bufferless scheme with buffered statistical multiplexing.

1 Introduction

Over the past ten years, significant research effort has addressed the important problem of guar-
anteeing QoS to multimedia traffic in a packet switched network. The goal has been to develop
traffic management schemes that allow for high link utilizations while simultaneously guaranteeing
that the QoS requirements of the ongoing connections are met. It is generally agreed that high link
utilizations can only be achieved by allowing traffic to be statistically multiplexed, i.e., by allowing
each connection’s traffic to have a small amount of loss and exploiting the statistical independence
of the connections’ traffic [24][13][14][11]. It is also the view of many researchers that QoS can only
be guaranteed by requiring the traffic to be regulated (e.g., by leaky buckets) at the edges of the
network [15][28] [10][20][8][18][21].
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In recent years the problem of providing QoS guarantees to regulated sources which are statis-
tically multiplexed in a shared buffer has been carefully studied [8][18][21]. The existing solutions,
however, do not extend to the network environment in a satisfactory manner. Also in recent years,
the problem of providing end-to—end deterministic guarantees to regulated traffic in networks has
been adequately solved [30][29][10][20]. The deterministic QoS guarantees, however, typically imply
a small connection—carrying capacity for networks with bursty multimedia traffic. In this paper
we lay the groundwork for a traffic-management architecture that provides end-to—end statistical
QoS guarantees. We focus our attention to a network consisting of a single node in this paper. We
extend the traffic mangement to networks in a subsequent paper [23].

In this paper we view traffic as fluid. The fluid model, which closely approximates a packetized
model with small packets, permits us to focus on the central issues and significantly simplifies
notation. We suppose that the traffic sent into the node by each connection is regulated by a
connection—specific cascade of leaky buckets. A cascade of leaky buckets is more general than
the two—leaky—bucket regulator, commonly used in the literature [8][18], and can more accurately
characterize a source’s traffic. Moreover, cascaded—leaky—bucket traffic can easily be policed. For
admission control, all that we know about a connection’s traffic is its regulator constraint defined
by its cascade of leaky buckets; in particular, we do not have available statistical characterizations
of the traffic.

We also assume that the following natural QoS requirement is in force: the fraction of traffic that
exceeds a specific delay limit must be below a prescribed bound. Traffic which overflows at a buffer
is considered as having infinite delay, and therefore violates the QoS requirement. Importantly,
we permit each connection to have its own limit on the nodal delay and its own bound on the
fraction of traffic that exceeds this delay limit. This QoS requirement is particularly appropriate for
multimedia traffic, whereby timestamping and a playout buffer can ensure the continuous playout
of video or audio without jitter.

Given each connection’s traffic characterization and its QoS requirement, we address the fol-
lowing problem: How should we manage the traffic and perform admission control in order to
guarantee QoS while maintaining a large connection-admission region? We advocate the following
simple and pragmatic scheme: (i) smooth each connection’s traffic at the connection’s input as
much as allowed by the connection’s delay constraint; (i7) employ bufferless statistical multiplex-
ing within the node; (ii7) base admission control on the worst-case assumption that sources are
adversarial to the extent permitted by the connection’s regulator, while concurrently assuming the

connections generate traffic independently. This scheme enjoys the following features:

e Admission control is solely based on the connections’ regulator parameters, which are polica-

ble. It is not based on more complex, difficult to police statistical characterizations.

e It allows for statistical multiplexing at the node while meeting the QoS requirements. The

smoothing at the input increases the statistical multiplexing gain.

e [t allows for per-connection QoS requirements: the connections can have vastly different delay

and loss requirements.



e Because the multiplexing is bufferless, the switch requires only small input buffers (when
traffic is packetized), thereby reducing switch cost.

e A connection’s traffic characterization does not change as the traffic passes through the buffer-

less multiplexer.

It is this last feature that is particularly useful when extending the traffic management scheme
to a multihop network [23]. With our scheme the traffic leaving the network node conforms to
the same regulator constraints as the traffic entering the node. With shared buffer multiplexers it
is difficult (if not impossible) to tightly characterize a connection’s traffic once the traffic passes
through a shared buffer.

This paper is organized as follows. In Section 2 we formally define the cascaded leaky-bucket
regulators and the QoS requirement. In Section 3 we determine the worst-case traffic for a single-link
and outline our smoothing and admission control procedure. We also consider general smoothers
and show that the optimal smoother is a single-buffer smoother which smoothes traffic as much as
the delay limit permits. In Section 4 we present numerical results using MPEG encoded traces.
In Section 5 we compare our scheme to designs based on buffered statistical multiplexing. We

conclude in Section 6.

2 Regulated Traffic and the QoS Requirement

In this paper we focus on a single node consisting of a bufferless multiplexer that feeds into a link of
capacity C. We view traffic as fluid, i.e., packets are infinitesimal. Consider a set of J connections.
Each connection j has an associated regulator function, denoted by £;(t), t > 0. The regulator
function constrains the amount of traffic that the jth connection can send into the node over all
time intervals. Specifically, if A;(t) is the amount of traffic that the jth connection sends to the

node over the interval [0, ¢], then A;(-) is required to satisfy
Aj(t+71)— Aj(r) <E&j(t) forall 7 >0, t>0. (1)

A popular regulator is the simple regulator, which consists of a peak-rate controller in series with

a leaky bucket; for the simple regulator, the regulator function takes the following form:
Eit) = min{pjl-t, 0]2- + ,O?t}.

For a given source type, the bound on the traffic provided by the simple regulator may be loose
and lead to overly conservative admission control decisions. For many source types (e.g., for VBR
video), it is possible to get a tighter bound on the traffic and dramatically increase the admission
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are easily implemented with cascaded leaky buckets; it is shown in (see [28]) that the additional

leaky buckets can lead to substantially larger admission regions for deterministic multiplexing. We



shall show that this is also true for statistical multiplexing. Throughout this paper we assume that
each regulator has the form (2). Without loss of generality we may assume that pjl- > ,o? > > p]L-j
and 0]2- < a? << ofj. For ease of notation, we set p; = ,ofj. Note that for connection—j traffic,
the long-run average rate is no greater than p; and the peak rate is never greater than p;.

Each connection also has a QoS requirement. In this paper we consider a QoS requirement
that is particularly appropriate for multimedia traffic, such as audio and video traffic. Specifically,
each connection has a connection—specific delay limit and a connection—specific loss bound. Denote
d; and ¢; for the delay limit and loss bound for the jth connection. Any traffic that overflows
at a buffer is considered to have infinite delay, and therefore violates the delay limit. The QoS
requirement is as follows: for each connection j, the long—run fraction of traffic that is delayed by
more than d; seconds must be less than e;.

This QoS requirement can assure continuous, uninterrupted playback for a multimedia connec-
tion as follows. Each bit (or packet for packetized traffic) is time—stamped at the source. If a bit
from connection j is time-stamped with value x, the bit (if not lost in the node) arrives at the
receiver no later than xz + d;. The receiver delays playout of the bit until time x + d;. Thus, by
including a buffer at each receiver, the receiver can playback a multimedia stream without jitter
with a fixed delay of d; and with bit loss probability of at most ;.

The strategy that we take in this paper is to pass each connection’s traffic through a smoother
at the connection’s input to the node. We design the smoother for the jth connection so that the
jth connection’s traffic is never delayed at the smoother by more than d;. After having smoothed
a connection’s traffic, we pass the smoothed traffic to the node. At the link the connection’s traffic
is multiplexed with traffic from other connections. The second aspect of our strategy is to remove
all of the buffers in the node; that is, we use bufferless statistical multiplexing rather than buffered
multiplexing before the link. In our fluid model, a connection’s traffic that arrives to a bufferless
link either flows through the link without any delay or overflows at the link, and therefore has
infinite delay. In order to satisfy the jth connection’s QoS requirement, it therefore suffices that
the fraction of connection—j traffic that overflows the link be less than €;. Also, if the loss at the
link is small, we can reasonably approximate a connection’s traffic at the output of the multiplexer
as being identical to its traffic at the input to the multiplexer. In other words, a connection that
satisfies the regulator constraint £;(¢) at the input of the node satisfies the same regulator constraint
£;(t) at the output of the node. Our scheme extends therefore in a straightforward manner from a
single node to a general network of bufferless multiplexers with smoothers at the network ingresses
[23]. Our approach is illustrated in Figure 1.

For the smoother at the jth connection’s input, initially we use a buffer which serves the traffic
at rate ¢;. When the smoother buffer is nonempty, traffic is drained from the smoother at rate

J
¢j. When the smoother buffer is empty and connection—j’s traffic is arriving at a rate less than cj,
traffic leaves the smoother exactly at the rate at which it enters the buffer. For the fluid model
and QoS criterion of this paper we shall show that more complex smoothers consisting of cascaded

leaky buckets do not improve performance.
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Figure 1: The traffic of the jth connections is characterized by the regulator function £;(t). The

traffic is passed through a smoother with rate ¢j and then multiplexed onto a link with capacity C.

Using the theory developed in [2], it can be shown that the maximum delay at the smoother is

max{gjit) —t} . (3)

t>0 o
. C;

Also, because the bufferless multiplexer and link introduce no delays, traffic from the jth connection

that flows through the node without loss has the maximum delay of the smoother. We set the

c;:min{CjZO:max{Ej(t)—t}ﬂdj} ; (4)
t>0 Cj

so that the traffic that passes through the node (i.e., traffic which does not overflow at the link) is

smoother rate to

not be delayed by more than d;. It is straightforward to show from (4) that the smoother rate can

be expressed as

Ei(t
c;:max—]( )
t>0 dj +1

(5)

3 Guaranteeing Statistical QoS

We focus in this paper on a single link with J connections. Connection j has a regulator constraint
function £;(t) and QoS parameters d; and €;. Now regard the jth arrival process as a stochastic
process. Let (A;(t), t > 0) denote the jth arrival process, and let (A4;(¢,w), t > 0) denote a
realization of the stochastic process. Also let A(t) = (A1(¢),...,As(t)), and let (A(¢), t > 0) be
the associated vector stochastic arrival process. We say that the vector arrival process (A (t), ¢ > 0)
is feasible if () the component arrival processes (A4;(t), t > 0), 7 =1,...,.J, are independent, and

(1) for each j =1,...,J, each realization (A;(t,w), t > 0) satisfies the regulator constraint
Aj(t+1,w) — Aj(T,w) < E;(t) forall 7 >0, t>0. (6)

Denote A for the set of all feasible vector arrival processes (A(t), ¢ > 0).



Our first goal is to develop a straightforward procedure to determine whether the QoS require-
ments are met for all possible feasible stochastic arrival processes. For a fixed feasible vector arrival
process (A(t), t > 0), let U;(t) be the rate at which traffic from the jth connection leaves the asso-
ciated smoother at time ¢, and let U; be the corresponding steady-state random variable. Consider
multiplexing (A(t), ¢ > 0) traffic streams onto a bufferless multiplexer of rate C'. The long—run
average fraction of traffic lost by connection j is

E (Zﬁzl Uy — C)+L

PinfO(j) _ ZZ:1 Uy

loss

E[U;] ")

In the definition of P"(5) we make the natural assumption that traffic loss at the bufferless mul-

loss

tiplexer is split between the sources in a manner proportional to the rate at which the sources send

traffic into the multiplexer. Note that Pllonsfso(j) keeps track of loss for each individual connection.

Although Pllonsfs0 (7) is an appealing performance measure, we have found it to be mathematically

unwieldy. Instead of P2°(j) we shall work with a bound on P2(j) which is more tractable and

which preserves the essential characteristics of the original performance measure. Noting that the

term in the expectation of the numerator of equation (7) is non-zero only when Y3{_, U, > C, we

obtain:

E[(S] U - 0)Uj]
C - E[Uj]

In most practical circumstances the QoS requirement specifies traffic loss to be miniscule, on the

Plinfo (]) <

088

:= Ploss(7)- (8)

order of €¢; = 107 % or less. Thus we expect the bound to be very tight: during the rare event
when Z]‘-le Uj exceeds C, we expect Z]‘-le Uj to be very close to C. Henceforth, we focus on the
bound Pjgs(7), and we refer to Plgs(j) as the loss probability for the jth connection . In Section
5 we provide numerical results which show that Pss(j) is very nearly equal to the actual loss
probability Pinio(y).

By taking the supremum over all the feasible vector stochastic processes, we obtain the following

worst—case loss probability of the jth connection:

. E [(Zizl Uk — C)+Uj]
= SEtp C - E[U;]

(9)

If ¢7 <e¢jforall j =1,...,J, then the QoS requirements are guaranteed to be met for all feasible
vector arrival processes, that is, for all independent arrival processes whose sample paths satisfy
the regulator constraints. In our strategy, at connection admission we determine whether ¢ < ¢;
forall j =1,...,J will continue to hold when adding the new connection. If not, the connection is
rejected. Thus, we need to develop an efficient method to compute the bounds ¢7, ..., ¢%. Asa first
step in computing these bounds, we need to explicitly determine the random variables Uy,..., Uy
that attain the supremum in (9).

Lemma 1 Let Uf,..., U] be independent random variables, with U having distribution
* . oy p_7
— ¢;  with probability &
7 . e P
0 with probability 1 — £ .

J



There exists a feasible vector arrival process which produces the steady-state rate variables U7,... U}

at the smoother outputs.

Proof. The proof is by construction. For each 5 =1,...,J, let

2
9

pj = P

t; =

and L
Ty =%
T (p) — P
Also let 6y, ...,0; be independent random variables with #; uniformly distributed over [0, T;]. Let

b;(t) be a deterministic periodic function with period T} such that

bi(t) — p; 0St<tj
i(t)
0 t;,<t<Tj.

Define the jth arrival stochastic process as

A(t) = ./Ut b, (s + 0,)ds.

Thus each component arrival process (A4,(t), t > 0) is generated by a periodic on—off source; the jth
process has peak rate p} and average rate p;. By sending each component process (A4;(t), ¢t > 0)
into its respective smoother, we obtain an on-off process whose peak rate is ¢ and whose average
rate is p;. Also, the component processes are independent; thus the vector arrival process produces
the steady—state random variables Uf,...,U} at the smoother outputs.

It remains to show that each realization of (A;(t), t > 0) satisfies the regulator constraint (6).

It follows immediately from the definition of b;(¢) that
t
/ b;(s)ds < &;(t) for all 0 < t < T, (10)
Jo

We can, in fact, show that
¢
/ b;(s)ds < &;(t) for all ¢ > 0. (11)
Jo

To see this consider any arbitrary ¢ = nT);+ s, where n is some non negative integer and 0 < s < T}.

We have

nlj nl+s

bi(s)ds + /nT_ bi(s)ds

t T;

/Obj(s)ds _ /0 b(s)ds + ...+
< nTjpj+E;(s)

< [Ei(nTy+ ) = E5(s)] + E;5(s)

= Sj(t) .

(Tl*l)T]'

The first inequality follows from (10) and from the fact that the average rate of b;(f) over any
period of length Tj is p;. The second inequality follows because the slope of £;(#) is never less than

p;. This establishes (11). Finally because b;(t) is non increasing over each of its periods, we have

t+7 t
/ bj(s)ds < / bj(s)ds for all 7 >0, ¢>0. (12)
T 0



Combining (11) and (12) proves that each realization of (A;(t), t > 0) satisfies the regulator

constraint (6).

|
We now show that the random variables U7,..., U} attain the supremum in (9). This result
will lead to a simple procedure for calculating the worst—case loss probabilities ¢7,...,¢%. To this

end, we will need to make use of a concept from stochastic ordering. A random variable X is said to
be smaller than a random variable Y in the sense of the increasing convex stochastic (ics) ordering,
written as X <;., Y, if E[h(X)] < E[h(Y)] for all increasing, convex functions A(-).

Theorem 1 For each j =1,2,...,J, worst—case loss probability for the jth connection is

. Bl v - oty
b= C - E[U}]

Proof. Let U be the set of all random vectors (Uy,...Uy) such that
1. Uj, 5 =1,2,...,J are independent.
2. 0< E[Uj] <pjand 0 < U; <cj forall j=1,2,,...,J.

All feasible vector arrival processes in A give steady—state rate variables that belong to U. Let
(Ui,...,Uy) be a random vector in Y. Let U = Uy +--- + Uy and U* = U} + --- + Uj. We need

to show that
B~ 0)*Uy] _ EIU” = 0)*U;)

CE[U;] ~  CE[U]]

Fix i, with 1 <4 < J, and consider the random vector (Ul, ce UJ) such that U; = U and Uj =U;
for 7 # 4. Note that (Ul, ey UJ) € U. We first show that for each fixed j,

(13)

CE[U;]  —  CE[U;]
Consider the case i # j. Let V = U — U; — U;. Let dFy(-) and dFy,(-) be the distribution
functions for V' and U;. Noting that U;, U; and V are independent, we have

E[(U — C)*U;] (U; +V +U; — C)'Uj)

/ / B((U; +v +u— C) uldFy (v)dFy, (u)

The function f(z) = (z +v +u — C)Tu within the expectation is an increasing, convex function in

x for each fixed v and u. Thus, because U; <;eq U; (e.g., see Proposition 1.5.1 in [27]), we have
El(Ui+v+u—C) ' < E[(U; +v+u—C)Fu
for all v and u. Combining the above two equations gives

E[(U - C)*U;) < B[(U - C)'T;),



which, when combined with E[U;] = E[Uj], gives (14).
Now consider the case 1 = j. Let W = U — U;. Using U; < ¢}, the independence of W and U;,

and the independence of W and Ui, we obtain

E[((U - C)tU)]  E[(W +U; - O)*U})
CE[U,] CE[U;]
< ElW+c -0 E[U]
B C E[Ui]
_ E[(W+¢ - 0O)f) E[U)
c E[U;]
_ B(W +¢ - O)tU]
N CE[U)) -
Also
E[(U —C)tU;)] = E[W +U; —C)*tU;]

E[(W + ¢ — C)*Uj).

Combining the above two equations gives (14) for i = j.
Thus (14) holds for alli = 1,...,J. Therefore, starting with the original vector (Uy,...,Uy) € U

we can replace U; with U and obtain a new vector in U such that (14) holds. Rename this new

vector as (Uy,...,Uy). We can repeat the procedure, this time replacing Uy with Us, and again
obtaining a new vector in U such that (14) holds. Performing this procedure for all i = 1,...,J
gives (13). [ ]

Using the fact that U7 is a Bernoulli random variable, we obtain from Theorem 1 the following

expression for the bound of Pjgs(7):

E[(Shy U + ¢~ O)F]

¢j = G (15)

We can compute these bounds directly by convolving the distributions of the independent random
variables. An efficient approximate convolution algorithm is presented in [16]. We can also obtain
an accurate approximation for the right hand side of (15) by applying large deviation theory to

the expectation in the numerator: To this end let
pur(s) ==1In E[e*Vk].

Note that py(s) is the logarithm of the moment generating function for U;. We define
Us=> Uy.
k]
Note that

po(s) = > pu; (s)
k#j



by the independence of the U}’s. The large deviation (LD) approximation gives the following
approximation for ¢} [24, p. 146]

1 o8 (O by (7).
Cs*2\ [2mpuf;. (s%)

where s* is the unique solution to

py-(s*) = C = ¢j.

The LD approximation is known to be very accurate [24, 11, 7, 8, 22] and is also computationally
very efficient. We use the LD approximation for the numerical studies in this paper.

In summary, (15) is a simple expression for the worst case loss probability gb;f; this simple
expression involves the independent Bernoulli random variables U7, ..., Uj, whose distributions we
know explicitly. The LD approximation for (15) is highly accurate and is easily calculated. For
admission control, we advocate using the LD approximation to calculate qﬁ;‘ and then verifying the
QoS requirement, i.e., verifying in real time whether ¢j <e¢; forall j=1,...,J.

At this juncture we note some important related work by Doshi [5, 6]. He studies worst case,
unsmoothed traffic that maximizes an aggregate loss ratio, where the aggregation is taken over
all sources. For this criterion he discovers a number of anomalies; in particular, extremal on off
sources are not always worst case. With our bound Pyg5(7) (8) the loss is maximized by the extremal
on off sources, which greatly simplifies admission control. Furthermore, as we show in this paper,

smoothing of traffic can significantly expand the admission region.

3.1 The Optimal Smoother

Up to this point we have assumed that the smoother for each connection j consists of a single
buffer that limits the peak rate of the smoother output to c}f. In this subsection we study more
general smoothers, namely, smoothers that consist of a cascade of leaky buckets. The smoother
for connection j, defined by a function S;(t), constrains the amount of traffic that can enter the
network over any time interval. Specifically, if B;(t) is the amount of traffic leaving smoother j

over the interval [0,¢], then B;(t) is required to satisfy
Bj(t+ 1) — Bj(r) < Sj(t) forallt>0, 7>0.

We assume throughout this section that the smoother functions are of the form

Si(t) = min {s* +rkt 16
J( ) 1SkSM]‘{ J J } ( )

. M; M; . .
with rjl- > 7“]2- > >y 7and 0 = 3; < S? <<y 7. These piecewise linear, concave smoother

functions can be easily implemented by a cascade of leaky buckets. The single buffer smoother
defined in Section 2 is a special case with M; = 1, sjl- =0 and 7“]1- = cj.
We say that a set of smoothers (Si(t),...,Ss(t)) is feasible if the maximum delay incurred at

smoother j is < d; for all j = 1,...,J. By definition the set of smoothers (cjt,...,ct) studied

10



earlier is feasible. Now fix a feasible set of smoothers (S (%), ..., Ss(t)), and let the regulated traffic

from the J connections pass through these smoothers. Let

E[(S]-1 Uk — 0)*Uj]
C - E[Uj]

¢j = sup (17)
A

be the associated worst case loss probability. Recall that qS;‘ is the same worst case loss probability

but with the traffic passing through the set of smoothers (cit,...,c%t). The proof of the following

result is provided in the appendix.

Theorem 2 ¢ < ¢; for all j =1,...,J. Thus the single-buffer smoothers with ¢; = ¢ minimize

the worst—case loss probability over all feasible sets of smoothers.

It follows from Theorem 2 that the more complex smoothers consisting of cascaded leaky buckets
do not increase the connection carrying capacity of the network. Thus without loss of performance,
we may use the simple smoothers of the form (cqt,..., ¢ t). Furthermore, Theorem 2 verifies the
intuition that in order to maximize the admission region the smoother rates are as small as the

delay constraints permit, that is, ¢; = ¢j for j =1,...,J.

3.2 A Heuristic for Finding a Leaky Bucket Characterization of Prerecorded

Sources

In this subsection we discuss how to obtain a good characterization £;(t) of a source for a given
restriction L; on the number of leaky buckets. For any given characterization £;(t) we use at the
network edge a single buffer smoother with rate ¢} given by (5). Our goal is to find a characteri-
zation £;(t) that has at most L; slopes (i.e., L; cascaded leaky buckets) and attempts to minimize
both p; and ¢j. From Theorem 2 we know that minimizing p; and ¢} minimizes the worst case loss
probabilities, and thereby maximizes the connection carrying capacity of the network.

We develop the heuristic for determining the characterization £;(#) in the context of prerecorded
sources. These sources include full length movies, music video clips and educational material for
video on demand (VoD) and other multimedia applications. It is well known how to compute the
empirical envelope for prerecorded sources [12, 28, 17]. The empirical envelope gives the tightest
bound on the amount of traffic that can emanate from a prerecorded source over any time interval.
The empirical envelope is however not necessarily concave, and therefore we may not be able to be
characterize it by a cascade of leaky buckets. However, applying the algorithms of Knightly et al.
[28] or Grahams Scan [1], we can compute the concave hull of the empirical envelope. The concave
hull for connection j traffic, denoted by H;(t), takes the form

H;(t) = 1;'1%1}9{% + pjt}- (18)

Here, K; denotes the number of piecewise linear segments in the concave hull. Without loss of
generality we may assume o*]l- < 0]2- < <L U]I-(j and ,0]1- > p? > > p][-(j.
The number of segments in the concave hull can be rather large. The “Silence of The Lambs”

video segment used in our numerical experiments, for instance, has a concave hull consisting of

11



39 segments. This implies that 39 leaky bucket pairs are required to police the tightest concave
characterization of the “Silence of The Lambs” video segment. Our goal is to find a more suc-
cinct characterization of prerecorded sources in order to simplify call admission control and traffic
policing.

Suppose that a source is allowed to use L; (L; < K;) leaky buckets to characterize its traffic.
We now present a heuristic for the following problem: Given a source’s concave hull H;(t) =
mini <i<x; {a; —i—p;-t} and the delay limit d;, find L; leaky buckets (out of the K; leaky bucket pairs
in the concave hull) that maximize the admission region.

We illustrate our heuristic for the case L; = 2. For L; = 2 the traffic constraint function takes

the form
E;i(t) = min{a;lj + p;jt, a]b-j + pzjt} with 1 <a;,b; < Kj, (19)

where the indices a; and b; are yet to be specified. Our strategy is to first choose the leaky bucket
that has the tightest bound on the average rate (i.e., minimize p;), and then choose another leaky
bucket which minimizes the smoother rate c;. Let ri"® denote the average rate of the prerecorded
source. We found in our numerical experiments that some of the leaky bucket pairs in the concave
hull (particularly those with high indices) may have slopes < riV¢. We set b; = max{i : pﬁ- >
rive, 1<i < K;}. In words, we use the highest indexed leaky bucket with a slope larger than rEve
to specify the sources’ average rate.

In order to find the leaky bucket indexed by a; we consider all leaky buckets (oé, p;) with
1 <4 < bj. We compute the smoother rates obtained by combining each of the leaky buckets
(0’;-, pé-), 1 <4 < bj with the leaky bucket (J?j,psj) and select the index i that gives the smallest
smoother rate  and thus the largest admission region. More formally, let c}'fz, 1 <1 < bj, denote
the minimal smoother rate for traffic with regulator function &;(t) = min{a§ + pé-t, a?j + p?jt} and
delay bound d;. By (5) we have

*1

min{a;- + pét, a?j + p?jt}
;' = max .
J >0 dj +1

We can obtain a more explicit expression for ¢j'. Since

U _ _ ol +pit  for0<t<t
min{o; + pit, U?] —I—p;)-]t} = 7 p]b, -
o/ +pjt fort>4t

with t; = (0,7 —03)/(p; — p;’), we have

y [ ot + pit o+ ,o?ft]
C; = max max —_— max ——— .
J [ogtgti dj+t " >t dj+t J

The expressions inside the max[-] can be further simplified. It can be shown that

ol ¢ ol

i 21 ifd, <
o;+pit | 4 i=0

max ———— =4 i, ;. i
0<t<t; d;j +1 AL T B
dj+t; J = p;
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and

) ) b
ol +pit . o
. . I} . Zi

ag" + pz]t dj+t; ifd; < pE
m>ax W = bj Ai’i
t>t; ; [ . [
- i if d; > %
'] J

Pj

We set the smoother rate to ming <;<p, c;‘-i and set a; to the index that attains this minimum.

We now briefly discuss how to find the optimal regulator function consisting of 3 or more leaky
b — 1
J

buckets. First, note that there are ( I ) combinations of leaky bucket pairs to consider. This
J
can be computationally prohibitive. The heuristic can be sped up by considering only regulator

functions consisting of L; — 1 consecutive leaky buckets of the concave hull and the leaky bucket
b

o pb-j . In the case L; = 3, for instance, we compute the minimal smoother rates only for the
i Vi J y
regulator functions &£;(t) = min{aé- + p;-t, (I;+1 + p;-“t, Usj + ,O?jt} with 1 <4 < b; — 1. This

speed up of the heuristic can produce a suboptimal regulator function. Our numerical experiments

(see Section 4), however, indicate that it works surprisingly well.

3.3 Interaction between Application and Network

In this subsection we discuss how the responsibilities of smoothing, call admission control and
traffic policing can be shared by the application and the network. Call admission control is the
responsibility of the network. Before accepting a new connection, the network has to ensure that
the QoS requirements continue to hold for all established connections and the new connection.
Policing is also a network responsibility. The network edge has to police all established connections
in order to ensure that all connections comply with their respective regulator function advertised
at connection establishment. While call admission control and traffic policing are responsibilities of
the network, smoothing can be performed by either the application or the network. We refer to the
case where the application performs the smoothing and sends the smoothed traffic to the network
edge as application smoothing. The case where the application sends its unsmoothed traffic to the
network edge and the network edge performs the smoothing is referred to as network smoothing.

With application smoothing the application internally smoothes its traffic. Based on the regula-
tor function of its traffic and the maximum delay it can tolerate, the application finds the minimum
smoother rate by applying (5). Since the smoothing is done by the application, there is no need to
reduce the number of leaky buckets used to characterize the traffic by applying the heuristic outlined
in Section 3.2. Instead, the concave hull of a prerecorded source is used directly for dimensioning
its smoother. The application advertises the regulator function £;(t) = min{cjt, afi + p]L-jt} and
the delay bound d; = 0 to the network. We remark that this dual leaky bucket regulator function
has been adopted by the ATM Forum [9] and is being proposed for the Internet [26]. The network
does not have to be aware of the smoothing done by the application. The network edge dimensions
its own smoother based on £;(t) and d; = 0. Since d; = 0 the networks’ smoother degenerates to
a server with rate ¢ preceded by a buffer of size zero.

With network smoothing the application advertises its regulator function and maximum toler-

able delay to the network. Prerecorded sources apply the heuristic of Section 3.2 when the network
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Trace Mean (bit) Mean | Peak/Mean
bits/frame | kbits/sec
lambs 7,312 171.2 18.4
mr.bean 17,647 423.5 13.0

Table 1: Statistics of MPEG 1 traces.

restricts the number of leaky buckets to a number smaller than the number of segments in the con-
cave hull. The network edge dimensions the smoother based on the regulator function and delay
bound supplied by the application. Call admission control is based on the assumption of worst—case
on—off traffic at the smoother output. The network edge polices the applications’ traffic before it

enters the smoother and drops violating traffic.

4 Numerical Experiments

In this section we evaluate the smoothing/bufferless multiplexing scheme proposed in this paper
using traces from MPEG encoded movies. In all experiments we consider a single bufferless multi-
lexer which feeds into a 45 Mbps link. We obtained the frame size traces, which give the number of
bits in each video frame, from the public domain [25]. (We are aware that these are low resolution
traces and some critical frames are dropped; nevertheless, the traces are extremely bursty.) The
movies were compressed with the Group of Pictures (GOP) pattern IBBPBBPBBPBB at a frame
rate of F' = 24 frames/sec [25]. Each of the traces has N = 40,000 frames, corresponding to about
28 minutes. The mean number of bits per frame and the peak to mean ratio are given in Table 1.
Let z,, n=1,..., N, denote the size of the nth frame in bits. We convert the discrete frame size
trace to a fluid flow by transmitting the nth frame at rate z, F' over the interval [n — 1/F,n/F].

We first evaluate the heuristic of Section 3.2. We compute the empirical envelope and the
concave hull of each trace using the algorithms of Knightly et al. [28]. Based on the concave hull of
each video we compute the minimal smoother rate (‘;‘ We also apply the heuristic of Section 3.2 to
the concave hull in order to find the optimal leaky bucket characterization with 2 and more leaky
buckets. (We apply the speed up described in Section 3.2 for the leaky bucket characterizations
with 3 or more leaky buckets.)

The heuristic of Section 3.2 produced the optimal leaky bucket characterizations given in Table 2
for the lambs trace. The table gives the index ajymps and the parameters of the leaky bucket
(opzmbs - piambe) for various delay bounds. The average rate is characterized by the 34th leaky
bucket in the concave hull, i.e., bjamns = 34, for all delay bounds. The table also gives the minimal
smoother rates for the various delay bounds. For a delay bound of zero, the smoother rate is set to
the rate of the first leaky bucket, i.e., the peak rate of the trace. For djymps = 0.042 sec (= 1/F) the
trace is characterized by the 2nd and 34th leaky bucket of the concave hull (ajambs = 2, blambs = 34).

Note that digmbs < opaxies /pianbs in this case and Clamps = 0120 /diambs. For diamps > 0.125 sec

A1ambs A1ambs * — Glambs A1ambs .
we haVe d]ambs > Ulambs /plambs and Clambs - (O—J + p] talambs)/(d] + talambs)'
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dlambs | Glambs | Tpamies | Plambe Clambs
sec. kByte | kbit/sec | kbit/sec

0 1 0 3474.8 3474.8
0.042 2 13.3 939.3 2535.5
0.125 2 13.3 939.3 939.0
0.250 4 23.5 802.2 801.9
0.500 8 43.5 711.0 710.8
1.000 10 69.9 676.9 674.7

Table 2: Parameters of the optimal leaky bucket characterization with 2 leaky buckets as a function
of the delay bound for the lambs trace. The average rate is characterized by the 34th leaky bucket,
i.e., blambs = 34, with parameters alb;;“,;’; = 3,157.8 kByte and plb;an‘fﬁ; = 208.8 kbit/sec for all delay
bounds.

Assuming worst—case on—off traffic, the smoother outputs are statistically multiplexed onto the
bufferless link as discussed in the previous sections. We set ¢; = 10~7 for all connections. In
Figure 2 we plot the number of admissible video connections as a function of the delay bound.
The graph gives the number of admissible video connections when the videos are characterized by
the concave hull or the optimal leaky bucket characterization with 2 leaky buckets. We observe
from the plots that the optimal leaky bucket characterization with 2 leaky buckets admits almost
as many video connections as the more accurate concave hull characterization. The curves for 3 or
more leaky buckets coincide with the curve for the concave hull.

In the next experiment we compare the admission region of our approach with the admission
region obtained with the deterministic admission control condition of Knightly et al. [28]. Note that
the deterministic approach of Knightly et al. is lossless and guarantees that no bit is delayed by
more than the prespecified delay limit in the multiplexer buffer. Our approach, on the other hand,
exploits the independence of traffic emanating from the J connections. The videos are passed
through simple smoothers with ¢; = ¢j. The smoother outputs — assuming worst—case on—off
traffic — are then statistically multiplexed onto the bufferless link, as discussed in the preceding
sections. We set €; = 1077 for all connections. Losses this small have essentially no impact on the
perceived video quality and can be easily hidden by error concealment techniques [19].

In Figure 3 we plot the number of admissible lambs connections as a function of the delay bound.
The graph gives the number of lambs connections that are admitted with the our approach (RRR)
when 2 or 3 leaky buckets (LB) are used to characterize the video trace. As we just saw in Figure 2
the optimal leaky bucket characterization with 3 leaky buckets admits as many connections as the
concave hull, the most accurate, concave characterization of the video; using more leaky buckets
does not increase the admission region. We also plot the number of lambs connections that are
admitted with the approach of Knightly et al. (KLZ) when 2, 3, 8 or 16 leaky buckets are used to

characterize the trace. We observe that for delays on the order of .5 seconds or more, the number
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Figure 2: Number of video connections as a function of the delay bound. The videos are charac-
terized by the concave hull or the optimal leaky bucket characterization with 2 leaky buckets. The
bound on the loss probability is 10~7.

of admissible connections significantly increases as the number of leaky buckets used to describe
the trace increases. The approach of Knightly et al. thus greatly benefits from a more accurate
characterization of the video  achieved by more leaky buckets.

The main result of this experiment, however, is that our approach allows for more than twice
the number connections than does the approach of Knightly et al. For example, for a delay bound of
1.1 seconds, Knightly et al. admit 69 connections ( = 29.6 % average link utilization) with 16 leaky
buckets while our approach admits 146 connections ( = 62.7 % average link utilization) with 3 leaky
buckets. We obtain this dramatic increase in the admission region by exploiting the independence
of the sources and allowing for a small loss probability.

In Figure 4 we consider multiplexing two different movies, beans and lambs, each with its own
delay constraint. We again assume a 45 Mbps link. We use delay bounds of digmps = 125 ms
or 1.25 seconds and dpean = 125 ms or 1.25 seconds, giving four combinations. Both videos are
characterized by 3 leaky buckets. We assume that both video connections have the QoS requirement
that the fraction of traffic that is delayed by more than the imposed delay limit is less than 1077,
For the Knightly et al. plot we use Earliest Deadline First (EDF) scheduling. We see that for all
four cases, the admission region for our approach is dramatically larger.

info

In Figure 5 we compare the actual loss probability, P.°(j) given by (7) with our bound for loss

probability, Piess(4), given by (8). We obtain Pt () and Pies(j) by simulation, and assume worst
case on-off traffic. We also verify the accuracy of the large deviation approximation for Pogs(j). In
Figure 5 we plot the loss probabilities as a function of the number of connections being multiplexed
over a 45 Mbps link. We consider the scenario where the videos have a delay bound of 1 second and
are characterized by 3 leaky buckets. We observe that the bound on the loss probability Plogs(4)

(solid line) tightly bounds the actual loss probability Pi"f(5) (dotted line). We also observe that

loss
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Figure 3: Number of lambs connections as a function of the delay bound and the number of leaky
buckets (LB). Plots shown are for Knightly et al. (KLZ) [28] and our approach(RRR). The bound
on the loss probability is 1077.

the LD approximation (dashed line) closely approximates the simulation results.

5 Comparison with Buffered Statistical Multiplexing

The numerical results of the previous section show that our approach allows for dramatically more
connections than buffered deterministic multiplexing. In this section we briefly consider buffered
multiplexing with an allowance of small loss probabilities, which we refer to as buffered statistical
multiplezing. Consider the buffered analogy of the single-link bufferless system studied in Section 3.
The link has capacity C' and is preceded by a finite buffer of capacity B. Let the same J connections
arrive to this system; specifically the J connections are independent and the jth connection is
regulated by a given regulator function £;(¢). The traffic from the .J connections passes directly
into the buffered multiplexer, i.e., the traffic is not pre—smoothed before arriving at the buffer.
This buffered system is illustrated in Figure 6. Assuming that traffic is served FIFO, the maximum
delay in this system is d = B/C. Suppose that the buffer overflow probability is constrained to be
no greater than e.

It is a difficult and challenging problem to accurately characterize the admission region for a
buffered multiplexer which multiplexes regulated traffic and which allows for statistical multiplex-
ing. Elwalid et al. in [8] made significant progress in this direction. They consider the buffered mul-
tiplexer for the special case of requlators with two leaky buckets, i.e., for £;(t) = min{p;t, oj+pjt}.
(In our numerical comparisons, we extend their theory to the case of multiple cascaded leaky
buckets.) In order to make the buffered multiplexer mathematically tractable they assign each con-

nection its own virtual buffer/trunk system. Each virtual buffer/trunk system is allocated buffer
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Figure 4: Admission region for the multiplexing of lambs and bean connections over a 45 Mbps
link.

bo,; and bandwidth eg ;. The allocations are based on the buffer and bandwidth resources (B and
C, respectively) and on the regulator parameters (p;, pjl-, and o) for the input traffic. It turns out
that the bandwidth eg; is exactly the ¢} obtained by setting d; = d = B/C in (4). After some
analysis Elwalid et al. obtain the following bound on the fraction of time during which loss occurs
at the buffered multiplexer:

PEMW = p(Uy + -+ U; < O).

loss
where UY, ..., U} are exactly the same random independent random variables that occur in Theo-
rem 1. (To calculate the associated c7,...,c%, set d; = d = B/C for each connection j.)

This observation indicates that the bufferless system of this paper has remarkably similarities
with the buffered system in [8]. Specifically, for a fixed maximum delay d in the buffered system, we
can design a bufferless system with pre—smoothers which has the same maximum delay and which
has an admission region based on the same set of independent random variables U7, ..., UJ. The
pre-smoothers essentially implement the virtual buffer/trunk systems introduced by Elwalid et al.

For a maximum loss probability of € the admission region for the buffered multiplexer is defined by
PU+---+U;<C)<ce
whereas the admission region for the bufferless system is

E[(X i1 Up = O) U]
C - E[U;]

Although these admission regions are different, they are based on exactly the same independent

random variables U, ...,Uj. The difference in these admission regions is an artifact of using two
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Figure 5: The simulation verifies that the bound on the loss probability Ps(j) tightly bounds
the actual loss probability Pllonsl;o (7). The plots further confirm the accuracy of the Large Deviation
(LD) approximation. We use a delay bound of 1 second and characterize the videos by 3 leaky
buckets. The link rate is 45 Mbps. The plots give the loss probability as a function of the number

of ongoing connections.

different notions of loss probability: while in this paper we use “fraction of traffic lost”, the paper
[8] uses “the fraction of time during which loss occurs”. If the same notions of loss were used, then
the admission regions would be identical. Figure 7 gives the number of lambs connections that are
admitted with the approach of Elwalid et al. (EMW) [8] and our approach (RRR) when 3 leaky
buckets are used to characterize the trace. We assume a 45 Mbps link and set ¢; = 1077 for all
connections.

Thus, our bufferless system has essentially the same admission region as the buffered system in
[8] for a fixed worst case delay d and loss probability e. While being no more difficult to perform call
admission, we believe that the bufferless system has some important advantages over the buffered
system: (i) no buffer is needed at the multiplexer (for packetized traffic, a relatively small buffer
would be needed); (i7) the bufferless approach allows for a per connection QoS requirement, whereas
the buffered system imposes the same QoS requirement on all connections; and (4i7), perhaps most
importantly, networks are quite tractable for bufferless links, as we can reasonably approximate a
connection’s traffic at the output of the multiplexer as being identical to its traffic at the input to
the multiplexer.

On the other hand, the buffered system does have some advantages over the bufferless system.
First, although both systems have the same worst case delay, the buffered system will have a lower
average delay. Second, the admission region of [8] can be increased using the techniques in [18]
and [21] (at the expense of a much more complicated admission procedure). Because multimedia
applications are typically designed for a delay bound, and because the aforementioned increase in

admission region is typically small, we feel that the advantages of the bufferless approach outweigh
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Figure 6: The traffic of connection j is characterized by the regulator function £;(¢) and fed directly,

i.e. unsmoothed, into a buffered multiplexer.

the advantages of the buffered approach.

6 Final Remarks

In this paper we have considered traffic management for multimedia networking applications which
permit a small amount of loss and some bounded delay. We have argued that it is preferable to
smooth the traffic at the ingress and to perform bufferless statistical multiplexing within the node
than to use shared buffer multiplexing. For our scheme we have determined the worst case traffic
and have outlined an admission control procedure based on the worst case traffic. We have also
explicitly characterized the optimal smoother.

As pointed out in Section 3.3 the smoothing can be performed by either the network (at the
network edge) or by the applications themselves. If the applications perform the smoothing, then
an application should smooth the traffic as much as permitted by the delay constraint, and the
network should offer a service to the application which guarantees queueing free delays (delays
only due to propagation and nodal processing) and allows the application to specify a maximum
tolerable loss rate. The network node should perform statistical multiplexing in order to maximize
its connection carrying capacity. To guarantee QoS, admission control should suppose that the
traffic is adversarial to the extent permitted by the regulators and smoothers.

Throughout this paper we have studied a single-node network. A subsequent paper addresses

how the scheme can be extended to more general networks [23].

Acknowledgements: We gratefully acknowledge interactions with Jim Roberts at the early

stages of this research.
Appendix

The purpose of this appendix is to provide a proof for Theorem 2. But first we need to establish two lemmas.

Lemma 2 A necessary condition for (Si(t),...,Ss(t)) to be feasible is 7‘]1 >cj forallj=1,...,J.
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Figure 7: Number of lambs connections as a function of the delay bound. The lambs video is
described by 3 leaky buckets. Plots shown are for Elwalid et al. (EMW) [8] and our approach(RRR).
The difference in the number of admissible connections is due to the different notions of loss
probability. Elwalid et al. use “fraction of time during which loss occurs” while we use “fraction of
traffic lost”.

Proof. From [3, 4, 10] the maximum delay at smoother j is

d L -3 20
i = rglgg({lgn,gg%j A } (20)
Suppose rjl. < ¢} for some j =1,...,J. Because Sf >0 and r;? < rjl. for all k, it follows from (20) that
19
4 > max( <50 1) (21)
= J

And because, by assumption, le- < ¢}, it follows from (21) that

~ Eil(t
dj > max{ ]E )
>0~ ¢

- t} = dj7
where the last equality follows from (4). ]

Lemma 3 There exists a stochastic vector arrival process in A that produces the steady-state rate variables
Ui,...,U; with ﬁj having distribution

min(rj, pj)  with probability

Pj
] min(r},p]l,)
i = . .. - pj
0 with probability 1 7min(r’;’p;)
at the smoother outputs.
Proof. Foreach j =1,...,J,let t; = 03 /(pj —p3) and §; = 55 /(rj —73). At t = t; the slope of £;(t) changes

form p} to p3 < pj. Consequently, £;(t;) = pjt; is the maximum size burst that can be transmitted at rate
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Pi 27 Py <
Eilty) > 8;(85) | E;(ty) < S8;(85) | Eilty) > 8;(85) | Ei(ts) < S;(55)
T; S;(8)/pj Eit;)/p; Si(85)/p; Eilti)/pi
ton, Sj (‘%’)/P; lj Sj (51)/P] lj
Ton; g Ej (tj)/rjl‘ Sj (%)/P} 2]

Table 3: On—times and periods of l;j (t) and 0;(t).

pj, provided successive maximum size bursts are spaced at least £;(t;)/p; — t; apart. Similarly, at t = §;
the slope of S;(t) changes form r} to r < rj. Consequently, S;(d;) = r}d; is the maximum size burst the
smoother can pass at rate r prov1ded successive maximum size bursts are spaced at least .S;( j)/r;wj — 4
apart.

Let b;(t) be a deterministic periodic function such that

- L 0<t <ton,
=40 =
0 ton, <t<Tj.

with on time #opn; and period T} given in Table 3. Also, let 61,...,6; be independent random variables with

6; uniformly distributed over [0, T}] and define the jth stochastic arrival process as

Aj(t) = /Ot bi(s +6;)ds

Thus each component arrival process (Aj(t), t > 0) is generated by a periodic on-off source; the jth process
has peak rate p} and average rate p;. The argument in the proof of Theorem 1 shows that the vector process
(A(t), t > 0) is a feasible process in A.

It remains to show that by sending each component process (A;(t), t > 0) into its respective smoother
we obtain an on-off process whose peak rate is min(r ;,p;) and whose average rate is p;. Specifically, we now
show that A;(t) produces O( = [, 0j(s +6;)ds at the smoother output where

5 (1) = min(rj, pj) 0 <t < Ton;
! 0 Ton; <t<Tj,

where the periods and on-times are given in Table 3.
First, consider the case pj > rj and £;(t;) > S;j(d;). Clearly, ton, < t; since ton, = S;(8;)/p; and
tj = &;(t;)/p; and by assumption S;(d;) < &;(t;). This implies that £;(ton,) = pjton;. Hence

Sj(7on,) = Ej(ton;)- (22)
Note furthermore that
ton; < Ton; (23)

since ton; = Sj(éj)/p} = rjl-éj/p} and by assumption r; < p}. Because of (22) and (23) and 7on; = 6; the
smoother bursts at rate 7‘]1 for a duration of 7on; when fed with an input burst at rate p} for a duration of

ton; < tj. Also, note that the smoother output has average rate &;(ton;)/T; = pj < T;Mj where the last

)

inequality follows from the stability condition.
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Next, consider the case pj > r; and £;(t;) < Sj(d;). We have
Tonj S 5j (24)

since Ton; = &;(t;)/rj and d; = S;(d;)/r; and by assumption S;(d;) > £;(t;). Thus Sj(Ton;) = 7jTon; -

Hence
Sj(7on;) = &;(ton;)- (25)
Also,
ton; < Ton; (26)

since ton; = £;(t;)/pj and Ton; = £;(t;)/r; and by assumption pj > r}. Because of (24), (25) and (26) the
smoother bursts at rate 7"]1 for a duration of 7on; when fed with an input burst at rate p; for a duration of
M;

ton;. The average rate of the smoother output is £;(ton;)/Tj = p; < r;

, where the last inequality follows
from the stability condition.
Now consider the case pj < rj and &;(t;) > S;(d;). We have ton; < t; since ton; = Sj(d;)/p; and

tj = &;(t;)/p; and by assumption S;(d;) < &£;(t;). This implies that £;(ton,) = pjton;. Hence
S5;j(05) = E;(ton;)- (27)
Note furthermore that
§; < ton, (28)

since 8; = S;(8;)/r; and ton; = S;(9;)/pj and by assumption r; > pj. Because of (27), (28) and pj < rj (by
assumption) the smoother passes the input burst at rate p} for a duration of fon; unchanged. The average
rate of the smoother output is £;(ton;)/Tj = pj < ryj, where the last inequality follows from the stability
condition.

Finally, consider the case p} < 7"]1 and &;(t;) < S;j(d;). These two assumptions imply that the smoother
can pass the input burst of size £;(t;) at rate pj. The average rate of the smoother output is €;(ton;)/Tj =

pj < T;Mj, where the last inequality follows from the stability condition. [ |

Proof of Theorem 2: Using Lemma 3 and mimicking the proof of Theorem 1 we obtain

E (Z}::l Uk - C)+Uj

b= C - E[U;] ’
where Uy, ..., U are defined in Lemma 3. Using the fact that Uj is a Bernoulli random variable, we obtain
from the above expression
E [(zm Uy +min(r}, pl) — c>+}
¢ = c
E|(Xs; U+t —0)F
> [ #i J } (29)

C

where the last inequality follows from Lemma 2.
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From (15) and (29) it remains to show that
E() Ui+c¢;~ O <E) Uk +c — O] (30)
k#j k#j

From Lemma 2 and Proposition 1.5.1 in [27]
Up <iea Up forallk=1,...,J. (31)

The inequality (30) follows from (31), the independence of Uy, ...,U; and an argument that parallels the

argument in the proof of Theorem 1. O
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