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In recent years the problem of providing QoS guarantees to regulated sources which are statis-tically multiplexed in a shared bu�er has been carefully studied [8][18][21]. The existing solutions,however, do not extend to the network environment in a satisfactory manner. Also in recent years,the problem of providing end{to{end deterministic guarantees to regulated tra�c in networks hasbeen adequately solved [30][29][10][20]. The deterministic QoS guarantees, however, typically implya small connection{carrying capacity for networks with bursty multimedia tra�c. In this paperwe lay the groundwork for a tra�c{management architecture that provides end{to{end statisticalQoS guarantees. We focus our attention to a network consisting of a single node in this paper. Weextend the tra�c mangement to networks in a subsequent paper [23].In this paper we view tra�c as 
uid. The 
uid model, which closely approximates a packetizedmodel with small packets, permits us to focus on the central issues and signi�cantly simpli�esnotation. We suppose that the tra�c sent into the node by each connection is regulated by aconnection{speci�c cascade of leaky buckets. A cascade of leaky buckets is more general thanthe two{leaky{bucket regulator, commonly used in the literature [8][18], and can more accuratelycharacterize a source's tra�c. Moreover, cascaded{leaky{bucket tra�c can easily be policed. Foradmission control, all that we know about a connection's tra�c is its regulator constraint de�nedby its cascade of leaky buckets; in particular, we do not have available statistical characterizationsof the tra�c.We also assume that the following natural QoS requirement is in force: the fraction of tra�c thatexceeds a speci�c delay limit must be below a prescribed bound. Tra�c which over
ows at a bu�eris considered as having in�nite delay, and therefore violates the QoS requirement. Importantly,we permit each connection to have its own limit on the nodal delay and its own bound on thefraction of tra�c that exceeds this delay limit. This QoS requirement is particularly appropriate formultimedia tra�c, whereby timestamping and a playout bu�er can ensure the continuous playoutof video or audio without jitter.Given each connection's tra�c characterization and its QoS requirement, we address the fol-lowing problem: How should we manage the tra�c and perform admission control in order toguarantee QoS while maintaining a large connection-admission region? We advocate the followingsimple and pragmatic scheme: (i) smooth each connection's tra�c at the connection's input asmuch as allowed by the connection's delay constraint; (ii) employ bu�erless statistical multiplex-ing within the node; (iii) base admission control on the worst-case assumption that sources areadversarial to the extent permitted by the connection's regulator, while concurrently assuming theconnections generate tra�c independently. This scheme enjoys the following features:� Admission control is solely based on the connections' regulator parameters, which are polica-ble. It is not based on more complex, di�cult{to{police statistical characterizations.� It allows for statistical multiplexing at the node while meeting the QoS requirements. Thesmoothing at the input increases the statistical multiplexing gain.� It allows for per-connection QoS requirements: the connections can have vastly di�erent delayand loss requirements. 2



� Because the multiplexing is bu�erless, the switch requires only small input bu�ers (whentra�c is packetized), thereby reducing switch cost.� A connection's tra�c characterization does not change as the tra�c passes through the bu�er-less multiplexer.It is this last feature that is particularly useful when extending the tra�c management schemeto a multihop network [23]. With our scheme the tra�c leaving the network node conforms tothe same regulator constraints as the tra�c entering the node. With shared bu�er multiplexers itis di�cult (if not impossible) to tightly characterize a connection's tra�c once the tra�c passesthrough a shared bu�er.This paper is organized as follows. In Section 2 we formally de�ne the cascaded leaky-bucketregulators and the QoS requirement. In Section 3 we determine the worst-case tra�c for a single-linkand outline our smoothing and admission control procedure. We also consider general smoothersand show that the optimal smoother is a single-bu�er smoother which smoothes tra�c as much asthe delay limit permits. In Section 4 we present numerical results using MPEG{encoded traces.In Section 5 we compare our scheme to designs based on bu�ered statistical multiplexing. Weconclude in Section 6.2 Regulated Tra�c and the QoS RequirementIn this paper we focus on a single node consisting of a bu�erless multiplexer that feeds into a link ofcapacity C. We view tra�c as 
uid, i.e., packets are in�nitesimal. Consider a set of J connections.Each connection j has an associated regulator function, denoted by Ej(t), t � 0. The regulatorfunction constrains the amount of tra�c that the jth connection can send into the node over alltime intervals. Speci�cally, if Aj(t) is the amount of tra�c that the jth connection sends to thenode over the interval [0; t], then Aj(�) is required to satisfyAj(t+ �)�Aj(�) � Ej(t) for all � � 0; t � 0: (1)A popular regulator is the simple regulator, which consists of a peak{rate controller in series witha leaky bucket; for the simple regulator, the regulator function takes the following form:Ej(t) = minf�1j t; �2j + �2j tg:For a given source type, the bound on the tra�c provided by the simple regulator may be looseand lead to overly conservative admission control decisions. For many source types (e.g., for VBRvideo), it is possible to get a tighter bound on the tra�c and dramatically increase the admissionregion. In particular, regulator functions of the formEj(t) = minf�1j t; �2j + �2j t; : : : ; �Ljj + �Ljj tg (2)are easily implemented with cascaded leaky buckets; it is shown in (see [28]) that the additionalleaky buckets can lead to substantially larger admission regions for deterministic multiplexing. We3



shall show that this is also true for statistical multiplexing. Throughout this paper we assume thateach regulator has the form (2). Without loss of generality we may assume that �1j > �2j > � � � > �Ljjand �2j < �3j < � � � < �Ljj . For ease of notation, we set �j = �Ljj . Note that for connection{j tra�c,the long{run average rate is no greater than �j and the peak rate is never greater than �1j .Each connection also has a QoS requirement. In this paper we consider a QoS requirementthat is particularly appropriate for multimedia tra�c, such as audio and video tra�c. Speci�cally,each connection has a connection{speci�c delay limit and a connection{speci�c loss bound. Denotedj and �j for the delay limit and loss bound for the jth connection. Any tra�c that over
owsat a bu�er is considered to have in�nite delay, and therefore violates the delay limit. The QoSrequirement is as follows: for each connection j, the long{run fraction of tra�c that is delayed bymore than dj seconds must be less than �j.This QoS requirement can assure continuous, uninterrupted playback for a multimedia connec-tion as follows. Each bit (or packet for packetized tra�c) is time{stamped at the source. If a bitfrom connection j is time{stamped with value x, the bit (if not lost in the node) arrives at thereceiver no later than x + dj . The receiver delays playout of the bit until time x + dj . Thus, byincluding a bu�er at each receiver, the receiver can playback a multimedia stream without jitterwith a �xed delay of dj and with bit loss probability of at most �j.The strategy that we take in this paper is to pass each connection's tra�c through a smootherat the connection's input to the node. We design the smoother for the jth connection so that thejth connection's tra�c is never delayed at the smoother by more than dj . After having smootheda connection's tra�c, we pass the smoothed tra�c to the node. At the link the connection's tra�cis multiplexed with tra�c from other connections. The second aspect of our strategy is to removeall of the bu�ers in the node; that is, we use bu�erless statistical multiplexing rather than bu�eredmultiplexing before the link. In our 
uid model, a connection's tra�c that arrives to a bu�erlesslink either 
ows through the link without any delay or over
ows at the link, and therefore hasin�nite delay. In order to satisfy the jth connection's QoS requirement, it therefore su�ces thatthe fraction of connection{j tra�c that over
ows the link be less than �j. Also, if the loss at thelink is small, we can reasonably approximate a connection's tra�c at the output of the multiplexeras being identical to its tra�c at the input to the multiplexer. In other words, a connection thatsatis�es the regulator constraint Ej(t) at the input of the node satis�es the same regulator constraintEj(t) at the output of the node. Our scheme extends therefore in a straightforward manner from asingle node to a general network of bu�erless multiplexers with smoothers at the network ingresses[23]. Our approach is illustrated in Figure 1.For the smoother at the jth connection's input, initially we use a bu�er which serves the tra�cat rate c�j . When the smoother bu�er is nonempty, tra�c is drained from the smoother at ratec�j . When the smoother bu�er is empty and connection{j's tra�c is arriving at a rate less than c�j ,tra�c leaves the smoother exactly at the rate at which it enters the bu�er. For the 
uid modeland QoS criterion of this paper we shall show that more complex smoothers consisting of cascadedleaky buckets do not improve performance.
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Figure 1: The tra�c of the jth connections is characterized by the regulator function Ej(t). Thetra�c is passed through a smoother with rate c�j and then multiplexed onto a link with capacity C.Using the theory developed in [2], it can be shown that the maximum delay at the smoother ismaxt�0 (Ej(t)c�j � t) : (3)Also, because the bu�erless multiplexer and link introduce no delays, tra�c from the jth connectionthat 
ows through the node without loss has the maximum delay of the smoother. We set thesmoother rate to c�j = min(cj � 0 : maxt�0 (Ej(t)cj � t) � dj) ; (4)so that the tra�c that passes through the node (i.e., tra�c which does not over
ow at the link) isnot be delayed by more than dj . It is straightforward to show from (4) that the smoother rate canbe expressed as c�j = maxt�0 E j(t)dj + t : (5)3 Guaranteeing Statistical QoSWe focus in this paper on a single link with J connections. Connection j has a regulator constraintfunction Ej(t) and QoS parameters dj and �j . Now regard the jth arrival process as a stochasticprocess. Let (Aj(t); t � 0) denote the jth arrival process, and let (Aj(t; !); t � 0) denote arealization of the stochastic process. Also let A(t) = (A1(t); : : : ; AJ(t)), and let (A(t); t � 0) bethe associated vector stochastic arrival process. We say that the vector arrival process (A(t); t � 0)is feasible if (i) the component arrival processes (Aj(t); t � 0), j = 1; : : : ; J , are independent, and(ii) for each j = 1; : : : ; J , each realization (Aj(t; !); t � 0) satis�es the regulator constraintAj(t+ �; !)�Aj(�; !) � Ej(t) for all � � 0; t � 0: (6)Denote A for the set of all feasible vector arrival processes (A(t); t � 0).5



Our �rst goal is to develop a straightforward procedure to determine whether the QoS require-ments are met for all possible feasible stochastic arrival processes. For a �xed feasible vector arrivalprocess (A(t); t � 0), let Uj(t) be the rate at which tra�c from the jth connection leaves the asso-ciated smoother at time t, and let Uj be the corresponding steady{state random variable. Considermultiplexing (A(t); t � 0) tra�c streams onto a bu�erless multiplexer of rate C. The long{runaverage fraction of tra�c lost by connection j isP infoloss (j) = E �(PJk=1 Uk � C)+ UjPJk=1 Uk �E[Uj ] : (7)In the de�nition of P infoloss (j) we make the natural assumption that tra�c loss at the bu�erless mul-tiplexer is split between the sources in a manner proportional to the rate at which the sources sendtra�c into the multiplexer. Note that P infoloss (j) keeps track of loss for each individual connection.Although P infoloss (j) is an appealing performance measure, we have found it to be mathematicallyunwieldy. Instead of P infoloss (j) we shall work with a bound on P infoloss (j) which is more tractable andwhich preserves the essential characteristics of the original performance measure. Noting that theterm in the expectation of the numerator of equation (7) is non{zero only when PJk=1 Uk > C, weobtain: P infoloss (j) � E h(PJk=1 Uk � C)+UjiC �E[Uj ] := Ploss(j): (8)In most practical circumstances the QoS requirement speci�es tra�c loss to be miniscule, on theorder of �j = 10�6 or less. Thus we expect the bound to be very tight: during the rare eventwhen PJj=1 Uj exceeds C, we expect PJj=1 Uj to be very close to C. Henceforth, we focus on thebound Ploss(j), and we refer to Ploss(j) as the loss probability for the jth connection . In Section5 we provide numerical results which show that Ploss(j) is very nearly equal to the actual lossprobability P infoloss (j).By taking the supremum over all the feasible vector stochastic processes, we obtain the followingworst{case loss probability of the jth connection:��j = supA E h(PJk=1 Uk � C)+UjiC �E[Uj ] (9)If ��j � �j for all j = 1; : : : ; J , then the QoS requirements are guaranteed to be met for all feasiblevector arrival processes, that is, for all independent arrival processes whose sample paths satisfythe regulator constraints. In our strategy, at connection admission we determine whether ��j � �jfor all j = 1; : : : ; J will continue to hold when adding the new connection. If not, the connection isrejected. Thus, we need to develop an e�cient method to compute the bounds ��1; : : : ; ��J . As a �rststep in computing these bounds, we need to explicitly determine the random variables U1; : : : ; UJthat attain the supremum in (9).Lemma 1 Let U�1 ; : : : ; U�J be independent random variables, with U�j having distributionU�j = 8<: c�j with probability �jc�j0 with probability 1� �jc�j :6



There exists a feasible vector arrival process which produces the steady{state rate variables U�1 ; : : : ; U�Jat the smoother outputs.Proof. The proof is by construction. For each j = 1; : : : ; J , lettj = �2j�1j � �2jand Tj = �1j�2j(�1j � �2j)�j :Also let �1; : : : ; �J be independent random variables with �j uniformly distributed over [0; Tj ]. Letbj(t) be a deterministic periodic function with period Tj such thatbj(t) = ( �1j 0 � t < tj0 tj � t � Tj :De�ne the jth arrival stochastic process asAj(t) = Z t0 bj(s+ �j)ds:Thus each component arrival process (Aj(t); t � 0) is generated by a periodic on{o� source; the jthprocess has peak rate �1j and average rate �j. By sending each component process (Aj(t); t � 0)into its respective smoother, we obtain an on{o� process whose peak rate is c�j and whose averagerate is �j. Also, the component processes are independent; thus the vector arrival process producesthe steady{state random variables U�1 ; : : : ; U�J at the smoother outputs.It remains to show that each realization of (Aj(t); t � 0) satis�es the regulator constraint (6).It follows immediately from the de�nition of bj(t) thatZ t0 bj(s)ds � Ej(t) for all 0 � t � Tj: (10)We can, in fact, show that Z t0 bj(s)ds � Ej(t) for all t � 0: (11)To see this consider any arbitrary t = nTj+s, where n is some non{negative integer and 0 � s � Tj .We have Z t0 bj(s)ds = Z Tj0 bj(s)ds+ : : :+ Z nTj(n�1)Tj bj(s)ds+ Z nTj+snTj bj(s)ds� nTj�j + Ej(s)� [E j(nTj + s)� Ej(s)] + Ej(s)= Ej(t) :The �rst inequality follows from (10) and from the fact that the average rate of bj(t) over anyperiod of length Tj is �j. The second inequality follows because the slope of Ej(t) is never less than�j . This establishes (11). Finally because bj(t) is non{increasing over each of its periods, we haveZ t+�� bj(s)ds � Z t0 bj(s)ds for all � � 0; t � 0: (12)7



Combining (11) and (12) proves that each realization of (Aj(t); t � 0) satis�es the regulatorconstraint (6).We now show that the random variables U�1 ; : : : ; U�J attain the supremum in (9). This resultwill lead to a simple procedure for calculating the worst{case loss probabilities ��1; : : : ; ��J . To thisend, we will need to make use of a concept from stochastic ordering. A random variable X is said tobe smaller than a random variable Y in the sense of the increasing convex stochastic (ics) ordering,written as X �icx Y , if E[h(X)] � E[h(Y )] for all increasing, convex functions h(�).Theorem 1 For each j = 1; 2; : : : ; J , worst{case loss probability for the jth connection is��j = E h(PJk=1 U�k � C)+U�j iC � E[U�j ]Proof. Let U be the set of all random vectors (U1; : : : UJ) such that1. Uj , j = 1; 2; : : : ; J are independent.2. 0 � E[Uj ] � �j and 0 � Uj � c�j for all j = 1; 2; ; : : : ; J .All feasible vector arrival processes in A give steady{state rate variables that belong to U . Let(U1; : : : ; UJ ) be a random vector in U . Let U = U1 + � � � + UJ and U� = U�1 + � � � + U�J . We needto show that E[(U � C)+Uj]CE[Uj ] � E[(U� � C)+U�j ]CE[U�j ] : (13)Fix i, with 1 � i � J , and consider the random vector (Û1; : : : ; ÛJ ) such that Ûi = U�i and Ûj = Ujfor j 6= i. Note that (Û1; : : : ; ÛJ ) 2 U . We �rst show that for each �xed j,E[(U � C)+Uj ]CE[Uj ] � E[(Û � C)+Ûj]CE[Ûj ] : (14)Consider the case i 6= j. Let V = U � Ui � Uj . Let dFV (�) and dFUj (�) be the distributionfunctions for V and Uj . Noting that Ui, Uj and V are independent, we haveE[(U � C)+Uj ] = E[(Ui + V + Uj � C)+Uj ]= Z 10 Z 10 E[(Ui + v + u� C)+u]dFV (v)dFUj (u)The function f(x) = (x+ v+ u�C)+u within the expectation is an increasing, convex function inx for each �xed v and u. Thus, because Ui �icx Ûi (e.g., see Proposition 1.5.1 in [27]), we haveE[(Ui + v + u� C)+u] � E[(Ûi + v + u� C)+u]for all v and u. Combining the above two equations givesE[(U � C)+Uj ] � E[(Û � C)+Ûj];8



which, when combined with E[Ûj ] = E[Uj ], gives (14).Now consider the case i = j. Let W = U � Ui. Using Ui � c�i , the independence of W and Ui,and the independence of W and Ûi, we obtainE[(U � C)+Ui]CE[Ui] = E[(W + Ui � C)+Ui]CE[Ui]� E[(W + c�i � C)+]C E[Ui]E[Ui]= E[(W + c�i � C)+]C E[Ûi]E[Ûi]= E[(W + c�i � C)+Ûi]CE[Ûi] :Also E[(Û �C)+Ûi] = E[(W + Ûi �C)+Ûi]= E[(W + c�i � C)+Ûi]:Combining the above two equations gives (14) for i = j.Thus (14) holds for all i = 1; : : : ; J . Therefore, starting with the original vector (U1; : : : ; UJ ) 2 Uwe can replace U1 with U�1 and obtain a new vector in U such that (14) holds. Rename this newvector as (U1; : : : ; UJ ). We can repeat the procedure, this time replacing U2 with U�2 , and againobtaining a new vector in U such that (14) holds. Performing this procedure for all i = 1; : : : ; Jgives (13).Using the fact that U�j is a Bernoulli random variable, we obtain from Theorem 1 the followingexpression for the bound of Ploss(j):��j = E h(Pk 6=j U�k + c�j �C)+iC (15)We can compute these bounds directly by convolving the distributions of the independent randomvariables. An e�cient approximate convolution algorithm is presented in [16]. We can also obtainan accurate approximation for the right{hand side of (15) by applying large deviation theory tothe expectation in the numerator: To this end let�U�k (s) := lnE[esU�k ]:Note that �U�k (s) is the logarithm of the moment generating function for U�k . We de�neU� =Xk 6=jU�k :Note that �U�(s) =Xk 6=j �U�k (s)9



by the independence of the U�k 's. The large deviation (LD) approximation gives the followingapproximation for ��j [24, p. 146] 1Cs?2q2��00U�(s?)e�s?(C�c�j )+�U� (s?);where s? is the unique solution to �0U�(s?) = C � c�j :The LD approximation is known to be very accurate [24, 11, 7, 8, 22] and is also computationallyvery e�cient. We use the LD approximation for the numerical studies in this paper.In summary, (15) is a simple expression for the worst{case loss probability ��j ; this simpleexpression involves the independent Bernoulli random variables U�1 ; : : : ; U�J , whose distributions weknow explicitly. The LD approximation for (15) is highly accurate and is easily calculated. Foradmission control, we advocate using the LD approximation to calculate ��j and then verifying theQoS requirement, i.e., verifying in real{time whether ��j � �j for all j = 1; : : : ; J .At this juncture we note some important related work by Doshi [5, 6]. He studies worst{case,unsmoothed tra�c that maximizes an aggregate loss ratio, where the aggregation is taken overall sources. For this criterion he discovers a number of anomalies; in particular, extremal on{o�sources are not always worst case. With our bound Ploss(j) (8) the loss is maximized by the extremalon{o� sources, which greatly simpli�es admission control. Furthermore, as we show in this paper,smoothing of tra�c can signi�cantly expand the admission region.3.1 The Optimal SmootherUp to this point we have assumed that the smoother for each connection j consists of a singlebu�er that limits the peak rate of the smoother output to c�j . In this subsection we study moregeneral smoothers, namely, smoothers that consist of a cascade of leaky buckets. The smootherfor connection j, de�ned by a function Sj(t), constrains the amount of tra�c that can enter thenetwork over any time interval. Speci�cally, if Bj(t) is the amount of tra�c leaving smoother jover the interval [0; t], then Bj(t) is required to satisfyBj(t+ �)�Bj(�) � Sj(t) for all t � 0; � � 0:We assume throughout this section that the smoother functions are of the formSj(t) = min1�k�Mjfskj + rkj tg (16)with r1j > r2j > � � � > rMjj and 0 = s1j < s2j < � � � < sMjj . These piecewise linear, concave smootherfunctions can be easily implemented by a cascade of leaky buckets. The single{bu�er smootherde�ned in Section 2 is a special case with Mj = 1; s1j = 0 and r1j = c�j .We say that a set of smoothers (S1(t); :::; SJ (t)) is feasible if the maximum delay incurred atsmoother j is � dj for all j = 1; : : : ; J . By de�nition the set of smoothers (c�1t; : : : ; c�J t) studied10



earlier is feasible. Now �x a feasible set of smoothers (S1(t); : : : ; SJ(t)), and let the regulated tra�cfrom the J connections pass through these smoothers. Let�j = supA E h(PJk=1 Uk � C)+UjiC � E[Uj ] (17)be the associated worst{case loss probability. Recall that ��j is the same worst{case loss probabilitybut with the tra�c passing through the set of smoothers (c�1t; : : : ; c�J t). The proof of the followingresult is provided in the appendix.Theorem 2 ��j � �j for all j = 1; : : : ; J . Thus the single{bu�er smoothers with cj = c�j minimizethe worst{case loss probability over all feasible sets of smoothers.It follows from Theorem 2 that the more complex smoothers consisting of cascaded leaky bucketsdo not increase the connection carrying capacity of the network. Thus without loss of performance,we may use the simple smoothers of the form (c1t; : : : ; cJ t). Furthermore, Theorem 2 veri�es theintuition that in order to maximize the admission region the smoother rates are as small as thedelay constraints permit, that is, cj = c�j for j = 1; : : : ; J .3.2 A Heuristic for Finding a Leaky Bucket Characterization of PrerecordedSourcesIn this subsection we discuss how to obtain a good characterization Ej(t) of a source for a givenrestriction Lj on the number of leaky buckets. For any given characterization Ej(t) we use at thenetwork edge a single{bu�er smoother with rate c�j given by (5). Our goal is to �nd a characteri-zation Ej(t) that has at most Lj slopes (i.e., Lj cascaded leaky buckets) and attempts to minimizeboth �j and c�j . From Theorem 2 we know that minimizing �j and c�j minimizes the worst{case lossprobabilities, and thereby maximizes the connection{carrying capacity of the network.We develop the heuristic for determining the characterization Ej(t) in the context of prerecordedsources. These sources include full{length movies, music video clips and educational material forvideo{on{demand (VoD) and other multimedia applications. It is well known how to compute theempirical envelope for prerecorded sources [12, 28, 17]. The empirical envelope gives the tightestbound on the amount of tra�c that can emanate from a prerecorded source over any time interval.The empirical envelope is however not necessarily concave, and therefore we may not be able to becharacterize it by a cascade of leaky buckets. However, applying the algorithms of Knightly et al.[28] or Grahams Scan [1], we can compute the concave hull of the empirical envelope. The concavehull for connection{j tra�c, denoted by Hj(t), takes the formHj(t) = min1�i�Kjf�ij + �ijtg: (18)Here, Kj denotes the number of piecewise linear segments in the concave hull. Without loss ofgenerality we may assume �1j < �2j < � � � < �Kjj and �1j > �2j > � � � > �Kjj .The number of segments in the concave hull can be rather large. The \Silence of The Lambs"video segment used in our numerical experiments, for instance, has a concave hull consisting of11



39 segments. This implies that 39 leaky bucket pairs are required to police the tightest concavecharacterization of the \Silence of The Lambs" video segment. Our goal is to �nd a more suc-cinct characterization of prerecorded sources in order to simplify call admission control and tra�cpolicing.Suppose that a source is allowed to use Lj (Lj < Kj) leaky buckets to characterize its tra�c.We now present a heuristic for the following problem: Given a source's concave hull Hj(t) =min1�i�Kjf�ij+�ijtg and the delay limit dj , �nd Lj leaky buckets (out of the Kj leaky bucket pairsin the concave hull) that maximize the admission region.We illustrate our heuristic for the case Lj = 2. For Lj = 2 the tra�c constraint function takesthe form Ej(t) = minf�ajj + �ajj t; �bjj + �bjj tg with 1 � aj ; bj � Kj ; (19)where the indices aj and bj are yet to be speci�ed. Our strategy is to �rst choose the leaky bucketthat has the tightest bound on the average rate (i.e., minimize �j), and then choose another leakybucket which minimizes the smoother rate c�j . Let ravej denote the average rate of the prerecordedsource. We found in our numerical experiments that some of the leaky bucket pairs in the concavehull (particularly those with high indices) may have slopes < ravej . We set bj = maxfi : �ij �ravej ; 1 � i � Kjg. In words, we use the highest indexed leaky bucket with a slope larger than ravejto specify the sources' average rate.In order to �nd the leaky bucket indexed by aj we consider all leaky buckets (�ij ; �ij) with1 � i < bj. We compute the smoother rates obtained by combining each of the leaky buckets(�ij ; �ij); 1 � i < bj with the leaky bucket (�bjj ; �bjj ) and select the index i that gives the smallestsmoother rate | and thus the largest admission region. More formally, let c�ij ; 1 � i < bj, denotethe minimal smoother rate for tra�c with regulator function Ej(t) = minf�ij + �ijt; �bjj + �bjj tg anddelay bound dj . By (5) we havec�ij = maxt�0 minf�ij + �ijt; �bjj + �bjj tgdj + t :We can obtain a more explicit expression for c�ij . Sinceminf�ij + �ijt; �bjj + �bjj tg = ( �ij + �ijt for 0 � t � ti�bjj + �bjj t for t � tiwith ti = (�bjj � �ij)=(�ij � �bjj ), we havec�ij = max24 max0�t�ti �ij + �ijtdj + t ; maxt�ti �bjj + �bjj tdj + t 35 :The expressions inside the max[�] can be further simpli�ed. It can be shown thatmax0�t�ti �ij + �ijtdj + t = 8><>: �ijdj if dj � �ij�ij�ij+�ij tidj+ti ; if dj � �ij�ij12



and maxt�ti �bjj + �bjj tdj + t = 8>>><>>>: �ij+�ij tidj+ti ; if dj � �bjj�bjj�bjjdj if dj � �bjj�bjj :We set the smoother rate to min1�i<bj c�ij and set aj to the index that attains this minimum.We now brie
y discuss how to �nd the optimal regulator function consisting of 3 or more leakybuckets. First, note that there are  bj � 1Lj � 1 ! combinations of leaky bucket pairs to consider. Thiscan be computationally prohibitive. The heuristic can be sped up by considering only regulatorfunctions consisting of Lj � 1 consecutive leaky buckets of the concave hull and the leaky bucket(�bjj �bjj ). In the case Lj = 3, for instance, we compute the minimal smoother rates only for theregulator functions Ej(t) = minf�ij + �ijt; �i+1j + �i+1j t; �bjj + �bjj tg with 1 � i < bj � 1. Thisspeed{up of the heuristic can produce a suboptimal regulator function. Our numerical experiments(see Section 4), however, indicate that it works surprisingly well.3.3 Interaction between Application and NetworkIn this subsection we discuss how the responsibilities of smoothing, call admission control andtra�c policing can be shared by the application and the network. Call admission control is theresponsibility of the network. Before accepting a new connection, the network has to ensure thatthe QoS requirements continue to hold for all established connections and the new connection.Policing is also a network responsibility. The network edge has to police all established connectionsin order to ensure that all connections comply with their respective regulator function advertisedat connection establishment. While call admission control and tra�c policing are responsibilities ofthe network, smoothing can be performed by either the application or the network. We refer to thecase where the application performs the smoothing and sends the smoothed tra�c to the networkedge as application smoothing. The case where the application sends its unsmoothed tra�c to thenetwork edge and the network edge performs the smoothing is referred to as network smoothing.With application smoothing the application internally smoothes its tra�c. Based on the regula-tor function of its tra�c and the maximum delay it can tolerate, the application �nds the minimumsmoother rate by applying (5). Since the smoothing is done by the application, there is no need toreduce the number of leaky buckets used to characterize the tra�c by applying the heuristic outlinedin Section 3.2. Instead, the concave hull of a prerecorded source is used directly for dimensioningits smoother. The application advertises the regulator function Ej(t) = minfc�j t; �Ljj + �Ljj tg andthe delay bound dj = 0 to the network. We remark that this dual leaky bucket regulator functionhas been adopted by the ATM Forum [9] and is being proposed for the Internet [26]. The networkdoes not have to be aware of the smoothing done by the application. The network edge dimensionsits own smoother based on Ej(t) and dj = 0. Since dj = 0 the networks' smoother degenerates toa server with rate c�j preceded by a bu�er of size zero.With network smoothing the application advertises its regulator function and maximum toler-able delay to the network. Prerecorded sources apply the heuristic of Section 3.2 when the network13



Trace Mean (bit) Mean Peak/Meanbits/frame kbits/seclambs 7,312 171.2 18.4mr.bean 17,647 423.5 13.0Table 1: Statistics of MPEG{1 traces.restricts the number of leaky buckets to a number smaller than the number of segments in the con-cave hull. The network edge dimensions the smoother based on the regulator function and delaybound supplied by the application. Call admission control is based on the assumption of worst{caseon{o� tra�c at the smoother output. The network edge polices the applications' tra�c before itenters the smoother and drops violating tra�c.4 Numerical ExperimentsIn this section we evaluate the smoothing/bu�erless multiplexing scheme proposed in this paperusing traces from MPEG encoded movies. In all experiments we consider a single bu�erless multi-lexer which feeds into a 45 Mbps link. We obtained the frame size traces, which give the number ofbits in each video frame, from the public domain [25]. (We are aware that these are low resolutiontraces and some critical frames are dropped; nevertheless, the traces are extremely bursty.) Themovies were compressed with the Group of Pictures (GOP) pattern IBBPBBPBBPBB at a framerate of F = 24 frames/sec [25]. Each of the traces has N = 40,000 frames, corresponding to about28 minutes. The mean number of bits per frame and the peak{to{mean ratio are given in Table 1.Let xn; n = 1; : : : ; N , denote the size of the nth frame in bits. We convert the discrete frame sizetrace to a 
uid 
ow by transmitting the nth frame at rate xnF over the interval [n� 1=F; n=F ].We �rst evaluate the heuristic of Section 3.2. We compute the empirical envelope and theconcave hull of each trace using the algorithms of Knightly et al. [28]. Based on the concave hull ofeach video we compute the minimal smoother rate c�j . We also apply the heuristic of Section 3.2 tothe concave hull in order to �nd the optimal leaky bucket characterization with 2 and more leakybuckets. (We apply the speed{up described in Section 3.2 for the leaky bucket characterizationswith 3 or more leaky buckets.)The heuristic of Section 3.2 produced the optimal leaky bucket characterizations given in Table 2for the lambs trace. The table gives the index alambs and the parameters of the leaky bucket(�alambslambs ; �alambslambs ) for various delay bounds. The average rate is characterized by the 34th leakybucket in the concave hull, i.e., blambs = 34, for all delay bounds. The table also gives the minimalsmoother rates for the various delay bounds. For a delay bound of zero, the smoother rate is set tothe rate of the �rst leaky bucket, i.e., the peak rate of the trace. For dlambs = 0.042 sec (= 1=F ) thetrace is characterized by the 2nd and 34th leaky bucket of the concave hull (alambs = 2; blambs = 34).Note that dlambs < �alambslambs =�alambslambs in this case and clambs = �alambslambs =dlambs. For dlambs � 0.125 secwe have dlambs > �alambslambs =�alambslambs and c�lambs = (�alambsj + �alambsj talambs)=(dj + talambs).14



dlambs alambs �alambslambs �alambslambs c�lambssec. kByte kbit/sec kbit/sec0 1 0 3474.8 3474.80.042 2 13.3 939.3 2535.50.125 2 13.3 939.3 939.00.250 4 23.5 802.2 801.90.500 8 43.5 711.0 710.81.000 10 69.9 676.9 674.7Table 2: Parameters of the optimal leaky bucket characterization with 2 leaky buckets as a functionof the delay bound for the lambs trace. The average rate is characterized by the 34th leaky bucket,i.e., blambs = 34, with parameters �blambslambs = 3; 157:8 kByte and �blambslambs = 208.8 kbit/sec for all delaybounds.Assuming worst{case on{o� tra�c, the smoother outputs are statistically multiplexed onto thebu�erless link as discussed in the previous sections. We set �j = 10�7 for all connections. InFigure 2 we plot the number of admissible video connections as a function of the delay bound.The graph gives the number of admissible video connections when the videos are characterized bythe concave hull or the optimal leaky bucket characterization with 2 leaky buckets. We observefrom the plots that the optimal leaky bucket characterization with 2 leaky buckets admits almostas many video connections as the more accurate concave hull characterization. The curves for 3 ormore leaky buckets coincide with the curve for the concave hull.In the next experiment we compare the admission region of our approach with the admissionregion obtained with the deterministic admission control condition of Knightly et al. [28]. Note thatthe deterministic approach of Knightly et al. is lossless and guarantees that no bit is delayed bymore than the prespeci�ed delay limit in the multiplexer bu�er. Our approach, on the other hand,exploits the independence of tra�c emanating from the J connections. The videos are passedthrough simple smoothers with cj = c�j . The smoother outputs | assuming worst{case on{o�tra�c | are then statistically multiplexed onto the bu�erless link, as discussed in the precedingsections. We set �j = 10�7 for all connections. Losses this small have essentially no impact on theperceived video quality and can be easily hidden by error concealment techniques [19].In Figure 3 we plot the number of admissible lambs connections as a function of the delay bound.The graph gives the number of lambs connections that are admitted with the our approach (RRR)when 2 or 3 leaky buckets (LB) are used to characterize the video trace. As we just saw in Figure 2the optimal leaky bucket characterization with 3 leaky buckets admits as many connections as theconcave hull, the most accurate, concave characterization of the video; using more leaky bucketsdoes not increase the admission region. We also plot the number of lambs connections that areadmitted with the approach of Knightly et al. (KLZ) when 2, 3, 8 or 16 leaky buckets are used tocharacterize the trace. We observe that for delays on the order of .5 seconds or more, the number15
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(a) lambs (b) beanFigure 2: Number of video connections as a function of the delay bound. The videos are charac-terized by the concave hull or the optimal leaky bucket characterization with 2 leaky buckets. Thebound on the loss probability is 10�7.of admissible connections signi�cantly increases as the number of leaky buckets used to describethe trace increases. The approach of Knightly et al. thus greatly bene�ts from a more accuratecharacterization of the video | achieved by more leaky buckets.The main result of this experiment, however, is that our approach allows for more than twicethe number connections than does the approach of Knightly et al. For example, for a delay bound of1.1 seconds, Knightly et al. admit 69 connections ( = 29.6 % average link utilization) with 16 leakybuckets while our approach admits 146 connections ( = 62.7 % average link utilization) with 3 leakybuckets. We obtain this dramatic increase in the admission region by exploiting the independenceof the sources and allowing for a small loss probability.In Figure 4 we consider multiplexing two di�erent movies, beans and lambs, each with its owndelay constraint. We again assume a 45 Mbps link. We use delay bounds of dlambs = 125 msor 1.25 seconds and dbean = 125 ms or 1.25 seconds, giving four combinations. Both videos arecharacterized by 3 leaky buckets. We assume that both video connections have the QoS requirementthat the fraction of tra�c that is delayed by more than the imposed delay limit is less than 10�7.For the Knightly et al. plot we use Earliest Deadline First (EDF) scheduling. We see that for allfour cases, the admission region for our approach is dramatically larger.In Figure 5 we compare the actual loss probability, P infoloss (j) given by (7) with our bound for lossprobability, Ploss(j), given by (8). We obtain P infoloss (j) and Ploss(j) by simulation, and assume worst{case on-o� tra�c. We also verify the accuracy of the large deviation approximation for Ploss(j). InFigure 5 we plot the loss probabilities as a function of the number of connections being multiplexedover a 45 Mbps link. We consider the scenario where the videos have a delay bound of 1 second andare characterized by 3 leaky buckets. We observe that the bound on the loss probability Ploss(j)(solid line) tightly bounds the actual loss probability P infoloss (j) (dotted line). We also observe that16
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Figure 3: Number of lambs connections as a function of the delay bound and the number of leakybuckets (LB). Plots shown are for Knightly et al. (KLZ) [28] and our approach(RRR). The boundon the loss probability is 10�7.the LD approximation (dashed line) closely approximates the simulation results.5 Comparison with Bu�ered Statistical MultiplexingThe numerical results of the previous section show that our approach allows for dramatically moreconnections than bu�ered deterministic multiplexing. In this section we brie
y consider bu�eredmultiplexing with an allowance of small loss probabilities, which we refer to as bu�ered statisticalmultiplexing. Consider the bu�ered analogy of the single-link bu�erless system studied in Section 3.The link has capacity C and is preceded by a �nite bu�er of capacity B. Let the same J connectionsarrive to this system; speci�cally the J connections are independent and the jth connection isregulated by a given regulator function Ej(t). The tra�c from the J connections passes directlyinto the bu�ered multiplexer, i.e., the tra�c is not pre{smoothed before arriving at the bu�er.This bu�ered system is illustrated in Figure 6. Assuming that tra�c is served FIFO, the maximumdelay in this system is d = B=C. Suppose that the bu�er over
ow probability is constrained to beno greater than �.It is a di�cult and challenging problem to accurately characterize the admission region for abu�ered multiplexer which multiplexes regulated tra�c and which allows for statistical multiplex-ing. Elwalid et al. in [8] made signi�cant progress in this direction. They consider the bu�ered mul-tiplexer for the special case of regulators with two leaky buckets, i.e., for Ej(t) = minf�1j t; �j+�jtg.(In our numerical comparisons, we extend their theory to the case of multiple cascaded leakybuckets.) In order to make the bu�ered multiplexer mathematically tractable they assign each con-nection its own virtual bu�er/trunk system. Each virtual bu�er/trunk system is allocated bu�er17
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Figure 6: The tra�c of connection j is characterized by the regulator function Ej(t) and fed directly,i.e. unsmoothed, into a bu�ered multiplexer.the advantages of the bu�ered approach.6 Final RemarksIn this paper we have considered tra�c management for multimedia networking applications whichpermit a small amount of loss and some bounded delay. We have argued that it is preferable tosmooth the tra�c at the ingress and to perform bu�erless statistical multiplexing within the nodethan to use shared{bu�er multiplexing. For our scheme we have determined the worst{case tra�cand have outlined an admission control procedure based on the worst{case tra�c. We have alsoexplicitly characterized the optimal smoother.As pointed out in Section 3.3 the smoothing can be performed by either the network (at thenetwork edge) or by the applications themselves. If the applications perform the smoothing, thenan application should smooth the tra�c as much as permitted by the delay constraint, and thenetwork should o�er a service to the application which guarantees queueing{free delays (delaysonly due to propagation and nodal processing) and allows the application to specify a maximumtolerable loss rate. The network node should perform statistical multiplexing in order to maximizeits connection{carrying capacity. To guarantee QoS, admission control should suppose that thetra�c is adversarial to the extent permitted by the regulators and smoothers.Throughout this paper we have studied a single{node network. A subsequent paper addresseshow the scheme can be extended to more general networks [23].Acknowledgements: We gratefully acknowledge interactions with Jim Roberts at the earlystages of this research.AppendixThe purpose of this appendix is to provide a proof for Theorem 2. But �rst we need to establish two lemmas.Lemma 2 A necessary condition for (S1(t); : : : ; SJ(t)) to be feasible is r1j � c�j for all j = 1; : : : ; J .20
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Figure 7: Number of lambs connections as a function of the delay bound. The lambs video isdescribed by 3 leaky buckets. Plots shown are for Elwalid et al. (EMW) [8] and our approach(RRR).The di�erence in the number of admissible connections is due to the di�erent notions of lossprobability. Elwalid et al. use \fraction of time during which loss occurs" while we use \fraction oftra�c lost".Proof. From [3, 4, 10] the maximum delay at smoother j is~dj = maxt�0 f max1�k�Mj Ej(t)� skjrkj � tg: (20)Suppose r1j < c�j for some j = 1; : : : ; J . Because skj � 0 and rkj � r1j for all k, it follows from (20) that~dj � maxt�0 fEj(t)r1j � tg: (21)And because, by assumption, r1j < c�j , it follows from (21) that~dj > maxt�0 fEj(t)c�i � tg = dj ;where the last equality follows from (4).Lemma 3 There exists a stochastic vector arrival process in A that produces the steady-state rate variables~U1; : : : ; ~UJ with ~Uj having distribution~U j = 8<: min(r1j ; �1j ) with probability �jmin(r1j ;�1j )0 with probability 1� �jmin(r1j ;�1j )at the smoother outputs.Proof. For each j = 1; : : : ; J , let tj = �2j =(�1j��2j) and �j = s2j=(r1j�r2j ). At t = tj the slope of Ej(t) changesform �1j to �2j < �1j . Consequently, Ej(tj) = �1j tj is the maximum size burst that can be transmitted at rate21



�1j � r1j �1j < r1jEj(tj) � Sj(�j) Ej(tj) < Sj(�j) Ej(tj) � Sj(�j) Ej(tj) < Sj(�j)Tj Sj(�j)=�j Ej(tj)=�j Sj(�j)=�j Ej(tj)=�jtonj Sj(�j)=�1j tj Sj(�j)=�1j tj�onj �j Ej(tj)=r1j Sj(�j)=�1j tjTable 3: On{times and periods of ~bj(t) and ~oj(t).�1j , provided successive maximum size bursts are spaced at least Ej(tj)=�j � tj apart. Similarly, at t = �jthe slope of Sj(t) changes form r1j to r2j < r1j . Consequently, Sj(�j) = r1j �j is the maximum size burst thesmoother can pass at rate r1j , provided successive maximum size bursts are spaced at least Sj(�j)=rMjj � �japart.Let ~bj(t) be a deterministic periodic function such that~bj(t) = ( �1j 0 � t < tonj0 tonj � t � Tj :with on{time tonj and period Tj given in Table 3. Also, let �1; : : : ; �J be independent random variables with�j uniformly distributed over [0; Tj ] and de�ne the jth stochastic arrival process as~Aj(t) = Z t0 ~bj(s+ �j)ds:Thus each component arrival process ( ~Aj(t); t � 0) is generated by a periodic on-o� source; the jth processhas peak rate �1j and average rate �j . The argument in the proof of Theorem 1 shows that the vector process( ~A(t); t � 0) is a feasible process in A.It remains to show that by sending each component process ( ~Aj(t); t � 0) into its respective smootherwe obtain an on-o� process whose peak rate is min(r1j ; �1j ) and whose average rate is �j . Speci�cally, we nowshow that ~Aj(t) produces ~Oj(t) = R t0 ~oj(s+ �j)ds at the smoother output where~oj(t) = ( min(r1j ; �1j ) 0 � t < �onj0 �onj � t � Tj ;where the periods and on{times are given in Table 3.First, consider the case �1j � r1j and Ej(tj) � Sj(�j). Clearly, tonj � tj since tonj = Sj(�j)=�1j andtj = Ej(tj)=�1j and by assumption Sj(�j) � Ej(tj). This implies that Ej(tonj ) = �1j tonj . HenceSj(�onj ) = Ej(tonj ): (22)Note furthermore that tonj � �onj (23)since tonj = Sj(�j)=�1j = r1j �j=�1j and by assumption r1j � �1j . Because of (22) and (23) and �onj = �j thesmoother bursts at rate r1j for a duration of �onj when fed with an input burst at rate �1j for a duration oftonj � tj . Also, note that the smoother output has average rate Ej(tonj )=Tj = �j � rMjj , where the lastinequality follows from the stability condition. 22



Next, consider the case �1j � r1j and Ej(tj) < Sj(�j). We have�onj � �j (24)since �onj = Ej(tj)=r1j and �j = Sj(�j)=r1j and by assumption Sj(�j) > Ej(tj). Thus Sj(�onj ) = r1j �onj .Hence Sj(�onj ) = Ej(tonj ): (25)Also, tonj � �onj (26)since tonj = Ej(tj)=�1j and �onj = Ej(tj)=r1j and by assumption �1j > r1j . Because of (24), (25) and (26) thesmoother bursts at rate r1j for a duration of �onj when fed with an input burst at rate �1j for a duration oftonj . The average rate of the smoother output is Ej(tonj )=Tj = �j � rMjj , where the last inequality followsfrom the stability condition.Now consider the case �1j < r1j and Ej(tj) � Sj(�j). We have tonj � tj since tonj = Sj(�j)=�1j andtj = Ej(tj)=�1j and by assumption Sj(�j) � Ej(tj). This implies that Ej(tonj ) = �1j tonj . HenceSj(�j) = Ej(tonj ): (27)Note furthermore that �j � tonj (28)since �j = Sj(�j)=r1j and tonj = Sj(�j)=�1j and by assumption r1j > �1j . Because of (27), (28) and �1j < r1j (byassumption) the smoother passes the input burst at rate �1j for a duration of tonj unchanged. The averagerate of the smoother output is Ej(tonj )=Tj = �j � rMjj , where the last inequality follows from the stabilitycondition.Finally, consider the case �1j < r1j and Ej(tj) < Sj(�j). These two assumptions imply that the smoothercan pass the input burst of size Ej(tj) at rate �1j . The average rate of the smoother output is Ej(tonj )=Tj =�j � rMjj , where the last inequality follows from the stability condition.Proof of Theorem 2: Using Lemma 3 and mimicking the proof of Theorem 1 we obtain�j = E h(PJk=1 ~Uk � C)+ ~U jiC �E[ ~U j ] ;where ~U1; : : : ; ~UJ are de�ned in Lemma 3. Using the fact that ~U j is a Bernoulli random variable, we obtainfrom the above expression �j = E h(Pk 6=j ~Uk +min(r1j ; �1j )� C)+iC� E h(Pk 6=j ~Uk + c�j � C)+iC ; (29)where the last inequality follows from Lemma 2. 23



From (15) and (29) it remains to show thatE[(Xk 6=j U�k + c�j � C)+] � E[(Xk 6=j ~Uk + c�j � C)+]: (30)From Lemma 2 and Proposition 1.5.1 in [27]U�k �icx ~Uk for all k = 1; : : : ; J: (31)The inequality (30) follows from (31), the independence of U�1 ; : : : ; U�J and an argument that parallels theargument in the proof of Theorem 1. 2References[1] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, Cambridge, MA, 1990.[2] R. Cruz. A calculus for network delay, part I: Network elements in isolation. IEEE Transactions onInformation Theory, 37(1):114{121, January 1991.[3] R. Cruz. A calculus for network delay, part II: Network analysis. IEEE Transactions on InformationTheory, 37(1):122{141, January 1991.[4] R. Cruz. Quality of service guarantees in virtual circuit switched networks. IEEE Journal on SelectedAreas in Communications, 13(6):1048{1056, August 1995.[5] B. T. Doshi. Deterministic rule based tra�c descriptors for broadband ISDN: Worst case behavior andconnection acceptance control. In J. Labetoulle and J. W. Roberts, editors, Proceedings of InternationalTeletra�c Congress (ITC) 14, pages 591{600. Elsevier Science B. V., 1994.[6] B. T. Doshi. Deterministic rule based tra�c descriptors for broadband ISDN: Worst case behaviorand its impact on connection acceptance control. International Journal of Communication Systems,8:91{109, 1995.[7] A. Elwalid, D. Heyman, T. Lakshman, D. Mitra, and A.Weiss. Fundamental bounds and approximationsfor ATM multiplexers with application to video teleconferencing. IEEE Journal on Selected Areas inCommunications, 13(6):1004{1016, August 1995.[8] A. Elwalid, D. Mitra, and R. H. Wentworth. A new approach for allocating bu�ers and bandwidth toheterogeneous regulated tra�c in an ATM node. IEEE Journal on Selected Areas in Communications,13(6):1115{1127, August 1995.[9] ATM Forum. ATM User{Network Interface Speci�cation, Version 3.0. Prentice{Hall, 1993.[10] L. Georgiadis, R. Guerin, V. Peris, and K.N. Sivarajan. E�cient network QoS provisioning based onper node tra�c shaping. IEEE/ACM Transactions on Networking, 4(4):482{501, August 1996.[11] I. Hsu and J. Walrand. Admission control for ATM networks. In IMA Workshop on Stochastic Networks,Minneapolis, Minnesota, March 1994.[12] E. Knightly, J. Liebeherr, D. Wrege, and H. Zhang. Fundamental limits and tradeo�s for providingdeterministic guarantees to VBR video tra�c. In Proceedings of IEEE Infocom '95, Boston, MA, April1995.[13] E. W. Knightly. H-BIND: A new approach to providing statistical performance guarantees to VBRtra�c. In Proceedings of IEEE Infocom '96, San Francisco, CA, April 1996.[14] E. W. Knightly and H. Zhang. Providing end{to{end statistical performance guarantees with boundinginterval dependent stochastic models. In Proceedings of ACM Sigmetrics '94, 1994.[15] E. W. Knightly and H. Zhang. D-BIND: an accurate tra�c model for providing QoS guarantees toVBR tra�c. IEEE/ACM Transactions on Networking, 5(2):219{231, April 1997.24



[16] T. Lee, K. Lai, and S. Duann. Design of a real{time call admission controller for ATM. IEEE/ACMTransactions on Networking, 4(5):758{765, October 1995.[17] J. Liebeherr and D. Wrege. Video characterization for multimedia networks with a deterministic service.In Proceedings of IEEE Infocom '96, San Francisco, CA, March 1996.[18] F. LoPresti, Z. Zhang, D. Towsley, and J. Kurose. Source time scale and optimal bu�er/bandwidthtrade{o� for regulated tra�c in an ATM node. In Proceedings of IEEE Infocom, Kobe, Japan, April1997.[19] W. Luo and M. El Zarki. Analysis of error concealment schemes for MPEG-2 video transmission overATM based networks. In Proceedings of SPIE Visual Communications and Image Processing 1995,Taiwan, May 1995.[20] V. Peris. Architecture for Guaranteed Delay Service in High Speed Networks. PhD thesis, Institute forSystems Research, University of Maryland, College Park, 1997.[21] S. Rajagopal, M. Reisslein, and K. Ross. Packet multiplexers with adversarial regulated tra�c. InProceedings of IEEE Infocom '98, pages 347{355, San Francisco, CA, April 1998.[22] M. Reisslein and K. W. Ross. Call admission for prerecorded sources with packet loss. IEEE Journalon Selected Areas in Communications, 15(6):1167{1180, August 1997.[23] M. Reisslein, K. W. Ross, and S. Rajagopal. Guaranteeing statistical QoS to regulated tra�c: Themultiple node case. In in preparation.[24] J. Roberts, U. Mocci, and J. Virtamo (Eds.). Broadband Network Tra�c: Performance Evaluationand Design of Broadband Multiservice Networks, Final Report of Action COST 242, (Lecture Notes inComputer Science Vol. 1155). Springer Verlag, 1996.[25] O. Rose. Statistical properties of MPEG video tra�c and their impact on tra�c modelling in ATMsystems. Technical Report 101, University of Wuerzburg, Insitute of Computer Science, Am Hubland,97074 Wuerzburg, Germany, February 1995.ftp address and directory of the used video traces:ftp-info3.informatik.uni-wuerzburg.de /pub/MPEG/.[26] S. Shenker and J. Wroclawski. Request for comments 2215: General characterization parameters forintegrated service network elements. September 1997.[27] D. Stoyan. Comparison methods for queues and other stochastic models. Wiley, 1983.[28] D. Wrege, E. Knightly, H. Zhang, and J. Liebeherr. Deterministic delay bounds for VBR video inpacket{switching networks: Fundamental limits and tradeo�s. IEEE/ACM Transactions on Networking,4(3):352{362, June 1996.[29] H. Zhang. Providing end-to-end performance guarantees using non-workconserving disciplines. Com-puter Communications: Special Issue on System Support for Multimedia Computing, 18(10), October1995.[30] H. Zhang and D. Ferrari. Rate-controlled service disciplines. Journal of High Speed Networks, 3(4):389{412, 1994.

25


